

Algorithms Theory

13 – Bin Packing

P.D. Dr. Alexander Souza

Bin packing

- 1. Problem definition and general observations
- 2. Approximation algorithms for the online bin packing problem
- 3. Approximation algorithms for the offline bin packing problem

Problem definition

Given:

n items with sizes

$$S_1, \ldots, S_n$$

where $0 < s_i \le 1$ for $1 \le i \le n$.

Goal:

Pack items into a minimum number of unit-capacity bins.

Example:

7 items with sizes 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

Problem definition

Online bin packing:

Items arrive one by one. Each item must be assigned immediately to a bin, without knowledge of any future items. Reassignment is not allowed.

Offline bin packing:

All *n* items are known in advance, i.e. before they have to be packed.

Observations

- Bin packing is provably hard.
 (Offline bin packing is NP-hard.
 Decision problem is NP-complete.)
- There exists no online bin packing algorithm that always finds an optimal solution.

Online bin packing

Theorem 1:

There are inputs that force each online bin packing algorithm to use at least 4/3 OPT bins where OPT is the minimum number of bins possible.

Proof:

Assumption: online bin packing algorithm *A* always uses less than 4/3 *OPT* bins

Online bin packing

1st point of time:

$$OPT = m/2$$
 and $\#bins(A) = b$
by assumption: $b < 4/3 \cdot m/2 = 2/3 m$

Let
$$b = b_1 + b_2$$
, with $b_1 = \# bins$ containing one item $b_2 = \# bins$ containing two items

There is:
$$b_1$$
 + 2 b_2 = m , i.e. b_1 = m –2 b_2

Hence:
$$b = b_1 + b_2 = m - b_2$$
 (*)

2nd point of time:

$$OPT = m$$

$$\# bins(A) \ge b + m - b_1 = m + b_2$$

$$Assumption: m + b_2 \le \# bins(A) < 4/3m$$

$$b_2 < m/3$$

using (*):
$$b = m - b_2 > 2/3m$$

Online bin packing

Next Fit (NF), First Fit (FF), Best Fit (BF)

Next Fit:

Assign an arriving item to the same bin as the preceding item. If it does not fit, open a new bin and place it there.

Theorem 2:

(a) For all input sequences *I*:

$$NF(I) \leq 2 OPT(I)$$
.

(b) There exist input sequences *I* such that:

$$NF(I) \geq 2 OPT(I) - 2$$
.

Next Fit

Proof: (a)

Consider two bins B_{2k-1} , B_{2k} , $2k \le NF(I)$.

Next Fit

Proof: (b)

Consider an input sequence I of length n $(n \equiv 0 \pmod{4})$:

 $0.5, 2/n, 0.5, 2/n, 0.5, \dots, 0.5, 2/n$

Optimal packing:

Next Fit

Next Fit yields:

$$NF(I) =$$

$$OPT(I) =$$

First Fit:

Assign an arriving item to the <u>first bin</u> (i.e. that was opened earliest) in which it fits. If there is no <u>such</u> bin, open a <u>new</u> one and place it there.

Observation:

At each point in time there is at most one bin that is less than half full.

$$\rightarrow$$
 FF(I) \leq 20PT(I)

Theorem 3:

(a) For all input sequences *I*:

$$FF(I) \leq \lceil \frac{17}{10} OPT(I) \rceil$$
 involved

(b) There exist input sequences *I* such that:

$$FF(I) \ge \frac{17}{10} \left(OPT(I) - 1\right)$$

(b') There exist input sequences *I* such that:

$$FF(I) = \frac{10}{6} OPT(I)$$

Proof (b'): Input sequence of length $3 \cdot 6m$:

$$\underbrace{\frac{1/7+\varepsilon,\ldots,1/7+\varepsilon}_{6m}},\underbrace{\frac{1/3+\varepsilon,\ldots,1/3+\varepsilon}_{6m}},\underbrace{\frac{1/2+\varepsilon,\ldots,1/2+\varepsilon}_{6m}}$$

15

First Fit yields:

 \mathcal{D}

Best Fit

Best Fit:

Assign an <u>arriving item</u> to the bin in which it fits best (i.e. where it leaves the smallest empty space).

Performance of BF and FF is similar.

Running times on input sequences of length n:

NF
$$O(n)$$

FF $O(n^2)$ \longrightarrow $O(n \log n)$

BF $O(n^2)$ \longrightarrow $O(n \log n)$

Analog

Offline bin packing

Prior to the packing, n and $s_1, ..., s_n$ are known in advance.

An optimal packing can be found by exhaustive search. exponential time

Approach to an offline approximation algorithm:

Initially sort the items in decreasing order of size and assign the larger items first!

First Fit Decreasing (FFD) resp. FFNI Best Fit Decreasing (BFD)

Lemma 1:

Let I be an input sequence of n objects with sizes

$$s_1 \ge s_2 \ge \dots \ge s_n$$

and let(m) = OPT(I).

Then, all items placed by FFD into bins

$$B_{\underline{m+1}}, B_{\underline{m+2}}, \ldots, B_{\underline{FFD(I)}}$$

are of size at most 1/3.

Proof: Let & be the first item which is placed in to bin met 1.

We will show $Si \leq 1/3$ implying $Si+1 + \cdots + Sm \leq 1/3$.

Arme: $Si \neq 1/3$

when FFD places i into bin m+1 the first on bins have the following configuration

FFD:

k lins

with two items

OPT:

Hum i can not be packed into any of the first k bins (FFD has proved that there is not possible). And ikm i can not be packed into any of the last m-k brins because these bins are packed to an extend of 7 2/3 and the 8ite Si > 1/3.

OPT(I) > m {

Lemma 2:

Let *I* be an input sequence of *n* objects with sizes

$$s_1 \ge s_2 \ge \dots \ge s_n$$

and let(m) = OPT(I).

Then the number of items placed by FFD into bins

$$B_{\underline{m+1}}, B_{\underline{m+2}}, \ldots, B_{\underline{FFD(I)}}$$

is at most m-1.

Proof:

Assumption: FFD places more than m-1 items, say $x_1,...,x_m$, into extra bins.

CPT = m

Lemma 1+ 2:

Af most m-1 ihrus each having

Gize af most 1/2 re packed into

extra him by FFD.

Thus at most [m-17 extra hims

Theorem:

For all input sequences *I*:

FFD(I)
$$\leq$$
 (4 OPT(I) + 1) / 3. = $\frac{4}{3}$. OPT(I) + $\frac{1}{3}$

Proof $\mp \mp D(T) \leq m + \left[\frac{m-1}{3}\right] \leq m + \frac{m-1}{3} + \frac{2}{3} = \frac{4}{3} \cdot m + \frac{1}{3} = \frac{4}{3} \cdot \text{OPT}(I) + \frac{1}{3}$

Theorem:

1. For all input sequences *I*:

$$FFD(I) \leq (11/9)OPT(I) + 4.$$
 difficult

2. There exist input sequences I such that:

$$FFD(I) = 11/9 \ OPT(I).$$

Proof (b): Input sequence of length $3 \cdot 6m + 12m$:

$$\begin{array}{c}
4 & \text{pres} \\
1/2 + \varepsilon, \dots, 1/2 + \varepsilon, 1/4 + 2\varepsilon, \dots, 1/4 + 2\varepsilon \\
6m & \text{in decreasing cross of Gize}
\end{array}$$

$$\frac{1/4 + \varepsilon, \dots, 1/4 + \varepsilon, 1/4 - 2\varepsilon, \dots, 1/4 - 2\varepsilon}{6m}$$

$$\frac{1}{2m}$$

Optimal packing:

First Fit Decreasing yields:

FFD(I) = 11m