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Outline

• General approach differences to a recursive solutionGeneral approach, differences to a recursive solution

• Basic example: Computation of the Fibonacci numbers
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Method of dynamic programming

Recursive approach: Solve a problem by solving several smaller 
analogous subproblems of the same type. Then combine these 

l ti t t l ti t th i i l blsolutions to generate a solution to the original problem.

Drawback: Repeated computation of solutionsDrawback: Repeated computation of solutions

Dynamic-programming method: Once a subproblem has been 
solved, store its solution in a table so that it can be retrieved later
by simple table lookup.
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Example: Fibonacci numbers

f(0) = 0
f(1) = 1f(1) = 1
f(n) = f(n – 1) + f(n – 2),  for n ≥ 2
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Straightfor ard implementationStraightforward implementation:

procedure fib (n : integer) : integer
if (n == 0) or (n ==1)

then return n
else return fib(n – 1) + fib(n – 2)
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Example: Fibonacci numbers

Recursion tree:
fib(5)fib(5)

fib(4) fib(3)( ) ( )

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)

fib(1) fib(0)

Repeated computation!
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Dynamic programming

Approach:Approach:

1.  Recursively define problem P.

2.  Determine a set T consisting of all subproblems that have to be 
solved during the computation of a solution to Psolved during the computation of a solution to P.

3.  Find an order T0 , ..., Tk of the subproblems in T such that during the 0 k p g
computation of a solution to Ti only subproblems Tj with j < i arise.

4 Sol e T T in this order and store the sol tions4. Solve T0 ,...,Tk in this order and store the solutions.
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Example: Fibonacci numbers

1 Recursive definition of the Fibonacci numbers based on the1.  Recursive definition of the Fibonacci numbers, based on the 
standard equation.

2. T = { f(0),..., f(n-1)}

3 T = f(i) i = 0 n 13. Ti = f(i), i = 0,...,n – 1

4. Computation of fib(i), for i ≥ 2, only requires the results of the last p ( ) y q
two subproblems fib(i – 1) and fib(i – 2).

7Winter term 11/12



Example: Fibonacci numbers

Computation by dynamic programming version 1:Computation by dynamic programming, version 1:

procedure fib(n : integer) : integer
1 f0 := 0; f1 := 1
2 for k := 2 to n do
3 f f + f3 fk := fk-1 + fk-2

4 return fn
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Example: Fibonacci numbers

Computation by dynamic programming version 2:Computation by dynamic programming, version 2:

procedure fib (n : integer) : integer
1 fsecondlast := 0; flast :=1
2 for k := 2 to n do
3 f f + f3 fcurrent := flast +  fsecondlast

4 fsecondlast := flast

5 flast := fcurrent5 flast :  fcurrent

6 if n ≤ 1 then return n else return fcurrent ;

Linear running time, constant space requirement!
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Computing Fibonacci numbers with memoization

Compute each number exactly once, store it in an array F[0...n]:
procedure fib (n : integer) : integer
1 F[0] := 0;  F[1] := 1;
2 for i :=2 to n do2 for i : 2 to n do
3         F[i] := ∞;
4  return lookupfib(n)

The procedure lookupfib is defined as follows:

procedure lookupfib(k : integer) : integer
1   if F[k] < ∞
2 th t F[k]2 then return F[k]
3       else F[k] := lookupfib(k – 1) + lookupfib(k – 2);
4 return F[k]
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