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Optimal substructure

Dynamic programming is typically applied to
optimization problems.

An optimal solution to the original problem contains
ti l l ti t ll b bloptimal solutions to smaller subproblems.
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Matrix-chain multiplication

Given: sequence (chain) 〈A1 A2 An〉 of matricesGiven: sequence (chain)  〈A1,A2,...,An〉 of matrices

Goal: compute the product A1 ⋅ A2 ⋅ .... ⋅ An

Problem: Parenthesize the product in a way that minimizes
the number of scalar multiplicationsthe number of scalar multiplications.

Definition: A product of matrices is fully parenthesized if it is eitherp y p
a single matrix or the product of two fully parenthesized matrix 
products, surrounded by parentheses.
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Examples of fully parenthesized matrix 
products of the chain 〈A A A 〉products of the chain 〈A1,A2,...,An〉

All possible fully parenthesized matrix productsAll possible fully parenthesized matrix products
of the chain 〈A1,A2,A3, A4〉 are:

( A1 ( A2 ( A3 A4 ) ) )

( A ( ( A A ) A ) )( A1 ( ( A2 A3 ) A4 ) )

( ( A1 A2 )( A3 A4 ) )( ( 1 2 )( 3 4 ) )

( ( A1 ( A2 A3 ) ) A4 )

( ( ( A1 A2 ) A3 ) A4 )
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Number of different parenthesizations

Different parenthesizations correspond to different trees:Different parenthesizations correspond to different trees:

5Winter term 11/12



Number of different parenthesizations

Let P(n) be the number of alternative parenthesizations 
of the product A A A Aof the product  A1...Ak Ak+1...An .
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Remark: Determining the optimal parenthesization by exhaustive
search is not reasonable
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search is not reasonable.



Multiplying two matrices
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Al ith M t i M ltAlgorithm Matrix-Mult
Input: (p × q) matrix A, (q × r) matrix B
Output: (p × r) matrix C = A ⋅ B
1  for i := 1 to p do
2      for j :=1 to r do
3           C[i, j] := 0[ , j]
4            for k := 1 to q do
5 C[i, j] := C[i, j] + A[i, k] ⋅B[k,j]

Number of multiplications and additions: p ⋅ q ⋅ r

Remark: Using this algorithm multiplying two (n × n) matrices requires n3
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Remark: Using this algorithm, multiplying two (n × n) matrices requires n
multiplications. This can also be done using O(n2.376) multiplications.



Matrix-chain multiplication: Example

Computation of the product A1 A2 A3 whereComputation of the product A1 A2 A3 , where

A1 : (10 × 100) matrix
A (100 5) t iA2 : (100 × 5) matrix
A3 : (5 × 50) matrix

a) Parenthesization ( ( A1 A2 ) A3 ) requires

A´= (A1 A2):

A´ AA A3 : 

Sum:
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Sum:



Matrix-chain multiplication: Example

A1 : (10 × 100) matrix
A2 : (100 × 5) matrixA2 : (100 × 5) matrix
A3 : (5 × 50) matrix

a) Parenthesization (A1 (A2 A3 )) requires

A´´ (A A )A´´= (A2 A3 ):

A1 A´´ :A1 A : 

Sum:
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Structure of an optimal parenthesization

(Ai...j) = ((Ai...k) (Ak+1....j))    i ≤ k < j

Any optimal solution to the matrix-chain multiplication problem
contains optimal solutions to subproblems.

Determining an optimal solution recursively:

L t [i j] b th i i b f ti d d t tLet m[i,j] be the minimum number of operations needed to compute
the product A i...j:

m[i,j] =  0,   if i = j

m[i,j] =                                                            ,  otherwise[ ] [ ]{ }jki pppjkmkim 1,1,min −+++[ j]

s[i,j]  =  optimal splitting value k, i.e. the optimal parenthesization
of (Ai j) splits the product between Ak and Ak+1

[ ] [ ]{ }jkijki
pppj 1<≤
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of (Ai...j) splits the product between Ak and Ak+1



Recursive matrix-chain multiplication

Algorithm rec-mat-chain(p, i, j)g (p, , j)
Input: sequence p = 〈p0,p1,....,pn〉,

where (pi-1 × pi) is the dimensionen of matrix Ai
I i t t h i ( i j) t [i j]Invariant: rec-mat-chain(p, i, j) returns m[i, j]
1 if i = j then return 0
2  m[i, j] := ∞[ j]
3  for k := i to j – 1 do
4        m[i, j] := min( m[i,j],   pi-1 pk pj + 

rec mat chain(p i k) +rec-mat-chain(p, i, k) +
rec-mat-chain(p, k+1, j) )

5  return m[i, j]

Initial call: rec-mat-chain(p,1, n) 
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Recursive matrix-chain multiplication:
Running timeRunning time

Let T(n) be the time taken by rec-mat-chain(p,1,n).et ( ) be t e t e ta e by ec at c a (p, , )
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Exponential running time!Exponential running time!
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