

Algorithms Theory

12 – <u>Minimum Spanning</u> Trees

Dr. Alexander Souza

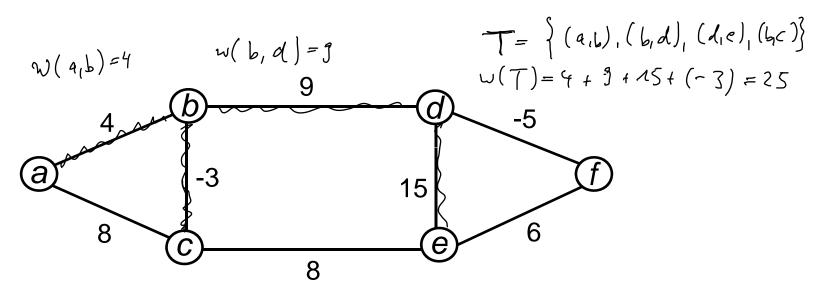
Winter term 11/12

1. Minimum spanning trees

G = (V, E) undirected graph $W: E \rightarrow R$ weight function

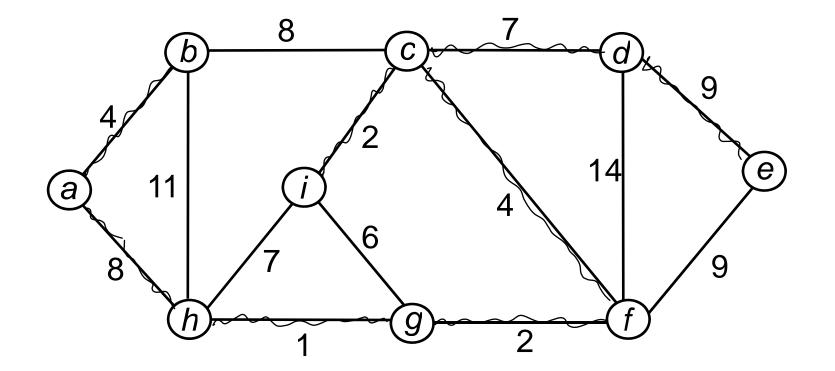
Let $T \subseteq E$ be a <u>tree</u> (connected, acyclic subgraph). Total weight of T:

$$w(T) = \sum_{(u,v) \in T} w(u,v)$$



Minimum spanning trees

A tree $T \subseteq E$ that connects all vertices in V and whose total weight is minimal is called a minimum spanning tree.



Invariant: Maintain a set $A \subseteq E$ that is a subset of some minimum spanning tree. $A = \emptyset$ initially $A \subseteq T$ for some TIST T.

Definition: An edge $(u,v) \in E \setminus A$ is a safe edge for A if $A \cup \{(u,v)\}$ is also a subset of some minimum spanning tree. $A \leq A \cup \{(u,v)\} \subseteq T \quad \text{for some FIST } T.$ (u,v) com be added to A.Not cleas how to find a safe edge $\{\forall A.$ $T_{\bullet} \qquad T_{\bullet} \qquad T_$

Greedy approach

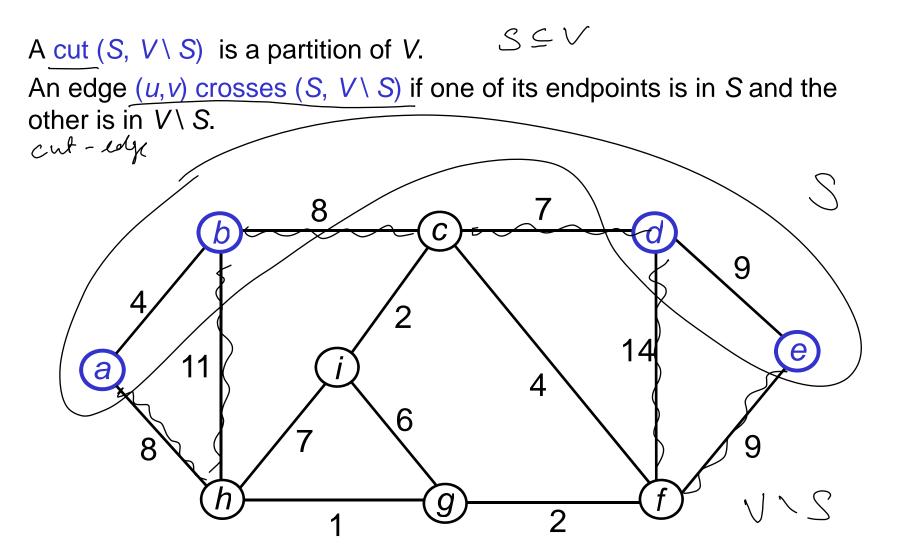
Algorithm Generic-MST(*G*, *w*);

- 1. $A \leftarrow \emptyset$;
- 2. while A does not form a spanning tree do
- 3. Find an edge (u, v) that is safe for A;

4.
$$A \leftarrow A \cup \{(u, v)\};$$

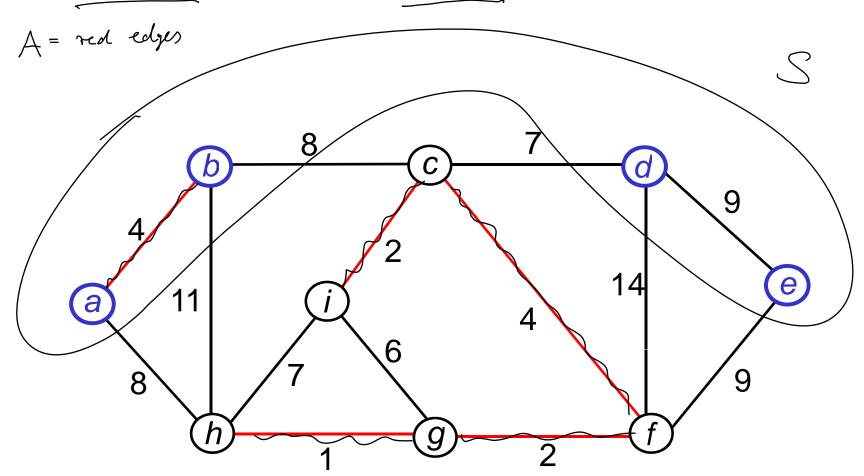
5. endwhile;

2. Cuts



Cuts Ut A be a sut of edges and (S, V.S) be a cut.

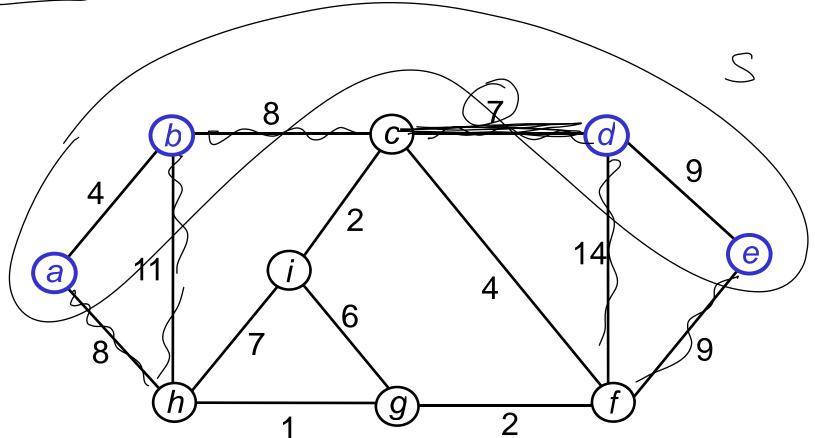
A cut respects a set A of edges if no edge in A crosses the cut.



IIF

Cuts

An edge is a light edge crossing a certain cut if its weight is the minimum of any edge crossing the cut.



3. Safe edges

Theorem: Let <u>A</u> be a subset of some minimum spanning tree <u>T</u>, and let $(S, V \setminus S)$ be a cut that respects <u>A</u>. If (u,v) is a light edge crossing $(S, V \setminus S)$ then (u,v) is safe for <u>A</u>.

Proof:

```
Case 1: (u, v) \in T: ok
```

Case 2: $(u, v) \notin T$:

We construct another minimum spanning tree T' with $(u, v) \in T'$ and $A \subseteq T'$.