

Algorithms Theory

12 – Minimum Spanning Trees

Dr. Alexander Souza

Winter term 11/12

1. Minimum spanning trees

G = (V, E) undirected graph $w: E \rightarrow R$ weight function

Let $T \subseteq E$ be a tree (connected, acyclic subgraph). Total weight of T:

$$w(T) = \sum_{(u,v)\in T} w(u,v)$$

Minimum spanning trees

A tree $T \subseteq E$ that connects all vertices in V and whose total weight is minimal is called a minimum spanning tree.

Growing a minimum spanning tree

Invariant: Maintain a set $A \subseteq E$ that is a subset of some minimum spanning tree.

Definition: An edge $(u, v) \in E \setminus A$ is a safe edge for A if $A \cup \{(u, v)\}$ is also a subset of some minimum spanning tree.

Greedy approach

Algorithm Generic-MST(*G*, *w*);

- 1. $A \leftarrow \emptyset$;
- 2. while A does not form a spanning tree do
- 3. Find an edge (u, v) that is safe for A;

4.
$$A \leftarrow A \cup \{(u, v)\};$$

5. endwhile;

2. Cuts

A cut (S, $V \setminus S$) is a partition of V.

An edge (u, v) crosses $(S, V \setminus S)$ if one of its endpoints is in S and the other is in $V \setminus S$.

Cuts

A cut respects a set A of edges if no edge in A crosses the cut.

Cuts

An edge is a light edge crossing a certain cut if its weight is the minimum of any edge crossing the cut.

Theorem: Let A be a subset of some minimum spanning tree T, and let $(S, V \setminus S)$ be a cut that respects A. If (u, v) is a light edge crossing $(S, V \setminus S)$ then (u, v) is safe for A.

Proof:

Case 1: $(u, v) \in T$: ok

Case 2: $(u, v) \notin T$:

We construct another minimum spanning tree T' with $(u, v) \in T'$ and $A \subseteq T'$.

Adding (u, v) to T yields a cycle.

Safe edges

On this cycle, there is at least one edge (x, y) in T that also crosses the cut.

Safe edges

$$T' = T \setminus \{(x, y)\} \cup \{(u, v)\}$$

is a minimum spanning tree, since

$$w(T') = w(T) - w(x,y) + w(u,v) \le w(T)$$

4. The graph G_A

 $G_{A}=(V, A)$

- is a forest, i.e. a collection of trees
- at the beginning, when $A = \emptyset$, each tree consists of a single vertex
- any safe edge for A connects distinct trees

Corollary: Let *B* be a tree in $G_A = (V, A)$. If (u, v) is a light edge connecting *B* to some other tree in G_A , then (u, v) is safe for *A*.

Proof: $(B, V \setminus B)$ respects A and (u, v) is a light edge for this cut.

5. Kruskal's algorithm

Always choose an edge of smallest weight that connects two trees B_1 and B_2 in G_A .

Kruskal's algorithm

- 1. $A \leftarrow \emptyset$;
- 2. for all $v \in V$ do $B_v \leftarrow \{v\}$; endfor;
- 3. Generate a list *L* of all edges in *E*, sorted in non-decreasing order of weight;
- 4. **for all** (*u*,*v*) in *L* **do**

5.
$$B_1 \leftarrow \text{FIND}(u); B_2 \leftarrow \text{FIND}(v);$$

- 6. if $B_1 \neq B_2$ then
- 7. $A \leftarrow A \cup \{(u,v)\};$ UNION $(B_1, B_2);$
- 8. endif;

9. endfor;

Running time: O($m \alpha(m,n) + m + n \log n$)

6. Prim's algorithm

A is always a single tree. Start from an arbitrary root vertex r. In each step, add a light edge to A that connects A to a vertex in $V \setminus A$.

Implementation

Q: priority queue containing all vertices v ∈ V \ A.
key of vertex v: minimum weight of any edge connecting v to a vertex in A (i.e. in the tree)

For a vertex v, let p[v] denote the parent of v in the tree.

$$A = \{ (v, p[v]) : v \in V - \{r\} - Q \}$$

Prim's algorithm

- 1. for all $v \in V$ do Insert(Q, ∞, v); endfor;
- 2. Choose a root vertex $r \in V$;
- 3. DecreaseKey(Q, 0, r); $p[r] \leftarrow nil$;
- 4. while ¬Empty(Q) do
- 5. $(d, u) \leftarrow \text{DeleteMin}(Q);$
- 6. for all $(u, v) \in E$ do
- 7. if $v \in Q$ and w(u, v) < key of v then
- 8. DecreaseKey(Q, w(u, v), v); $p[v] \leftarrow u$;
- 9. endif;
- 10. endfor;
- 11. endwhile;

Running time: $O(n \log n + m)$