
Algorithms TheoryAlgorithms Theory

14 D i14 – Dynamic
Programming (4)Programming (4)

Edit distance
Approximate string matching

P D D Al d S

Approximate string matching
Sequence alignment

P.D. Dr. Alexander Souza

Winter term 11/12

Dynamic programming

• Algorithm design technique often applied to optimizationAlgorithm design technique, often applied to optimization
problems

• Generally suitable for recursive approaches, when solutions to
subproblems are required repeatedly.

• Approach: maintain a table of subproblem solutions

• Advantage: improved running time; often polynomial instead of
exponential

2Winter term 11/12

Two different approaches

Bottom-up:Bottom up:
+ the table is maintained in an efficient way, time saving
+ subproblems are solved in a special, optimized order, space saving
- extensive rewriting of the original program code is necessary
- possibly, unnecessary subproblems are solved

Top-down: (memoization)
+ only slight modifications in the original program code are necessary only slight modifications in the original program code are necessary
+ only those subproblems definitely required are solved
- separate table management is time consuming
- table size is often suboptimal

3Winter term 11/12

String matching problems

Edit distance

For two given strings A and B, efficiently compute the edit distance
D(A B) ll i i f dit ti th tD(A,B) as well as a minimum sequence of edit operations that
transforms A into B.

m a - t h e m - - a t i c i a n
m u l t i p l i c a t i o - - n

4Winter term 11/12

String matching problems

Approximate string matchingpp g g

For a given text T, a pattern P and a distance d, find all substrings
P´ f T ith D(P P´) ≤ dP of T with D(P,P) ≤ d.

Sequence alignment

Find optimal alignments of DNA sequencesFind optimal alignments of DNA sequences.

G A G C A - C T T G G A T T C T C G G
- - - C A C G T G G - - - - - - - - -

5Winter term 11/12

Edit distance

Given: Two strings A = a1a2 am and B = b1b2 ... bn .g 1 2 m 1 2 n

Goal: Determine the minimum number D(A,B) of edit operations
required to transform A into Brequired to transform A into B.

Edit operations:

1. Replace a character from string A by a character from string B.
2 Delete character from string A2. Delete character from string A.
3. Insert a character from string B into string A.

m a - t h e m - - a t i c i a n
m u l t i p l i c a t i o - - n

6Winter term 11/12

Edit distance

Unit-cost model:

if0
 if1

),(
⎩
⎨
⎧

=
≠

=
ba
ba

bac

possible ,
if0

εε ==
⎩

ba
ba

We assume the triangle inequality holds for c:

c(a,c) ≤ c(a,b) + c(b,c)(,) (,) (,)

each character is changed at most once

7Winter term 11/12

Edit distance

Trace as representation of the sequence of edit operations:

A = b a a c a a b c

B = a b a c b c a c

or using indents:o us g de ts

A = - b a a c a - a b c

B = a b a - c b c a - c

Edit distance (costs) : 5Edit distance (costs) : 5

Splitting an optimal trace yields two optimal subtraces
d i i i it bl

8Winter term 11/12

dynamic programming is suitable

Computation of the edit distance

Let Ai = a1...ai and Bj = b1....bj .

D D(A B)Di,j = D(Ai ,Bj)

A

B

9Winter term 11/12

Computation of the edit distance

Three ways of ending a trace:Three ways of ending a trace:

1. am is replaced by bn:
Dm,n = Dm-1,n-1 + c(am, bn)

2 i d l t d D D + 12. am is deleted: Dm,n = Dm-1,n + 1

3. bn is inserted: Dm n = Dm n 1 + 13. bn is inserted: Dm,n Dm,n-1 1

10Winter term 11/12

Computation of the edit distance

Recurrence relation (for m n ≥ 1):Recurrence relation (for m,n ≥ 1):

⎪
⎬

⎫
⎪
⎨

⎧ +−−),(1,1 nmnm bacD

⎪
⎭

⎪
⎬

⎪
⎩

⎪
⎨

+
+=

−

−

1
1min

1,

,1,

nm

nmnm

D
DD

computation of all Di,j required, 0 ≤ i ≤ m, 0 ≤ j ≤ n.

Di-1,j-1 Di-1,j

+d +1

Di,jDi,j-1
+1

11Winter term 11/12

Recurrence relation for the edit distance

Base cases:Base cases:

D0,0 = D(ε, ε) = 0
D0,j = D(ε,Bj) = j
Di,0 = D(Ai ,ε) = i

Recurrence relation:

⎫⎧

⎪

⎪
⎬

⎫

⎪

⎪
⎨

⎧

+
+

= −

−−

1
),(

min ,1

1,1

, ji

jiji

ji D
bacD

D
⎪
⎭

⎪
⎩ +− 11,

,,

ji

jj

D

12Winter term 11/12

Order of solving the subproblems

b1 b2 b3 b4 bn

a1

a2

am

Di 1 jDi 1 j 1 Di-1,j

D

Di-1,j-1

D

13Winter term 11/12

Di,jDi,j-1

Algorithm for computing the edit distance

Algorithm Edit-distanceAlgorithm Edit distance
Input: two strings A = a1 am and B = b1 ... bn

Output: matrix D = (Dij)
1 D[0,0] := 0
2 for i := 1 to m do D[i,0] = i
3 f j 1 t d D[0 j] j3 for j := 1 to n do D[0,j] = j
4 for i := 1 to m do
5 for j := 1 to n do5 for j : 1 to n do
6 D[i,j] := min(D[i - 1,j] + 1,
7 D[i,j - 1] + 1,
8 D[i –1, j – 1] + c(ai ,bj))

14Winter term 11/12

Example

a b a c

0 1 2 3 40 1 2 3 4

b 1b 1

a 2a 2

a 3

c 4

15Winter term 11/12

Computing the edit operations

Algorithm Edit-operations (i,j)
Input: matrix D (already computed)Input: matrix D (already computed)
Output: sequence of edit operations
1 if i = 0 and j = 0 then return
2 if i 0 d D[i j] D[i 1 j] 12 if i ≠ 0 and D[i,j] = D[i – 1, j] + 1
3 then Edit-operations (i – 1, j)
4 „delete a[i]“„ []
5 else if j ≠ 0 and D[i,j] = D[i, j – 1] + 1
6 then Edit-operations (i, j – 1)
7 i t b[j]“7 „insert b[j]“
8 else /* D[i,j] = D[i – 1, j – 1] + c(a[i], b[j]) */
9 Edit-operations (i – 1, j – 1)p (j)
10 „replace a[i] by b[j] “

Initial call: Edit operations(m n)

16Winter term 11/12

Initial call: Edit-operations(m,n)

Trace graph of the edit operations

B = a b a c

0 1 2 3 4

=

1 1 1 2 3b

2 1 2 1 2a

3 2 2 2 2a

c

17Winter term 11/12

4 3 3 3 2c

Trace graph of the edit operations

Trace graph:Trace graph:
Representation of all possible traces of operations that transform A
into B. Directed edges from vertex (i, j) to vertices (i + 1, j), (i, j + 1)
and (i + 1, j + 1).
Edge weights represent the edit costs.

Along an optimal path, costs increase monotonically.

Each path from the upper left corner to the lower right corner with
monotonically increasing costs represents an optimal trace.

18Winter term 11/12

Approximate string matching

Given: Two strings T = t1t2 tn (text) and P = p1p2 pm (pattern)Given: Two strings T t1t2 ... tn (text) and P p1p2 ... pm (pattern).

Goal: Find an interval [j´, j], 1 ≤ j´, j ≤ n, such that the substring
Tj´, j = tj´ ... tj of T is the one with the highest similarity to the
pattern P. Thus, for all other intervals [k´, k], 1 ≤ k´, k ≤ n:

D(P T) ≤ D(P T)D(P,Tj´, j) ≤ D(P, Tk´, k)

T
j

T

P

19Winter term 11/12

Approximate string matching

Naive approach:

for all 1 ≤ j´, j ≤ n do
t D(P T)compute D(P,Tj´, j)

choose the minimum

20Winter term 11/12

Approximate string matching

Consider a related problem:Consider a related problem:

T
jj’

T

Pi = p1 … pi

E(i, j)

For each position j in the text and each position i in the
pattern compute the minimum edit distance between
Pi and any substring Tj´,j of T that ends at position j.

21Winter term 11/12

Approximate string matching

Method:
for all 1 ≤ j ≤ n do

determine j´ so that D(P,Tj´, j) is minimized

For 1 ≤ i ≤ m and 1 ≤ j ≤ n let:j

),(min ,11, jjijjji TPDE ′+≤′≤
=

Optimal trace:

Pi = b a a c a a b c

Tj´, j = b a c b c a c

22Winter term 11/12

j , j

Approximate string matching

Recurrence relation:Recurrence relation:

⎪
⎫

⎪
⎧ +−−),,(1,1 jiji tpcE

⎪
⎭

⎪
⎬

⎪
⎩

⎪
⎨

+
+=

−

−

1
,1min

1,

,1,

ji

jiji

E
EE

Remarks:
The index j´ may differ for Ei 1 j 1, Ei 1 j and Ei j 1.The index j may differ for Ei-1, j-1, Ei – 1,j and Ei, j – 1.
A subtrace of an optimal trace is an optimal subtrace.

23Winter term 11/12

Approximate string matching

Base cases:Base cases:

E0,0 = E(ε ,ε) = 0
Ei,0 = E(Pi ,ε) = i

whereas
E E(T) 0E0,j = E(ε ,Tj) = 0

Observation:Observation:
An optimal sequence of edit operations that transforms P into Tj´, j
does not start with an insertion of character tj´.

24Winter term 11/12

Approximate string matching

Dependency graph:

0 0 0 0 0 0 0 0 0 0

T = a b b d a d c b c
P

=

1 0 1 1 1 0 1 1 1 1

=

a

2 1 1 2 1 1 0 1 2 2d

3 2 1 1 2 2 1 1 1 2b

4 3 2 1 2 3 2 2 1 2b

c

25Winter term 11/12

5 4 3 2 2 3 3 2 2 1c

Approximate string matching

Theorem:Theorem:

If there is a path from E0, j´- 1 to Ei, j in the dependency graph, then
Tj´, j is a substring of T that has the highest similarity to Pi, ending at
position j and satisfying

D(P T) ED(Pi, Tj´, j) = Ei, j

26Winter term 11/12

Similarity of strings

Sequence alignment:Sequence alignment:

For two given DNA sequences, insert spaces (or dashes) such that,
after placing the resulting strings one above the other, the number of
matching characters is maximized.

G A - C G G A T T A G
G A T C G G A A T A G

27Winter term 11/12

Similarity of strings

Measuring the similarity of two characters:g y

example
value setting in general

+ 1 for a match
} s(a,b)

- 1 for a mismatch

- 2 for spaces - c

Measuring the similarity of two sequences :

∑=),(ofsimilarity),(ii baBAS

Goal: Find an alignment that maximizes the similarity.

∑
),(

),(y),(
ii bapairs

ii

28Winter term 11/12

Similarity of strings

Similarity S(A,B) of two strings A and By (,) g

Operations:

1. Replacement of a character a by some character b :
Gain: s(a,b)()

2. Deletion of a character from A, insertion of a character from B
Loss: cLoss: – c

Goal:
Find a sequence of operations that transforms A into B such that the
total gain is maximized.

29Winter term 11/12

Similarity of strings

Si j = S(Ai Bj) 0 ≤ i ≤ m 0 ≤ j ≤ nSi,j S(Ai, Bj) , 0 ≤ i ≤ m , 0 ≤ j ≤ n

Recurrence relation:

Sm,n = max (Sm-1,n-1 + s(am, bn),
S S)Sm-1,n - c, Sm,n-1 - c)

Base cases:Base cases:

S0,0 = S(ε, ε) = 0
S0,j = S(ε, Bj) = - jc
Si,0 = S(Ai ,ε) = - ic

30Winter term 11/12

Most similar substrings

Given: Two strings A = a1 am and B = b1 bnGiven: Two strings A a1 ... am and B b1 ... bn .
Goal: Find two intervals [i´, i] ⊆ [1, m] and [j´, j] ⊆ [1, n] with

S(Ai´,i , Bj´,j) ≥ S(Ak´,k , Bl´,l),

f ll [k´ k] [1] d [l´ l] [1]for all [k ,k] ⊆ [1, m] and [l ,l] ⊆ [1, n].

Naive approach:Naive approach:
for all [i´, i] ⊆ [1, m] and [j´, j] ⊆ [1, n] do

compute S(Ai´,i , Bj´,j)

31Winter term 11/12

Most similar substrings

Method:Method:
for all 1 ≤ i ≤ m , 1 ≤ j ≤ n do

compute i´ and j´ so that S(Ai´,i , Bj´,j) is maximized

For 0 ≤ i ≤ m and 0 ≤ j ≤ n let:

),(max ,,
11
,11, jjii

jj
iiji BASH ′′

+≤′≤
+≤′≤

=

Optimal trace:
Ai´,i = b a a c a - a b c

Bj´ j = b a - c b c a - c

32Winter term 11/12

Bj ,j b a c b c a c

Most similar substrings

Recurrence relation:Recurrence relation:

⎪
⎪
⎫

⎪
⎪
⎧ +−−),(1,1

H
basH jiji

⎪
⎪
⎭

⎪
⎪
⎬

⎪
⎪
⎩

⎪
⎪
⎨ −

−
=

−

−

0

max
1,

,1
, cH

cH
H

ji

ji
ji

Base cases:

⎪⎭⎪⎩ 0

Base cases:

H0,0 = H(ε ,ε) = 0
Hi,0 = H(Ai ,ε) = 0
H0,j = H(ε ,Bj) = 0

33Winter term 11/12

