

Algorithms Theory

12 – Minimum Spanning Trees

P.D. Dr. Alexander Souza

Evaluation Presid Formes for evaluating this course will be available on our web-page.

Tomano

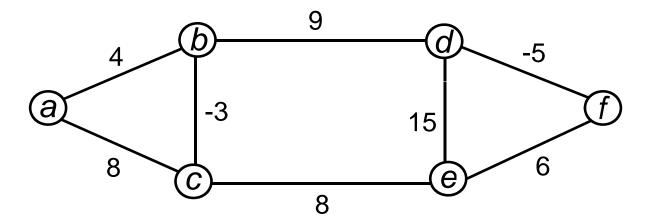
Jo minute lecture

1. Minimum spanning trees

G = (V, E) undirected graph $w: E \rightarrow R$ weight function

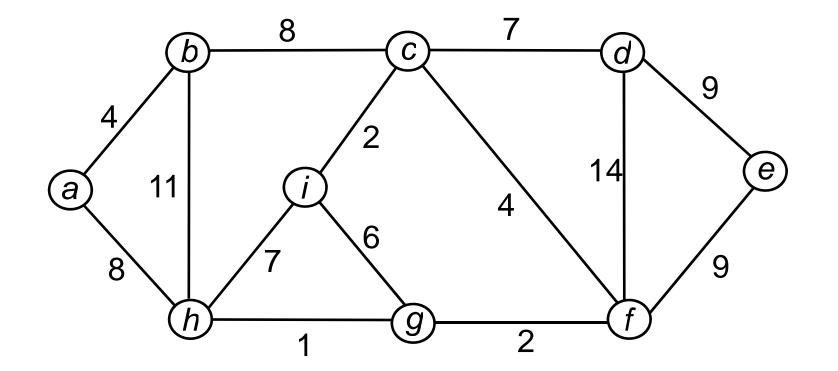
Let $T \subseteq E$ be a tree (connected, acyclic subgraph). Total weight of T:

$$w(T) = \sum_{(u,v)\in T} w(u,v)$$



Minimum spanning trees

A tree $T \subseteq E$ that connects all vertices in V and whose total weight is minimal is called a minimum spanning tree.



Growing a minimum spanning tree

Invariant: Maintain a set $A \subseteq E$ that is a subset of some minimum spanning tree.

Definition: An edge $(u,v) \in E \setminus A$ is a <u>safe edge</u> for A if $A \cup \{(u,v)\}$ is also a subset of some minimum spanning tree.

Greedy approach

Algorithm Generic-MST(*G*, *w*);

- 1. $A \leftarrow \emptyset$;
- 2. while A does not form a spanning tree do
- 3. Find an edge (u, v) that is safe for A;

4.
$$A \leftarrow A \cup \{(u, v)\};$$

5. endwhile;

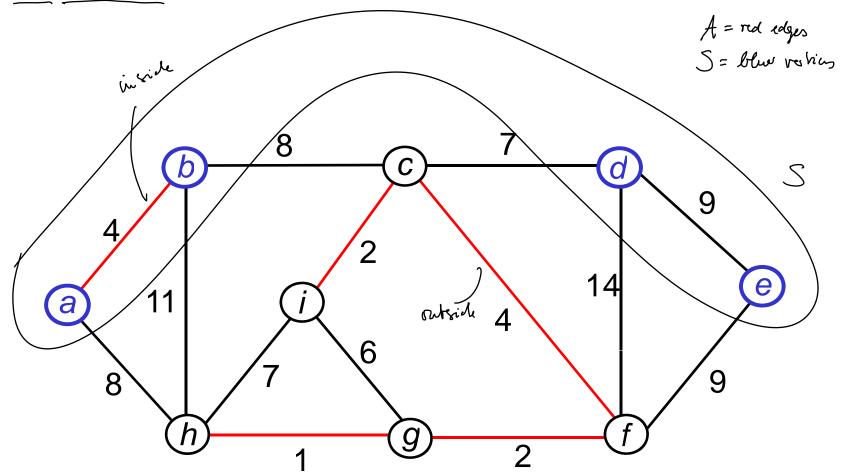
A cut (S, $V \setminus S$) is a partition of V.

An edge (u, v) crosses $(S, V \setminus S)$ if one of its endpoints is in S and the other is in $V \setminus S$. S 9 4 2 е 14 [a]4 6 9 8 h g 2 1

2. Cuts

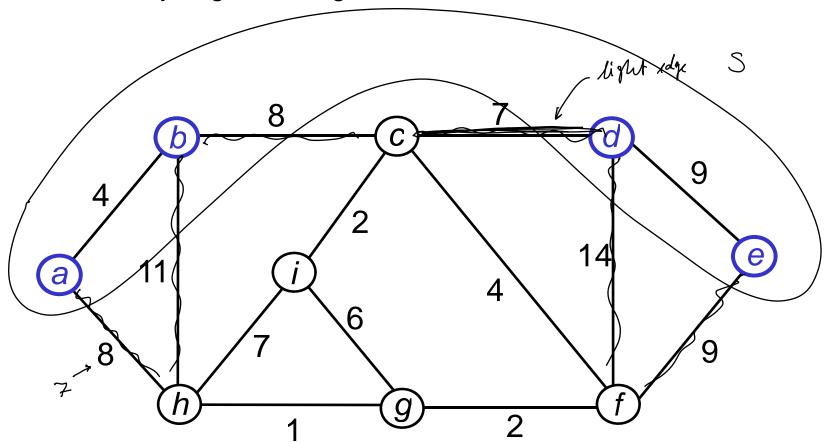
Cuts

A cut respects a set A of edges if no edge in A crosses the cut.



Cuts

An edge is a light edge crossing a certain cut if its weight is the minimum of any edge crossing the cut.



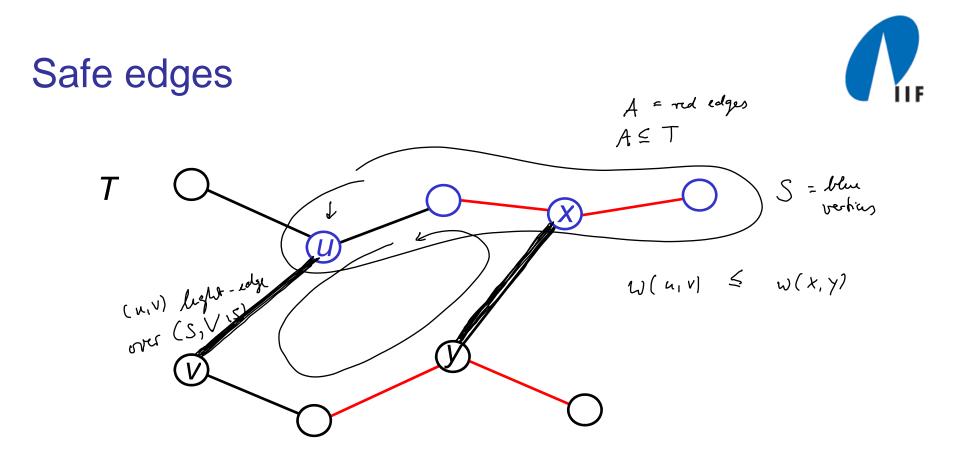
3. Safe edges

Theorem: Let <u>A</u> be a subset of <u>some minimum spanning tree</u> T, and let $(S, V \setminus S)$ be a cut that <u>respects</u> A. If (u, v) is a <u>light edge</u> <u>crossing</u> $(S, V \setminus S)$ then (u, v) is safe for A.

Proof:
$$T$$
 fixed MST, $A \subseteq T$, to be $A = A \cup \{(u_1 \vee)\} \subseteq T'$ for some MST T' .
Case 1: $(u, v) \in T$: ok \vee

Case 2: $(u, v) \notin T$:

We <u>construct</u> another <u>minimum</u> spanning tree T' with $(u, v) \in T'$ and $A \subseteq T'$.



Adding (u, v) to T yields a cycle.

On this cycle, there is at least one edge (x, y) in *T* that also crosses the cut.

Safe edges

$$T' = T \setminus \{(x, y)\} \cup \{(u, v)\}$$
 is a free
$$(u, v) \in T'$$

is a minimum spanning tree, since

$$w(T') \equiv w(T) - w(x,y) + w(u,v) \leq w(T)$$

$$\int_{Sime} U(y) + u(u,v) \leq w(x,y)$$

$$w(T') \geq w(T) \qquad T \text{ is a MST}$$

$$=) \quad w(T') = w(T)$$

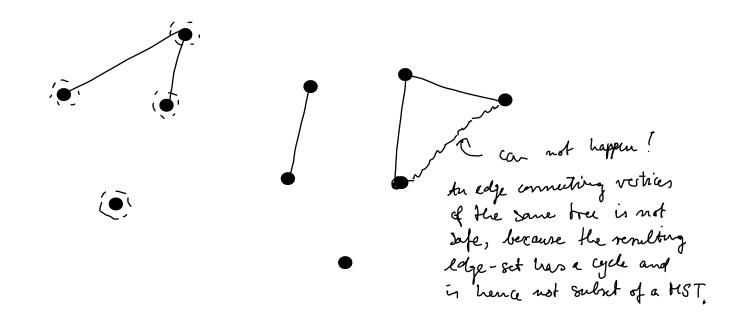
$$=) \quad T' \text{ is a MST}$$

$$A' = A \cup \{(u,v)\} \leq T' \qquad (x,y) \notin A$$

4. The graph G_A

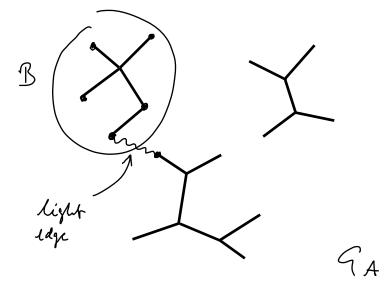
$G_{A}=(V, A)$

- is a forest, i.e. a collection of trees
- at the beginning, when $A = \emptyset$, each tree consists of a single vertex
- any safe edge for A connects distinct trees



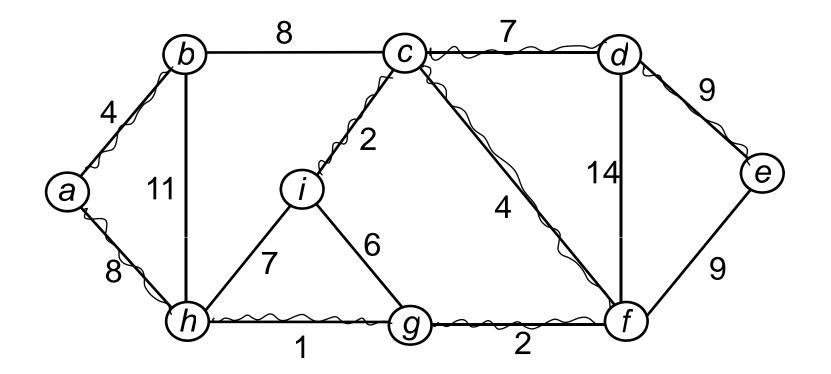
Corollary: Let *B* be a tree in $G_A = (V, A)$. If (u, v) is a light edge connecting *B* to some other tree in G_A , then (u, v) is safe for *A*.

Proof: (B, $V \setminus B$) respects A and (u,v) is a light edge for this cut. \Rightarrow (u,v) is sufe Thereas



5. Kruskal's algorithm

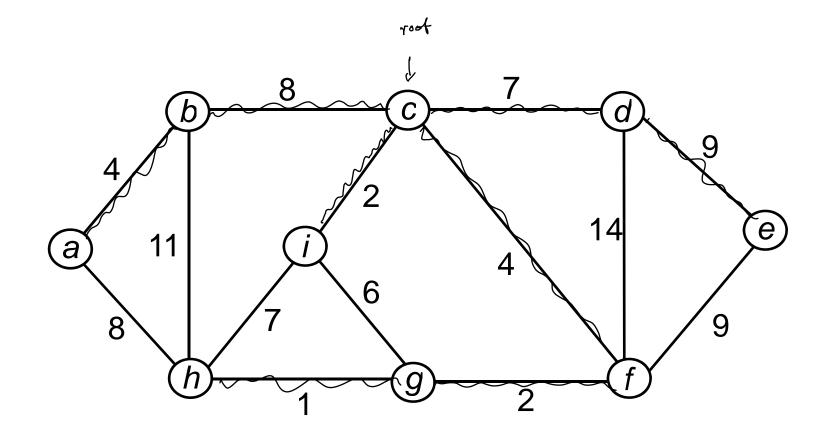
Always choose an edge of smallest weight that connects two trees B_1 and B_2 in G_A .



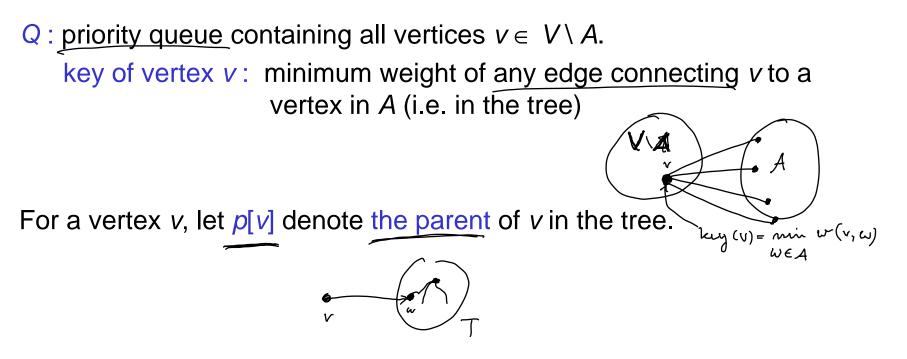
Kruskal's algorithm

1.
$$A \leftarrow \emptyset$$
;
 $h \ G_A = G \ dl \ verther compared to here
 B_V (i):
2. for all $v \in V$ do $B_V \leftarrow \{v\}$; endfor;
3. Generate a list L of all edges in E , sorted in non-decreasing
order of weight;
4. for all (u,v) in L do
5. $B_1 \leftarrow FIND(u)$; $B_2 \leftarrow FIND(v)$;
6. if $B_1 \neq B_2$ then
7. $A \leftarrow A \cup \{(u,v)\}$; UNION (B_1, B_2) ;
8. endif;
9. endfor;
8. endif;
9. endfor;
8. endif:
9. endfor;
8. endif:
9. endfor;
8. endif:
9. endfor;
8. endif:
9. endfor;
9. endfor;
9. endfor;
9. endfor:
9. endfo$

A is always a <u>single tree</u>. Start from an arbitrary root vertex r. In each step, add a light edge to A that connects A to a vertex in $V \setminus A$.

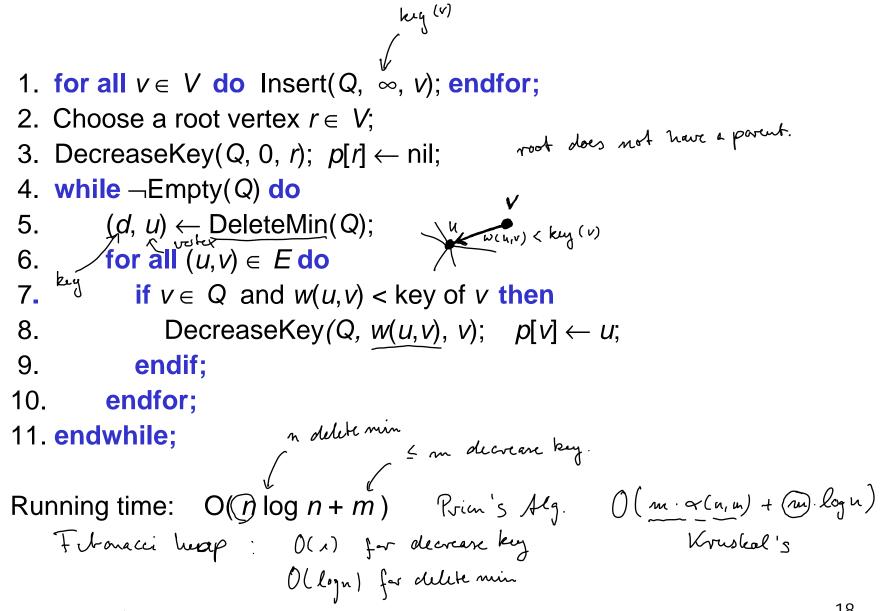


Implementation



 $A = \{ (v, p[v]) : v \in V - \{r\} - Q \}$

Prim's algorithm



Winter term 11/12