n

Algorithms Theory

14 - Dynamic Programming (1)

P.D. Dr. Alexander Souza

Outline

- General approach, differences to a recursive solution

Dynamic Rogramuin = Recurvion + Storing computed Subportblem-solution

- Basic example: Computation of the Fibonacci numbers

Method of dynamic programming

Recursive approach: Solve a problem by solving several smaller analogous subproblems of the same type. Then combine these solutions to generate a solution to the original problem.

Drawback: Repeated computation of solutions

Dynamic-programming method: Once a subproblem has been solved, store its solution in a table so that it can be retrieved later by simple table lookup.

Example: Fibonacci numbers

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(n)=f(n-1)+f(n-2), \text { for } n \geq 2
\end{aligned}
$$

Remark:

$$
f(n)=\left[\frac{1}{\sqrt{5}}(1.618 \ldots)^{n}\right]
$$

Straightforward implementation:
procedure fib (n : integer) : integer
if $(n==0)$ or ($n==1$) then return n else return $f \underline{i b}(n-1)+\underline{f i b}(n-2)$

Example: Fibonacci numbers

Recursion tree:

Dynamic programming

Approach:

1. Recursively define problem P.
2. Determine a set T consisting of all subproblems that have to be solved during the computation of a solution to P.

$$
T=\left\{T_{0}, \ldots, T_{6}\right\}
$$

3. Find an order T_{0}, \ldots, T_{k} of the subproblems in T such that during the computation of a solution to T_{i} only subproblems T_{j} yvith $j<i$ arise.
4. Solve T_{0}, \ldots, T_{k} in this order and store the solutions.

Example: Fibonacci numbers

1. Recursive definition of the Fibonacci numbers, based on the standard equation. $f(n)$
2. $T=\{f(0), \ldots, f(n-1)\}$
3. $T_{i}=f(i), \quad i=0, \ldots, n-1$

4. Computation of $f i b(i)$, for $i \geq 2$, only requires the results of the last two subproblems fib($i-1$) and fib($i-2)$.

Example: Fibonacci numbers

Computation by dynamic programming, version 1:
procedure $\underline{f i b}(n$: integer) : integer
$1 f_{0}:=0 ; f_{1}:=1$
for $k:=2$ to n do
$3 \quad f_{k}:=f_{k-1}+f_{k-2}$
return f_{n}
$\begin{array}{ll}\text { Running time } & O(n) \\ \text { Space } & O(n)\end{array}$
$\begin{array}{ll}\text { Running time } & O(n) \\ \text { Space } & O(n)\end{array}$
Bolton - up
4 return f_{n}

Example: Fibonacci numbers

Computation by dynamic programming, version 2:

```
procedure fib ( \(n\) : integer) : integer
\(1 f_{\text {secondlast }}:=0 ; f_{\text {last }}:=1\)
2 for \(k\) := 2 to \(n\) do
\(3 \quad f_{\text {current }}:=f_{\text {last }}+f_{\text {secondlast }}\)
\(4 \quad f_{\text {secondlast }}:=f_{\text {last }}\)
\(5 \quad f_{\text {last }}:=f_{\text {current }}\)
6 if \(n \leq 1\) then return \(n\) else return \(f_{\text {current }}\);
```

Linear running time, constant space requirement!

Computing Fibonacci numbers with memoization lis

Rechorive approach where we

Gompute each number exactly once, store it in an array $F[0 . . . n]$:
procedure fib (n : integer) : integer
1 F[0]:= 0; F[1]:= 1;
2 for $i:=2$ to n do
$3 \quad F[1]:=\infty$.)
4 return lookupfib(n)

$$
\begin{aligned}
& \text { " } \infty \text { " } \equiv \text { mumber not yet } \\
& \text { Compurted } \\
& \text { Top-Downs approach }
\end{aligned}
$$

The procedure lookupfib is defined as follows:

```
                \(\downarrow\)
procedure lookupfib(k : integer) : integer
1 if \(F[k]<\infty\)
2 then return \(F[k]\)
3 else \(F[k]\) := lookupfib \((k-1)+\) lookupfib \((k-2)\);
4 return \(F[k]\)
```

