Winter term 11/12

Algorithms Theory

14 — Dynamic
Programming (4)

Edit distance

Approximate string matc
Sequence alignment

|f\v'\
Ul

19

P.D. Dr. Alexander Souza

Dynamic programming

» Algorithm design technique, often applied to optimization
problems

« Generally suitable for recursive approaches, when solutions to
subproblems are required repeatedly.

* Approach: maintain a table of subproblem solutions

 Advantage: improved running time; often polynomial instead of
exponential

Winter term 11/12 2

Two different approaches

)

Bottom-up:

+ the table is maintained in an efficient way, time saving

+ subproblems are solved in a special, optimized order, space saving
- extensive rewriting of the original program code is necessary

- possibly, unnecessary subproblems are solved

Top-down: (memoization)

+ only slight modifications in the original program code are necessary
+ only those subproblems definitely required are solved

- separate table management is time consuming

- table size is often suboptimal

Winter term 11/12 3

)

String matching problems
et - Teamn o ooy 4 i iy

Edit distance : mwe. # opuetin.

For two given strings A and B, efficiently compute the edit distance
D(A,B) as well as a minimum seguence of edit operations that

transforms A into B. wplaamuhk | Onglt , dedere |

£ L C y t

v VoV . g
A= m a - t e m - - a t i ¢ i a n
) |) ! | ! | ([(J
X=m u | t 1 p | I ¢c a t i o - - n

Winter term 11/12

)

String matching problems

Approximate string matching

For a given text T, a pattern P and a distance d, find all substrings
P” of T with D(P,P") < d.

Sequence alignment

Find optimal alignments of DNA sequences.

GAGCA-CTTGGATTCTCGG
.. -¢ACGTGE--- - - S -

Uy o Yhngo ol Mok [We aninvnds o{ maMw’? Lassachrs) S MZN%

Winter term 11/12 5

)

_Edit distance

Given: Two strings A = &, g and B = b,b, ... by,

Goal: Determine the minimum number D(A,B) of edit operations
required to transform A into B.

Edit operations:

1. Replace a character from string A by a character from string B.

2. Delete character from string A
P LTIV Y 1\

3. Insert a character from string B into string A.

A -
T -

a - t h e m - - a t 1 ¢ 1 a n
J .

m
m u | t i1 p | 1 ¢ a t 1 o - - n

Winter term 11/12 6

Edit distance

ake, bte) mpleament

Unit-cost model: .
ak @, b=t dleto

C(a,b): . —-i) L*—‘i et
O 1ifa=b
a=¢, b=¢& possible

We assume the triangle inequality holds for c:

c(a,c) < c(a,b) + c(b,c)

—> each character is changed at most once

Winter term 11/12 7

Edit distance

Trace as representation of the sequence of edit operations:

or using indents:

Edit distance (costs) .5 b sadrlinees e lyo

Splitting an optimal trace yields two optimal subtraces
- dynamic programming is suitable

Winter term 11/12

)

Computation of the edit distance

Pore foes

Let A; = a,...gpand B;= b,...by.

D;; = D(A;,B;)
D
A
A |
T
B

Winter term 11/12 9

Computation of the edit distance

Three ways of ending a trace:

@ a., Is replaced by b,
Dm,n = Dm-l,n-l + C(am’ bn)

@ a, Isdeleted: D, , =Dy, ,+1 (2) @, a, ...

@ b,isinserted: D, , =Dy, * 1 bab, -

Winter term 11/12

Q vy [@,
b, | b,
@ un - a..
bu | =
Qun |

b b,

10

Computation of the edit distance

Recurrence relation (for m,n > 1):

rDm—l,n—l + C(am!bn)\ Wf&um
D.,,=mins D,,, + 1 e
L Dmn_1 + 1 tnyganftione

Winter term 11/12 11

)

Recurrence relation for the edit distance

Base cases:

Doo =D(& =0
Doj = D(g,Bj) =
Dy =D(A;,8 =

Recurrence relation:

-

D, + c(&,b)\
D ;=mine D_;, + 1
D, + 1

Winter term 11/12 12

)

Order of solving the subproblems
R

D
—_\

I
Yy

|
|

— |
\
/
—

>
Sﬁ/

Dij1 Dig

Di,j-l — Q Di,j
+1

Winter term 11/12 13

)

Algorithm for computing the edit distance

Algorithm Edit-distance

Input: two stringsA=a,....a,and B=Db; ... b,
Output: matrix D = (Dy)

1 D[0,0] :=0

2fori:=1tomdo D[i,0] =i
3forj:=1tondo D[0,]] =]

4 fori:=1tomdo

5 forj:=1tondo

6 DI[i,j] :=min(D[i - 1,j] + 1,

7 D[i,j - 1] + 1,

8 Dli -1, j— 1] + c(a;,b,))
wawﬁ;w O(%l-h'l'%'m-); O(mu)

Winter term 11/12 14

Example

D
N
¢
|
<
()
A

Winter term 11/12 15

Computing the edit operations

Algorithm Edit-operations (i,))

Input: matrix D (already computed)

Output: sequence of edit operations

if i=0and]=0then return Dicy; [

ifiz0and D[i,j]=D[i—1,j] +1 Dy
then Edit-operations (i — 1, j)

,delete a[i]* -
else if j # 0 and DIi,j] = D[i, j — 1] + 1 (|
then Edit-operations (i, j — 1) A Dy

Jnsert b[j]*

else *D[i,j]=D[i—1,j—11]+ c(a[i], b[j]) */
Edit-operations (i— 1,] — 1)

10 sreplace aJi] by b[j] *

© 0 NO Ol A~ WN P

Initial call: Edit-operations(m,n)

—_—

Winter term 11/12 16

)

Trace graph of the edit operations

B = a b a C FMM
Naoncte
A o-———»T’=*>2~——’»>3 > 4
[ﬂ N\ v U
: : : : O—o0
b |1 [~ O—>@—=0B
NN N ,,
a2 — D=0 =0
PN N ,, ,,
al s — (2 @ {2 F—f 2
C| 4 3 3 3 2

Winter term 11/12 17

)

Trace graph of the edit operations

Trace graph:
Representation of all possible traces of operations that transform A

Into B. Directed edges from vertex (i, j) to vertices (i+ 1, j), (i,] + 1)

and (i+1,j+1). @

Edge weights represent the edit costs. ‘n / e o4

Along an optimal path, costs increase monotonically.

Each path from the upper left corner to the lower right corner with
monotonically increasing costs represents an optimal trace.

Winter term 11/12 18

)

Approximate string matching

Given: Two strings T = t;t, ... t, (text) and P = p,p, ... p,, (pattern).

Goal: Find aninterval [J', j], 1 £,] £ n, such that the substring

Ty =1t ...t of T is the one with the highest similarity to the
pattern P. Thus, for all other intervals [k’, k], 1 <k’, k< n:

D(P,T;) <D(P, Ty)

=

Winter term 11/12 19

Approximate string matching

Naive approach:
forall 1<}, j<ndo

compute D(P,T;)
choose the minimum

O(w %'W) = O("‘Z"‘“

Winter term 11/12 20

Approximate string matching

Consider a related problem:
T4 Ty

e Q) ©

(P)=, ... p)

E(,)= mm DCP, Ty)

’!s{\fq’

For each position j in the text and each position i in the
pattern compute the minimum edit distance between
P; and any substring T; ; of T that ends at position |.

——

Winter term 11/12 21

Approximate string matching

Method:
forall 1 <j)<ndo
determine@ so that D(P,T; ;) Is minimized

Forls@gm and 1§@Sn let: R TL\“:;\: £
= min D(P,T. . ety ¥
EiJJ]Sj'S_J"H- (K JxJ)

N .
] k -rdé/l
Optimal trace:

P. =

i a

a
-/
a

C

@

a C

b b
| /
b C

© T

T, =

o

C

Winter term 11/12 22

Approximate string matching

Recurrence relation:

rE 11]_1+C(pi’tj)’\ wfﬂmuM

E =miny E,6 +1 [& &

i—1,]

E +1 mngesh P

\ "j_l J

Remarks:

The index |” may differ for E;; ;,, E;_;;and E; ; _;.

A subtrace of an optimal trace is an optimal subtrace.
%_4 2ads) C,MJWK’WLC W\ﬂ‘{ln %:J’ UV\'OV'LR/Y\M} \)

Winter term 11/12 23

Approximate string matching

Base cases:

Eqo = E(£,8 =0

Eo, = EP;,9=I
whereas

Eoj = E(e,T))=0

1t
i i B D (e, Ty = ”D("Ty«,s%o

Observation: A€y &4 WA

s
An optimal sequence of edit operations that transforms P into Ty |

does not start with an insertion of character L.

Winter term 11/12

24

Approximate string matching

Dependency graph: 2 R
0 a L 3 Y S (7 § g
T = a b b d a d C b C

Q
=
o
v
=
=
=
v
=
=
=
=

o
A 4
A 4
N
N

C |5| |4 |3] |2| |23 B 2] @ O <

Winter term 11/12 Tod DA e ‘“4‘“3 o AW e 25

_

)

Approximate string matching

Theorem:

If there Iis a path from E, ;_, to E; ; in the dependency graph, then
is a substring of T that has the highest similarity to P;, ending at

position | and satisfying
D(P;, T;) =Ei |

Ve ot cobvardeo in M nbine \abH@m (PW_/ LC, W B st e bsbed

W.H.L\fwbzu.a EM‘. L-_)ocd/iq,zﬁa\s i E
) \\ “)

Winter term 11/12 26

)

Similarity of strings

Sequence alignment:

For two given DNA sequences, insert spaces (or dashes) such that,
after placing the resulting strings one above the other, the number of
matching characters is maximized.

GA@CGGATTAG
GATCGGAATAG

Winter term 11/12 27

Similarity of strings

Measuring the similarity of two characters:

example

settin In general
value 9 9

@ for a match
@ for spaces Go

Measuring the similarity of two sequences :

} s(a,b)

S(A,B)= > smilarityof (a,b)
pairs (a,b;)
Qi by

Goal: Find an alignment that maximizes the similarity.

Winter term 11/12 28

Similarity of strings

Similarity S(A,B) of two strings A and B

Operations:

1. Replacement of a character a by some character b :
Gain: s(a,b)

2. Deletion of a character from A, insertion of a character from B
Loss: —C

Goal:

Find a sequence of operations that transforms A into B such that the
total gain is maximized.

Winter term 11/12 29

Similarity of strings

Sij=S(A;,B),0<i<m,0<) <n

zou;.\
Recurrence relation: "‘“F'('“" (R, 2, | e
[S(“w.‘(o,‘)
Smn = S + b b by e b | o
m,n Ln_ﬂ(ﬁ (m-1,n-1 S(am’ n)’
Sm-l,n - G, Sm,n-l B C) Aq by cce Ry | R
L/\ -= - (o"“ (- B C
Base cases: Qi @y -~ = Aw |—
Lg,\ - - L"“"l Bl—. - c
Spo = S(&¢ =0
So’j — S(g, Bj) - - JC
Si,o - S(Al ,8) - - |C

Winter term 11/12 30

Most similar substrings

Given: Twostrings A=a;...ayandB=b, ... b,.
Goal: Findtwointervals [i’,i] < [1, m]and [, j] < [1, n] with

S(Ar; Byj) 2 S(Avy, Br)),

—

forall [K",k] < [1, m] and [I',l] < [1, n].

Naive approach:
forall [i",i]c[1, mland [, j] < [1,n] do
compute S(A;;, By ;)

31

Winter term 11/12

Most similar substrings

Method:
for all 1§@Sm,1£@£ndo
compute i and | so that S(A; ; , By ;) is maximized

—

ForO<i<m and0<j <nlet:

H;, = max S(A’,i’Bj’,j)

<<,

EI Lo
(E Siq,‘\] =<

Optimal trace:
A.

baaca-abc
| I |

Bjj= ba-cbca-c

Winter term 11/12 32

Most similar substrings

Recurrence relation:

Hi,j = maxy

Hi—l,j _C
Hi,j_l—c

Base cases:

@

Hoo = H(e,9) =0

I T
<
o

I

Winter term 11/12

H(A ,&) =0
= H(e,B;)) =0

H,_, ., +s(&.b))

.

33

