
Algorithms TheoryAlgorithms Theory

14 – Dynamic
Programming (2)Programming (2)
Matrix-chain multiplication

P.D. Dr. Alexander Souza

Winter term 11/12

Optimal substructure

Dynamic programming is typically applied to
optimization problems.

An optimal solution to the original problem contains
ti l l ti t ll b bloptimal solutions to smaller subproblems.

2Winter term 11/12

Matrix-chain multiplication

Given: sequence (chain) 〈A1 A2 An〉 of matricesGiven: sequence (chain) 〈A1,A2,...,An〉 of matrices

Goal: compute the product A1 ⋅ A2 ⋅ ⋅ An

Problem: Parenthesize the product in a way that minimizes
the number of scalar multiplicationsthe number of scalar multiplications.

Definition: A product of matrices is fully parenthesized if it is eitherp y p
a single matrix or the product of two fully parenthesized matrix
products, surrounded by parentheses.

3Winter term 11/12

Examples of fully parenthesized matrix
products of the chain 〈A A A 〉products of the chain 〈A1,A2,...,An〉

All possible fully parenthesized matrix productsAll possible fully parenthesized matrix products
of the chain 〈A1,A2,A3, A4〉 are:

(A1 (A2 (A3 A4)))

(A ((A A) A))(A1 ((A2 A3) A4))

((A1 A2)(A3 A4))((1 2)(3 4))

((A1 (A2 A3)) A4)

(((A1 A2) A3) A4)

4Winter term 11/12

Number of different parenthesizations

Different parenthesizations correspond to different trees:Different parenthesizations correspond to different trees:

5Winter term 11/12

Number of different parenthesizations

Let P(n) be the number of alternative parenthesizations
of the product A A A Aof the product A1...Ak Ak+1...An .

() =11P

() () ()∑
−

=
≥−=

1

1
2for

n

k
nknPkPnP

() 442
1

11
5
⎟
⎠
⎞

⎜
⎝
⎛Ο+≈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=+

nnnn
n

nnP
nn

π
() numberCatalan th 1 −=+

⎠⎝
nCnP n

Remark: Determining the optimal parenthesization by exhaustive
search is not reasonable

6Winter term 11/12

search is not reasonable.

Multiplying two matrices

() () ()
×××

==⋅==
rpijrqijqpij cCBAbBaA ,,,

∑
=

=
q

k
kjikij bac

1
.

Al ith M t i M ltAlgorithm Matrix-Mult
Input: (p × q) matrix A, (q × r) matrix B
Output: (p × r) matrix C = A ⋅ B
1 for i := 1 to p do
2 for j :=1 to r do
3 C[i, j] := 0[, j]
4 for k := 1 to q do
5 C[i, j] := C[i, j] + A[i, k] ⋅B[k,j]

Number of multiplications and additions: p ⋅ q ⋅ r

Remark: Using this algorithm multiplying two (n × n) matrices requires n3

7Winter term 11/12

Remark: Using this algorithm, multiplying two (n × n) matrices requires n
multiplications. This can also be done using O(n2.376) multiplications.

Matrix-chain multiplication: Example

Computation of the product A1 A2 A3 whereComputation of the product A1 A2 A3 , where

A1 : (10 × 100) matrix
A (100 5) t iA2 : (100 × 5) matrix
A3 : (5 × 50) matrix

a) Parenthesization ((A1 A2) A3) requires

A´= (A1 A2):

A´ AA A3 :

Sum:

8Winter term 11/12

Sum:

Matrix-chain multiplication: Example

A1 : (10 × 100) matrix
A2 : (100 × 5) matrixA2 : (100 × 5) matrix
A3 : (5 × 50) matrix

a) Parenthesization (A1 (A2 A3)) requires

A´´ (A A)A´´= (A2 A3):

A1 A´´ :A1 A :

Sum:

9Winter term 11/12

Structure of an optimal parenthesization

(Ai...j) = ((Ai...k) (Ak+1....j)) i ≤ k < j

Any optimal solution to the matrix-chain multiplication problem
contains optimal solutions to subproblems.

Determining an optimal solution recursively:

L t [i j] b th i i b f ti d d t tLet m[i,j] be the minimum number of operations needed to compute
the product A i...j:

m[i,j] = 0, if i = j

m[i,j] = , otherwise[] []{ }jki pppjkmkim 1,1,min −+++[j]

s[i,j] = optimal splitting value k, i.e. the optimal parenthesization
of (Ai j) splits the product between Ak and Ak+1

[] []{ }jkijki
pppj 1<≤

10Winter term 11/12

of (Ai...j) splits the product between Ak and Ak+1

Recursive matrix-chain multiplication

Algorithm rec-mat-chain(p, i, j)g (p, , j)
Input: sequence p = 〈p0,p1,....,pn〉,

where (pi-1 × pi) is the dimensionen of matrix Ai
I i t t h i (i j) t [i j]Invariant: rec-mat-chain(p, i, j) returns m[i, j]
1 if i = j then return 0
2 m[i, j] := ∞[j]
3 for k := i to j – 1 do
4 m[i, j] := min(m[i,j], pi-1 pk pj +

rec mat chain(p i k) +rec-mat-chain(p, i, k) +
rec-mat-chain(p, k+1, j))

5 return m[i, j]

Initial call: rec-mat-chain(p,1, n)

11Winter term 11/12

Recursive matrix-chain multiplication:
Running timeRunning time

Let T(n) be the time taken by rec-mat-chain(p,1,n).et () be t e t e ta e by ec at c a (p, ,)

1)1(≥T

() ()()11)(
1

1

1

−

=
+−++≥ ∑

n

n

k
knTkTnT

)(induction3)(

)(2
1

1

1
−

−

=

≥⇒

+≥ ∑
n

n

i

nT

iTn

)(induction 3)(≥⇒ nT

Exponential running time!Exponential running time!

12Winter term 11/12

