



# **Algorithms Theory**

# 11 – Shortest Paths

Dr. Alexander Souza

Wed, 25.1, No lecture Wed, 1.3, 90 lecture

Winter term 11/12

# 1. Shortest-paths problem



Directed graph G = (V, E)Cost function  $c : E \rightarrow R$ 



# Distance between two vertices



Ē

Cost of a path 
$$P = v_0, v_1, \dots, v_i$$
 from  $u$  to  $v: \quad v_i \, v_{i+1} \, e$   

$$c(P) = \sum_{i=0}^{l-1} c(v_i, v_{i+1})$$

**Distance between** *u* and *v* (not always defined):

 $dist(u, v) = inf \{ c(P) | P is a path from u to v \}$ 



# $\begin{array}{c|ccccc} 1 & 2 \\ -1 & 3 & 3 \\ 2 & 4 & 4 & 2 & c(c)=-n \\ 6 & 6 & 6 \\ 5 & 3 & c & 6 \\ \end{array}$

*dist(*1,2) = *dist(*1,3) =

Example

2. Single-source shortest paths problem



network  $G = (V, E, c), c : E \rightarrow R, vertex s$ 

For any edge  $(u, v) \in E$ :

 $dist(s,v) \leq dist(s,u) + c(u,v)$ 



P = shortest path from s to v P' = shortest path from s to u





Input:

# Greedy approach to an algorithm



1. <u>Overestimate</u> the function *dist* 

$$dist'(s,v) = \begin{cases} 0 & \text{if } v = s \\ \infty & \text{if } v \neq s \end{cases}$$

2. While there exists an edge 
$$e = (u, v)$$
 with  
 $dist(s, v) \ge dist(s, u) + c(u, v)$   
set  $dist(s, v) \leftarrow dist(s, u) + c(u, v)$   
 $s \leftarrow dist(s, v) + c(u, v)$ 

# Generic algorithm



```
\begin{pmatrix}
1. DIST[s] \leftarrow 0; \\
2. \text{ for all } v \in V \setminus \{s\} \text{ do } DIST[v] \leftarrow \infty \text{ endfor; } \\
3. \text{ while } \exists e = (u, v) \in E \text{ with } DIST[v] > DIST[u] + c(u, v) \text{ do} \\
4. Choose such an edge <math>e = (u, v); \\
5. DIST[v] \leftarrow DIST[u] + c(u, v); \text{ perfore friengle ineq.} \\
6. endwhile;
```

Questions:

- 1. How can we efficiently <u>check in line 3 if the triangle inequality</u> is violated?
- 2. Which edge shall we choose in line 4?







- Initialize  $U = \{s\}$ 

Solution

- Add vertex v to U whenever DIST[v] decreases.

 $DIST[w] \leq DIST[v] + c(v, w)$ 

- 1. Check if the triangle inequality is violated:  $U \neq \emptyset$ ?
- 2. Choose a vertex from *U* and restore the triangle inequality for all outgoing edges (edge relaxation).

# **Refined algorithm**



- 1. DIST[s]  $\leftarrow 0$ ;
- 2. for all  $v \in V \setminus \{s\}$  do DIST[v]  $\leftarrow \infty$  endfor;
- 3.  $U \leftarrow \{s\};$
- 4. while  $U \neq \emptyset$  do

$$\rightarrow$$
 5. Choose a vertex  $\vec{u} \in U$  and delete it from U;

- 6. for all  $e = (\overset{\flat}{U}, v) \in E$  do
- 7. **if** DIST[v] > DIST[u] + c(u,v) **then**

8. 
$$DIST[v] \leftarrow DIST[u] + c(u,v); \leftarrow vertice \bigtriangleup - ineq$$

9. 
$$U \leftarrow U \cup \{v\};$$

- 10. endif;
- 11. endfor;

### 12. endwhile;



**Lemma 1:** For each vertex  $v \in V$  we have  $DIST[v] \ge dist(s, v)$ .

**Proof:** (by contradiction)

Let v be the first vertex for which the relaxation of an edge (u, v) yields DIST[v] < dist(s, v).

Then:

 $DIST[u] + c(u,v) = DIST[v] < dist(s,v) \leq dist(s,u) + c(u,v)$ 

# Important properties

#### Lemma 2:

- a) If  $v \notin U$ , then for all  $(v, w) \in E$ : DIST $[w] \leq$  DIST[v] + c(v, w)U serves its propose.
- b) Let  $s = v_0, v_1, ..., v_l = v$  be a shortest path from s to v. l finite If DIST[v] > dist(s,v), then there exists  $v_i, 0 \le i \le l-1$ , with  $v_i \in U$  and  $DIST[v_i] = dist(s,v_i)$ .  $\sim M \neq \emptyset \implies Acg$ . We not get turined
- c) If G has no negative-cost cycles and DIST[v] > dist(s,v) for any  $v \in V$ , then there exists a  $u \in U$  with DIST[u] = dist(s,u). Shows path for the finite  $i \in V_i$ .
- d) If in line 5 we always choose  $u \in U$  with DIST[u] = dist(s, u), then the while-loop is executed only once per vertex. where Such a vertex is have a but never  $\sqrt{c} - entres$ . Lemma 1.

# Proof of Lemma 2



۲

a) <u>Induction</u> on the number *i* of executions of while-loop i = 0:  $v_{u}h_{us} \quad v \neq s \quad \text{are not in } U$  $DIST[w] \leq DIST[v] + c(V, w)$ 

# Proof of Lemma 2



Winter term 11/12

# Proof of Lemma 2

