

Algorithms Theory

13 – Bin Packing

P.D. Dr. Alexander Souza

Winter term 11/12

Bin packing

1. Problem definition and general observations

2. Approximation algorithms for the online bin packing problem

3. Approximation algorithms for the offline bin packing problem

Goal:

Pack items into a minimum number of unit-capacity bins.

7 items with sizes 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

0.5

0.4

0.7

0.3

0.8

0.2

Online bin packing:

Items arrive <u>one by one</u>. Each item must be assigned <u>immediately</u> to a bin, without <u>knowledge</u> of <u>any future items</u>. Reassignment is <u>not</u> allowed.

Offline bin packing:

All *n* items are known in advance, i.e. before they have to be packed.

Observations

- Bin packing is provably hard.
 (Offline bin packing is NP-hard.
 Decision problem is NP-complete.)
- There exists <u>no online</u> bin packing algorithm that always finds an optimal solution.

Online bin packing

6

Theorem 1:

Winter term 11/12

There are inputs that force each online bin packing algorithm to use at least 4/3 OPT bins where OPT is the minimum number of bins possible.

Online bin packing

1st point of time:

$$OPT = m/2$$
 and $\#bins(A) \neq b$
by assumption: $b < 4/3 \cdot m/2 \neq 2/3 m$ $b < 2/3 \cdot m$

Let
$$b = b_1 + b_2$$
, with
 $(b_1) =$ #bins containing one item
 $(b_2) =$ #bins containing two items
 $(b_3) =$ #bins containing two items

1/2

There is:
$$b_1 + 2 \ b_2 = m$$
, i.e. $b_1 = m - 2b_2$
Hence: $b = b_1 + b_2 = m - b_2$ (*)

Online bin packing

Next Fit (NF), First Fit (FF), Best Fit (BF)

Next Fit:

Assign an arriving item to the same bin as the preceding item. If it does not fit, open a new bin and place it there.

Theorem 2:

(a) For all input sequences *I* :

 $NF(I) \leq 2 \cdot OPT(I).$ ~

(b) There exist input sequences *I* such that:

 $NF(I) \geq 2 \cdot OPT(I) - 2.$

 $OPT(I) = \begin{bmatrix} \sum_{i=1}^{m} S_i \end{bmatrix}$ $= \begin{bmatrix} \sum_{k=1}^{l_{e_2}} S(B_{2k-n}) + S(B_{2k}) \\ + S(B_{e}) \end{bmatrix}$ $+ \begin{bmatrix} S(B_{e}) \end{bmatrix}$ $\begin{bmatrix} \lfloor l_{e_1} \rfloor \\ k = n \end{bmatrix}$

Next Fit

Proof: (a)

Consider two bins B_{2k-1} , B_{2k} , $2k \leq NF(I)$.

Solution of NF

Next Fit

Proof: (b)

Consider an input sequence *I* of length *n* $(n \equiv 0 \pmod{4})$:

Optimal packing:

Next Fit

Next Fit yields:

 \mathbf{Q}