Algorithms Theory

14 — Dynamic
Programming (4)

Edit distance

.
T aalaldal

Approximate string matching
Sequence alignment

P.D. Dr. Alexander Souza

Winter term 11/12

Dynamic programming
» Algorithm design technique, often applied to optimization

problems

» Generally suitable for recursive approaches, when solutions to
subproblems are required repeatedly.

« Approach: maintain a table of subproblem solutions

« Advantage: improved running time; often polynomial instead of
exponential

Winter term 11/12 2

Two different approaches

)

Bottom-up:

+ the table is maintained in an efficient way, time saving

+ subproblems are solved in a special, optimized order, space saving
- extensive rewriting of the original program code is necessary

- possibly, unnecessary subproblems are solved

Top-down: (memoization)

+ only slight modifications in the original program code are necessary
+ only those subproblems definitely required are solved

- separate table management is time consuming

- table size is often suboptimal

Winter term 11/12 3

)

String matching problems

Edit distance

For two given strings A and B, efficiently compute the edit distance
D(A,B) as well as a minimum sequence of edit operations that
transforms A into B.

Winter term 11/12 4

)

String matching problems

Approximate string matching
For a given text T, a pattern P and a distance d, find all substrings
P” of T with D(P,P") <d.

Sequence alignment
Find optimal alignments of DNA sequences.

GAGCA-CTTGGATTCTCGG
- --CACGTGG- - - - - S -

Winter term 11/12 5

)

Edit distance

Given: Two strings A =a,a,....a, and B=Db;b, ... b, .

Goal: Determine the minimum number D(A,B) of edit operations
required to transform A into B.

Edit operations:

1. Replace a character from string A by a character from string B.
2. Delete character from string A.
3. Insert a character from string B into string A.
m a - t h e m - - a t I ¢ 1 a n
m u | t 1 p | /I ¢ a t I o - - n

Winter term 11/12 6

Edit distance

Unit-cost model:

1 ifa#b
C(a’b):{o if a=b

a=¢&, b=¢ possble
We assume the triangle inequality holds for c:
c(a,c) < c(a,b) + c(b,c)

—> each character is changed at most once

Winter term 11/12 7

)

Edit distance

Trace as representation of the sequence of edit operations:

A= baacaabc
s/
B= abacbcac
or using indents:
A= - baaca -abc
A I U I
B= aba- cbca-_c

Edit distance (costs) : 5

Splitting an optimal trace yields two optimal subtraces
- dynamic programming is suitable

Winter term 11/12 8

)

Computation of the edit distance

Let Aj=4a,...ayand B;=D,......

D;; = D(A;,B;)

Winter term 11/12 9

)

Computation of the edit distance

Three ways of ending a trace:

1. a, Is replaced by b,
Dm,n = Dm-l,n-l + C(am’ bn)

2. a, Isdeleted:D,,, =D, ;,+1

3.b,isinserted: D,,, =D, 1+ 1

Winter term 11/12 10

Computation of the edit distance

Recurrence relation (for m,n > 1):

- 3

Dm—l,n—l T C(am) bn)
+ 1

+ 1

. ! J

D.,,=miny D

m

m-1,n

Winter term 11/12

11

)

Recurrence relation for the edit distance

Base cases:

Doo =D(& =0
Doj = D(g,Bj) =
Dy =D(A;,8 =

Recurrence relation:

-

D, + c(&,b)\
D ;=mine D_;, + 1
D, + 1

Winter term 11/12 12

Order of solving the subproblems

b, b, by b, .. b,

Dij1 Dig

D1 D,

Winter term 11/12 13

)

Algorithm for computing the edit distance

Algorithm Edit-distance

Input: two stringsA=a,....a,and B=Db; ... b,
Output: matrix D = (Dy)

1 D[0,0] :=0

2fori:=1tomdo D[i,0] =i
3forj:=1tondo D[0,]] =]

4 fori:=1tomdo

5 forj:=1tondo

6 DIij] := min(D[i - 1,j] + 1,
7 DI[ij- 1] + 1,
8 Dli—1,j— 1] + c(a;,b,))

Winter term 11/12 14

Example

b 1
a 2
a 3

Winter term 11/12 15

Computing the edit operations

Algorithm Edit-operations (i,))
Input: matrix D (already computed)
Output: sequence of edit operations

1 ifi=0and)=0then return

2 ifiz0and D[i,j]=D[i—1,j] +1

3 then Edit-operations (i—1,))

4 ,delete a[i]*

5 elseifjz0and D[i,j] =D[i,j— 1]+ 1

6 then Edit-operations (i, j — 1)

7 Jnsert b[j]*

8 else *D[i,j)]=D[i—1,j—1]+ c(a]i], b[j]) */
9 Edit-operations (i— 1,) — 1)

10 sreplace aJi] by b[j] *

Initial call: Edit-operations(m,n)

Winter term 11/12 16

)

Trace graph of the edit operations

B = a b a C

@y
|

A 4
|

A 4
|

A 4
N

A 4
w

C | 4

A 4
w
A 4
w
A 4
w
A 4
N

Winter term 11/12 17

)

Trace graph of the edit operations

Trace graph:
Representation of all possible traces of operations that transform A

Into B. Directed edges from vertex (i, j) to vertices (i+ 1, j), (i,] + 1)
and (i+1,)+1).
Edge weights represent the edit costs.

Along an optimal path, costs increase monotonically.

Each path from the upper left corner to the lower right corner with
monotonically increasing costs represents an optimal trace.

Winter term 11/12 18

)

Approximate string matching

Given: Two strings T = t;t, ... t, (text) and P = p,p, ... p,, (pattern).

Goal: Find aninterval [J, j], 1 £,] £ n, such that the substring

Ty =1t ...ty of T is the one with the highest similarity to the
pattern P. Thus, for all other intervals [K", k], 1 < k', k < n:

D(P,T;) <D(P, Ty)

Winter term 11/12 19

Approximate string matching

Naive approach:
forall 1<}, j<ndo

compute D(P,T;)
choose the minimum

Winter term 11/12 20

Approximate string matching

Consider a related problem:

j J

EQ,)

For each position j in the text and each position i in the
pattern compute the minimum edit distance between
P; and any substring T; ; of T that ends at position |.

Winter term 11/12 21

Approximate string matching

Method:
forall1<j <ndo
determine | so that D(P,T; ;) is minimized

Forl<i <mand1l<j <nlet:

E ;= min D(B,T,)

'] I<j’<j+1

Optimal trace:

QD
@
QD

Q— D
(@)
O
(@]
v Q

Winter term 11/12 22

Approximate string matching

Recurrence relation:

(E, . +c(p.t),

E =miny E, +1

i—1,]

E +1

\ "j_l J

'

Remarks:
The index |” may differ for E;; ;,, E;_;;and E; ; _;.
A subtrace of an optimal trace is an optimal subtrace.

Winter term 11/12 23

Approximate string matching

Base cases:
Eqo = E(£,8 =0
Eo = E(P;,& =1
whereas
Eyo; = E(e,T))=0

Observation:

An optimal sequence of edit operations that transforms P into Ty |
does not start with an insertion of character L.

Winter term 11/12 24

Approximate string matching

Dependency graph:

Q
=
o
v
=
=
=
o
v
=
=
=
=

C |5 4 3 2 2

v
w
w
N
N
=

Winter term 11/12 25

)

Approximate string matching

Theorem:

If there is a path from E, ;_; to E; ; in the dependency graph, then
T; jIs a substring of T that has the highest similarity to P;, ending at
position | and satisfying

D(P;, Ty) = B ;

Winter term 11/12 26

)

Similarity of strings

Sequence alignment:

For two given DNA sequences, insert spaces (or dashes) such that,
after placing the resulting strings one above the other, the number of
matching characters is maximized.

GA-CGGATTAG
GATCGGAATAG

Winter term 11/12 27

Similarity of strings

Measuring the similarity of two characters:

example : .
setting In general
value
+1 for a match
. } s(a,b)
-1 for a mismatch
-2 for spaces -C

Measuring the similarity of two sequences :

S(A,B)= > smilarityof (a,b)

pairs (& ,b)

Goal: Find an alignment that maximizes the similarity.

Winter term 11/12 28

Similarity of strings

Similarity S(A,B) of two strings A and B
Operations:

1. Replacement of a character a by some character b :
Gain: s(a,b)

2. Deletion of a character from A, insertion of a character from B
Loss: —C

Goal:

Find a sequence of operations that transforms A into B such that the
total gain is maximized.

Winter term 11/12 29

Similarity of strings

Sij=S(A;,B),0<i<m,0<) <n
Recurrence relation:

Sm,n = max (Sm—l,n-l + S(am’ bn)’
Sm-l,n - C, Sm,n-l - C)

Base cases:

Spo = S(&¢ =0
S(e By) =-jc
S(A & =-ic

0 On
e o
|l

30

Winter term 11/12

Most similar substrings

Given: Two stringsA=a,...a,and B=Db, ... b,.
Goal: Findtwointervals [i’,i] < [1, m]and [, j] < [1, n] with
S(Av;i»Byj) 2 S(Ack,Br,),
forall [K",k] < [1, m] and [I',l] < [1, n].
Naive approach:

forall [i",i]c[1, mland [, j] < [1,n] do
compute S(A;;, By ;)

31

Winter term 11/12

Most similar substrings

Method:
forall1<i<m,1<j <ndo
compute i and | so that S(A; ; , By ;) is maximized

ForO<i<m and0<j <nlet:

Hi,j :]gg?l(S(A’,i’Bj’,j)
<j’<j+1

Optimal trace:
Ari=baaca-abc
I

Bjj= ba-cbca-c

Winter term 11/12 32

Most similar substrings

Recurrence relation:

Hi—l,j—1+S(a'i1bj)
0 - Hi—l,j —C
N = Maxy s
Hi,j_l—c
g O J
Base cases:

Hoo = H(e,9) =0
H(A ,&) =0
= H(e,B;)) =0

I T
<
o

I

Winter term 11/12

33

