
Algorithms Theory

14 – Dynamic
P i (1)Programming (1)

P.D. Dr. Alexander Souza

Winter term 11/12

Outline

• General approach differences to a recursive solutionGeneral approach, differences to a recursive solution

• Basic example: Computation of the Fibonacci numbers

2Winter term 11/12

Method of dynamic programming

Recursive approach: Solve a problem by solving several smaller
analogous subproblems of the same type. Then combine these

l ti t t l ti t th i i l blsolutions to generate a solution to the original problem.

Drawback: Repeated computation of solutionsDrawback: Repeated computation of solutions

Dynamic-programming method: Once a subproblem has been
solved, store its solution in a table so that it can be retrieved later
by simple table lookup.

3Winter term 11/12

Example: Fibonacci numbers

f(0) = 0
f(1) = 1f(1) = 1
f(n) = f(n – 1) + f(n – 2), for n ≥ 2

R kRemark:

() ⎥
⎤

⎢
⎡= nnf 61811)(() ⎥⎦⎢⎣

=nf K618.1
5

)(

Straightfor ard implementationStraightforward implementation:

procedure fib (n : integer) : integer
if (n == 0) or (n ==1)

then return n
else return fib(n – 1) + fib(n – 2)

4Winter term 11/12

Example: Fibonacci numbers

Recursion tree:
fib(5)fib(5)

fib(4) fib(3)() ()

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)

fib(1) fib(0)

Repeated computation!

[]16181447111511)(×≈⎥
⎤

⎢
⎡

⎟
⎞

⎜
⎛ +
⎟
⎞

⎜
⎛ +≈ n

n

nT

5Winter term 11/12

[]1618.1447.11
25

1)(−×≈
⎥
⎥
⎦⎢

⎢
⎣

−⎟
⎠

⎜
⎝
⎟
⎠

⎜
⎝

+≈nT

Dynamic programming

Approach:Approach:

1. Recursively define problem P.

2. Determine a set T consisting of all subproblems that have to be
solved during the computation of a solution to Psolved during the computation of a solution to P.

3. Find an order T0 , ..., Tk of the subproblems in T such that during the 0 k p g
computation of a solution to Ti only subproblems Tj with j < i arise.

4 Sol e T T in this order and store the sol tions4. Solve T0 ,...,Tk in this order and store the solutions.

6Winter term 11/12

Example: Fibonacci numbers

1 Recursive definition of the Fibonacci numbers based on the1. Recursive definition of the Fibonacci numbers, based on the
standard equation.

2. T = { f(0),..., f(n-1)}

3 T = f(i) i = 0 n 13. Ti = f(i), i = 0,...,n – 1

4. Computation of fib(i), for i ≥ 2, only requires the results of the last p () y q
two subproblems fib(i – 1) and fib(i – 2).

7Winter term 11/12

Example: Fibonacci numbers

Computation by dynamic programming version 1:Computation by dynamic programming, version 1:

procedure fib(n : integer) : integer
1 f0 := 0; f1 := 1
2 for k := 2 to n do
3 f f + f3 fk := fk-1 + fk-2

4 return fn

8Winter term 11/12

Example: Fibonacci numbers

Computation by dynamic programming version 2:Computation by dynamic programming, version 2:

procedure fib (n : integer) : integer
1 fsecondlast := 0; flast :=1
2 for k := 2 to n do
3 f f + f3 fcurrent := flast + fsecondlast

4 fsecondlast := flast

5 flast := fcurrent5 flast : fcurrent

6 if n ≤ 1 then return n else return fcurrent ;

Linear running time, constant space requirement!

9Winter term 11/12

Computing Fibonacci numbers with memoization

Compute each number exactly once, store it in an array F[0...n]:
procedure fib (n : integer) : integer
1 F[0] := 0; F[1] := 1;
2 for i :=2 to n do2 for i : 2 to n do
3 F[i] := ∞;
4 return lookupfib(n)

The procedure lookupfib is defined as follows:

procedure lookupfib(k : integer) : integer
1 if F[k] < ∞
2 th t F[k]2 then return F[k]
3 else F[k] := lookupfib(k – 1) + lookupfib(k – 2);
4 return F[k]

10Winter term 11/12

[]

