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Dynamic programming

• Algorithm design technique often applied to optimizationAlgorithm design technique, often applied to optimization 
problems

• Generally suitable for recursive approaches, when solutions to
subproblems are required repeatedly.

• Approach: maintain a table of subproblem solutions

• Advantage: improved running time; often polynomial instead of 
exponential
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Two different approaches

Bottom-up:Bottom up:
+  the table is maintained in an efficient way, time saving
+  subproblems are solved in a special, optimized order, space saving
- extensive rewriting of the original program code is necessary
- possibly, unnecessary subproblems are solved

Top-down: (memoization)
+ only slight modifications in the original program code are necessary  only slight modifications in the original program code are necessary
+  only those subproblems definitely required are solved 
- separate table management is time consuming
- table size is often suboptimal
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String matching problems

Edit distance

For two given strings A and B, efficiently compute the edit distance 
D(A B) ll i i f dit ti th tD(A,B) as well as a minimum sequence of edit operations that 
transforms A into B. 

m    a - t h    e     m - - a     t i     c i     a n
m    u l      t i     p l i     c a     t i     o    - - n
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String matching problems

Approximate string matchingpp g g

For a given text T, a pattern P and a distance d, find all substrings
P´ f T ith D(P P´) ≤ dP of T with D(P,P ) ≤ d.

Sequence alignment

Find optimal alignments of DNA sequencesFind optimal alignments of DNA sequences.

G A G C A - C T T G G A T T C T C G G
- - - C A C G T G G - - - - - - - - -
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Edit distance

Given: Two strings A = a1a2 .... am and B = b1b2 ... bn .g 1 2 m  1 2 n 

Goal: Determine the minimum number D(A,B) of edit operations
required to transform A into Brequired to transform A into B.

Edit operations:

1. Replace a character from string A by a character from string B.
2 Delete character from string A2. Delete character from string A.
3. Insert a character from string B into string A.

m    a - t h    e     m - - a     t i     c i     a n
m    u l      t i     p l i     c a     t i     o    - - n
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Edit distance

Unit-cost model:
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We assume the triangle inequality holds for c:

c(a,c) ≤ c(a,b) + c(b,c)( , ) ( , ) ( , )

each character is changed at most once
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Edit distance

Trace as representation of the sequence of edit operations:

A =       b  a  a  c  a  a  b  c

B =   a  b  a  c  b  c  a  c

or using indents:o us g de ts

A =   - b  a  a  c  a   - a  b  c

B =   a  b  a  - c  b  c  a  - c

Edit distance (costs) : 5Edit distance (costs) : 5

Splitting an optimal trace yields two optimal subtraces
d i i i it bl
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Computation of the edit distance

Let Ai = a1...ai and Bj = b1....bj . 

D D(A B )Di,j = D(Ai ,Bj )

A 

B
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Computation of the edit distance

Three ways of ending a trace:Three ways of ending a trace:

1. am is replaced by bn:
Dm,n = Dm-1,n-1 + c(am, bn)

2 i d l t d D D + 12. am is deleted: Dm,n = Dm-1,n + 1

3. bn is inserted: Dm n = Dm n 1 + 13. bn is inserted: Dm,n  Dm,n-1  1
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Computation of the edit distance

Recurrence relation (for m n ≥ 1):Recurrence relation (for m,n ≥ 1):
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Recurrence relation for the edit distance

Base cases:Base cases:

D0,0 = D(ε, ε) = 0
D0,j    = D(ε,Bj ) = j
Di,0 = D(Ai ,ε) = i

Recurrence relation:
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Order of solving the subproblems

b1 b2 b3 b4 .....                                        bn

a1

a2

am

Di 1 jDi 1 j 1 Di-1,j

D

Di-1,j-1

D
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Algorithm for computing the edit distance

Algorithm Edit-distanceAlgorithm Edit distance
Input: two strings A = a1 .... am and B = b1 ... bn

Output: matrix D = ( Dij )
1 D[0,0] := 0
2 for i := 1 to m do D[i,0] = i
3 f j 1 t d D[0 j] j3 for j := 1 to n do D[0,j] = j
4 for i := 1 to m do 
5 for j := 1 to n do5 for j :  1 to n do 
6 D[i,j] := min( D[i - 1,j] + 1,
7 D[i,j - 1] + 1,
8 D[i –1, j – 1] + c(ai ,bj )) 
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Example

a b a c

0 1 2 3 40 1 2 3 4

b 1b 1

a 2a 2

a 3

c 4
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Computing the edit operations

Algorithm Edit-operations (i,j)
Input: matrix D (already computed)Input: matrix D (already computed)
Output: sequence of edit operations
1   if i = 0 and j = 0 then return
2 if i 0 d D[i j] D[i 1 j] 12 if i ≠ 0 and D[i,j] = D[i – 1, j] + 1
3 then Edit-operations (i – 1, j)
4 „delete a[i]“„ [ ]
5   else if j ≠ 0 and D[i,j] = D[i, j – 1] + 1
6       then Edit-operations (i, j – 1)
7 i t b[j]“7 „insert b[j]“
8   else /* D[i,j] = D[i – 1, j – 1 ] + c(a[i], b[j]) */
9 Edit-operations (i – 1, j – 1)p ( j )
10 „replace a[i] by b[j] “

Initial call: Edit operations(m n)
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Trace graph of the edit operations

B  =          a            b            a           c

0 1 2 3 4

=

1 1 1 2 3b

2 1 2 1 2a

3 2 2 2 2a

c
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Trace graph of the edit operations

Trace graph:Trace graph:
Representation of all possible traces of operations that transform A
into B. Directed edges from vertex (i, j) to vertices (i + 1, j), (i, j + 1) 
and (i + 1, j + 1).
Edge weights represent the edit costs.

Along an optimal path, costs increase monotonically.

Each path from the upper left corner to the lower right corner with 
monotonically increasing costs represents an optimal trace.
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Approximate string matching

Given: Two strings T = t1t2 tn (text) and P = p1p2 pm (pattern)Given: Two strings T  t1t2 ... tn (text)  and P  p1p2 ... pm (pattern).

Goal: Find an interval [j´, j], 1 ≤ j´, j ≤ n, such that the substring 
Tj´, j = tj´ ... tj of T is the one with the highest similarity to the     
pattern P. Thus, for all other intervals [k´, k], 1 ≤ k´, k ≤ n:

D(P T ) ≤ D(P T )D(P,Tj´, j) ≤ D(P, Tk´, k)

T
j

T

P
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Approximate string matching

Naive approach:

for all 1 ≤ j´, j ≤ n do
t D(P T )compute D(P,Tj´, j) 

choose the minimum
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Approximate string matching

Consider a related problem:Consider a related problem:

T
jj’

T

Pi = p1 … pi

E(i, j)

For each position j in the text and each position i in the
pattern compute the minimum edit distance between
Pi  and any substring Tj´,j of T that ends at position j.
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Approximate string matching

Method:
for all 1 ≤ j  ≤ n do

determine j´ so that D(P,Tj´, j) is minimized

For 1 ≤ i  ≤ m and 1 ≤ j  ≤ n let:j

),(min ,11, jjijjji TPDE ′+≤′≤
=

Optimal trace:

Pi =  b  a  a  c  a  a  b  c

Tj´, j =   b  a  c  b  c  a  c  
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Approximate string matching

Recurrence relation:Recurrence relation:
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Remarks:
The index j´ may differ for Ei 1 j 1, Ei 1 j and Ei j 1.The index j may differ for Ei-1, j-1, Ei – 1,j and Ei, j – 1.
A subtrace of an optimal trace is an optimal subtrace.
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Approximate string matching

Base cases:Base cases:

E0,0 =    E(ε ,ε)  = 0
Ei,0   =    E(Pi ,ε) = i

whereas
E E( T ) 0E0,j =   E(ε ,Tj ) = 0

Observation:Observation:
An optimal sequence of edit operations that transforms P into Tj´, j
does not start with an insertion of character tj´.

24Winter term 11/12



Approximate string matching

Dependency graph:

0 0 0 0 0 0 0 0 0 0

T =       a         b         b        d          a         d        c          b         c
P

=

1 0 1 1 1 0 1 1 1 1

=

a

2 1 1 2 1 1 0 1 2 2d

3 2 1 1 2 2 1 1 1 2b

4 3 2 1 2 3 2 2 1 2b

c
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Approximate string matching

Theorem:Theorem:

If there is a path from E0, j´- 1 to Ei, j in the dependency graph, then
Tj´, j is a substring of T that has the highest similarity to Pi, ending at
position j and satisfying

D(P T ) ED(Pi, Tj´, j) = Ei, j
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Similarity of strings

Sequence alignment:Sequence alignment:

For two given DNA sequences, insert spaces (or dashes) such that, 
after placing the resulting strings one above the other, the number of 
matching characters is maximized.

G  A  - C  G  G  A  T  T  A  G
G  A  T C  G  G  A  A  T  A  G
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Similarity of strings

Measuring the similarity of two characters:g y

example 
value setting in general

+ 1 for a match
} s(a,b)

- 1 for a mismatch

- 2 for spaces - c 

Measuring the similarity of two sequences :

∑= ),( ofsimilarity   ),( ii baBAS

Goal: Find an alignment that maximizes the similarity. 

∑
),(

),(y),(
ii bapairs

ii
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Similarity of strings

Similarity S(A,B) of two strings A and By ( , ) g

Operations:

1.  Replacement of a character a by some character b : 
Gain: s(a,b)( )

2. Deletion of a character from A, insertion of a character from B
Loss: cLoss:  – c

Goal:
Find a sequence of operations that transforms A into B such that the 
total gain is maximized.
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Similarity of strings

Si j = S(Ai Bj) 0 ≤ i ≤ m 0 ≤ j ≤ nSi,j  S(Ai, Bj) , 0 ≤ i ≤ m , 0 ≤ j  ≤ n

Recurrence relation: 

Sm,n =    max   (Sm-1,n-1 +  s(am, bn), 
S S )Sm-1,n - c, Sm,n-1 - c)

Base cases:Base cases:

S0,0 =    S(ε, ε)   = 0
S0,j    =    S(ε, Bj )  = - jc
Si,0 =   S(Ai ,ε)   = - ic
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Most similar substrings

Given: Two strings A = a1 am and B = b1 bnGiven: Two strings A  a1 ... am and B  b1 ... bn .
Goal: Find two intervals [i´, i] ⊆ [1, m] and [j´, j] ⊆ [1, n] with

S(Ai´,i , Bj´,j )  ≥ S(Ak´,k , Bl´,l ),

f ll [k´ k] [1 ] d [l´ l] [1 ]for all [k ,k] ⊆ [1, m] and [l ,l] ⊆ [1, n].

Naive approach:Naive approach:
for all [i´, i] ⊆ [1, m] and [j´, j] ⊆ [1, n] do

compute S(Ai´,i , Bj´,j ) 
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Most similar substrings

Method:Method:
for all 1 ≤ i ≤ m , 1 ≤ j  ≤ n do

compute i´ and j´ so that S(Ai´,i , Bj´,j ) is maximized

For 0 ≤ i ≤ m  and 0 ≤ j  ≤ n let:

),(    max ,,
11
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Optimal trace:
Ai´,i =  b  a  a  c  a   - a  b  c

Bj´ j = b a - c b c a - c
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Most similar substrings

Recurrence relation:Recurrence relation:
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Base cases:

⎪⎭⎪⎩ 0

Base cases:

H0,0 =    H(ε ,ε)   = 0
Hi,0    =    H(Ai ,ε)   = 0
H0,j =   H(ε ,Bj )   = 0
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