

Algorithms Theory

14 – Dynamic Programming (4)

Edit distance Approximate string matching Sequence alignment

P.D. Dr. Alexander Souza

- <u>Algorithm design</u> technique, often applied to optimization problems
- Generally suitable for <u>recursive approaches</u>, when solutions to subproblems are required repeatedly.
- Approach: maintain a table of subproblem solutions
- <u>Advantage:</u> improved running time; often polynomial instead of exponential

Two different approaches

Bottom-up:

- + the table is maintained in an efficient way, time saving
- + subproblems are solved in a special, optimized order, space saving
- extensive rewriting of the original program code is necessary
- possibly, unnecessary subproblems are solved

Top-down: (memoization)

- + only slight modifications in the original program code are necessary
- + only those subproblems definitely required are solved
- separate table management is time consuming
- table size is often suboptimal

String matching problems Here: Transform String 4 into String B Edit distance: min. # operations.

For two given strings A and B, efficiently compute the <u>edit distance</u> D(A,B) as well as a minimum <u>sequence of edit operations</u> that transforms A into B. replacement, inset, delete A = m a - t h e m - a t i c i a n B = m u l t i p l i c a t i o - - nCot of this sequence of operations processed : 10

String matching problems

Approximate string matching

For a given text *T*, a pattern *P* and a distance *d*, find all substrings \underline{P} of *T* with $\underline{D}(\underline{P},\underline{P}) \leq d$.

Sequence alignment

Find optimal alignments of DNA sequences.

Winter term 11/12

Given: Two strings $A = a_1 a_2 \dots a_{\widehat{m}}$ and $B = b_1 b_2 \dots b_{\widehat{m}}$.

Goal: Determine the minimum number D(A,B) of edit operations required to transform A into B.

Edit operations:

- 1. <u>Replace</u> a character from string *A* by a character from string *B*.
- 2. Delete character from string A.
- 3. Insert a character from string B into string A.

A = ma - the m - - atician $\mathcal{R} = multiplicatio - - n$

Edit distance

Unit-cost model:

$$c(a,b) = \begin{cases} 1 & \text{if } a \neq b \\ 0 & \text{if } a = b \end{cases}$$
$$a = \xi, \ b = \varepsilon \text{ possible}$$

We assume the triangle inequality holds for c:

 $c(a,c) \le c(a,b) + c(b,c)$

 \rightarrow each character is changed at most once

$$a \neq \varepsilon$$
, $b \neq \varepsilon$; replacement
 $a \neq \varepsilon$, $b = \varepsilon$: deletion
 $a = \varepsilon$, $b \neq \varepsilon$: insertian

Edit distance

Trace as representation of the sequence of edit operations:

$$A = b a (a) c a a (b) c$$
$$A = (a) b a c b (c) a c$$

or using indents:

Trace is ophimal only if two sub-braces are also optimal.

Edit distance (costs) : 5

Splitting an optimal trace yields two optimal subtraces

 \rightarrow dynamic programming is suitable

Computation of the edit distance Prefixes

Let $A_i = a_1 \dots a_{i}$ and $B_j = b_1 \dots b_{j}$. $D_{i,j} = D(A_i, B_j)$ A_i $A \xrightarrow{A_i}_{i}$ $B \xrightarrow{i}_{j}$ $B \xrightarrow{j}_{j}$

Computation of the edit distance

 $\int_{1}^{p^{mi} He} F_{1}^{p^{mi} He}$ Three ways of ending a trace:

(1)
$$a_m$$
 is replaced by b_n :
 $D_{m,n} = \underbrace{D_{m-1,n-1} + c(a_m, b_n)}_{m,n}$
(a) $a_1 a_2 \dots a_{m-n} | a_m$
 $b_1 b_2 \dots b_{n-n} | b_n$
(2) a_m is deleted: $D_{m,n} = \underbrace{D_{m-1,n} + 1}_{m,n-1}$
(3) b_n is inserted: $D_{m,n} = \underbrace{D_{m,n-1} + 1}_{m,n-1}$
(3) $a_1 a_2 \dots a_m | b_n b_n$

Computation of the edit distance

Recurrence relation (for $m, n \ge 1$):

$$\underline{D_{m,n}} = \min \begin{cases} D_{m-1,n-1} & + & c(a_m,b_n) \\ D_{m-1,n} & + & 1 \\ D_{m,n-1} & + & 1 \end{cases} & \text{ diletion} \\ \text{ insertion} \end{cases}$$

→ computation of all $D_{i,j}$ required, $0 \le i \le m$, $0 \le j \le n$.

Recurrence relation for the edit distance

Base cases:

$$D_{0,0} = D(\varepsilon, \varepsilon) = 0$$

$$D_{0,j} = D(\varepsilon, B_j) = j$$

$$D_{i,0} = D(A_i, \varepsilon) = i$$

Recurrence relation:

$$D_{i,j} = \min \begin{cases} D_{i-1,j-1} + c(a_i,b_j) \\ D_{i-1,j} + 1 \\ D_{i,j-1} + 1 \end{cases}$$

Order of solving the subproblems $\ensuremath{\mathbb{G}}$

Algorithm for computing the edit distance

Algorithm Edit-distance **Input:** two strings $A = a_1 \dots a_m$ and $B = b_1 \dots b_n$ **Output:** matrix $D = (D_{ii})$ 1 D[0,0] := 02 for i := 1 to m do D[i,0] = i3 for j := 1 to n do D[0, j] = j4 **for** i := 1 **to** m **do** for *j* := 1 to *n* do 5 $D[i,j] := \min(D[i-1,j] + 1,$ 6 D[i,j-1] + 1,7 $D[i-1, j-1] + c(a_i, b_j))$ 8

Winter term 11/12

С

С

ζ

-+>

Computing the edit operations

Algorithm Edit-operations (i,j) **Input:** matrix *D* (already computed) **Output:** <u>sequence</u> of edit operations 1 if i = 0 and j = 0 then return 2 if $i \neq 0$ and D[i,j] = D[i-1, j] + 13 then Edit-operations (i - 1, j)4 "delete a[i]" **else if** $j \neq 0$ and D[i,j] = D[i, j-1] + 15 then <u>Edit-operations</u> (i, j-1)6 7 "insert *b*[*i*]" else /* D[i,j] = D[i-1, j-1] + c(a[i], b[j]) */8 Edit-operations (i - 1, j - 1)9 "replace a[i] by b[i] " 10

Initial call: *Edit-operations(m,n)*

Trace graph of the edit operations

Ц

Trace graph of the edit operations

Trace graph:

Representation of all possible traces of operations that transform A into B. Directed edges from vertex (i, j) to vertices (i + 1, j), (i, j + 1)and (i + 1, j + 1). Edge weights represent the edit costs. +1

1+1, 1+

Along an optimal path, costs increase monotonically.

Each path from the <u>upper left</u> corner to the lower right corner with monotonically increasing costs represents an optimal trace.

Given: Two strings $T = t_1 t_2 \dots t_n$ (text) and $P = p_1 p_2 \dots p_m$ (pattern).

Goal: Find an interval [j', j], $1 \le j'$, $j \le n$, such that the substring $T_{j', j} = t_{j'} \dots t_j$ of T is the one with the <u>highest similarity</u> to the pattern P. Thus, for all other intervals [k', k], $1 \le k'$, $k \le n$: $D(P, T_{j', j}) \le D(P, T_{k', k})$

Naive approach:

for all $1 \le j'$, $j \le n$ do compute $D(P, T_{j', j})$ choose the minimum

$$\left(\left(\begin{array}{cc} m^{2} & m & m \end{array} \right) = \left(\left(\begin{array}{cc} m^{3} & m \end{array} \right) \right)$$

Method: for all $1 \le (j) \le n$ do determine(j) so that $D(P, T_{j', j})$ is minimized

Optimal trace:

Recurrence relation:

$$E_{i,j} = \min \begin{cases} E_{i-1,j-1} + c(p_i,t_j), \\ E_{i-1,j} + 1, \\ E_{i,j-1} + 1 \end{cases} \quad \text{replace ment} \\ \text{delete } p; \\ \text{insish } p; \end{cases}$$

Remarks:

The index j may differ for $E_{i-1, j-1}$, $E_{i-1, j}$ and $E_{i, j-1}$. A subtrace of an optimal trace is an optimal subtrace.

Base cases:

$$E_{0,0} = E(\varepsilon, \varepsilon) = 0$$

$$E_{i,0} = E(P_i, \varepsilon) = i$$

whereas

$$E_{0,j} = E(\varepsilon, T_j) = 0$$

$$\min_{\substack{\mathcal{U} \\ \mathcal{U} \\ \mathcal{U}$$

Observation:

An optimal sequence of edit operations that transforms P into $T_{j',j'}$ does not start with an insertion of character $t_{j'}$.

$$E_{m,\bullet} = E(P_m, T_\bullet)$$

Theorem:

If there is a path from $E_{0,j'-1}$ to $E_{i,j}$ in the dependency graph, then $T_{j',j}$ is a substring of T that has the highest similarity to P_{i} , ending at position j and satisfying

$$D(P_{i}, T_{j', j}) \cong E_{i, j}$$

We are interested in the entire pettern Pm, i.e., we & are interested
in the values
$$E_{m, \bullet}$$
. In pasticulas $\min_{j} E_{m, j}$

Sequence alignment:

For two given <u>DNA sequences</u>, insert spaces (or dashes) such that, after placing the resulting strings one above the other, the number of matching characters is maximized.

G A C G G A T T A G G A T C G G A A T A G

Similarity of strings

Measuring the similarity of two characters:

example value	setting	in general
(+1)	for a match	$\int c(a b)$
-1	for a mismatch	} <u>S(a,D)</u>
-2	for spaces	- C

Measuring the similarity of two sequences :

$$S(A,B) = \sum_{\substack{pairs (a_i,b_i) \\ Q_{i_1} \mid b_i}} \text{similarity of } (a_i,b_i)$$

Goal: Find an alignment that maximizes the similarity.

Similarity of strings

Similarity S(A,B) of two strings A and B

Operations:

- <u>Replacement</u> of a character *a* by some character *b* : Gain: *s*(*a*,*b*)
- 2. <u>Deletion</u> of a character from *A*, <u>insertion</u> of a character from *B* Loss: -c

Goal:

Find a sequence of operations that transforms *A* into *B* such that the total gain is maximized.

Similarity of strings

gain

Q1Q2 --- Qm |b1 --- bm-1 bn - c

$$S_{i,j} = S(\underline{A_i}, \underline{B_j}), 0 \le i \le m, 0 \le j \le n$$

Base cases:

$$S_{0,0} = S(\varepsilon, \varepsilon) = 0$$

$$S_{0,j} = S(\varepsilon, B_j) = -jc$$

$$S_{i,0} = S(A_i, \varepsilon) = -ic$$

Most similar substrings

Given: Two strings $A = a_1 \dots a_m$ and $B = b_1 \dots b_n$. **Goal:** Find two intervals $[i', i] \subseteq [1, m]$ and $[j', j] \subseteq [1, n]$ with

$$S(A_{i',i}, B_{j',j}) \geq S(A_{k',k}, B_{j',j}),$$

for all $[k',k] \subseteq [1, m]$ and $[l',l] \subseteq [1, n]$.

Naive approach:

for all $[i', i] \subseteq [1, m]$ and $[j', j] \subseteq [1, n]$ do compute $S(A_{i',i}, B_{j',j})$

Most similar substrings

Method: for all $1 \le (i) \le m$, $1 \le (j) \le n$ do compute *i* and *j* so that $S(A_{\underline{i',i}}, B_{\underline{j',j}})$ is maximized

For $0 \le i \le m$ and $0 \le j \le n$ let:

$$H_{i,j} = \max_{\substack{1 \le i' \le i+1, \\ 1 \le j' \le j+1 \\ \hline \end{bmatrix}} S(A_{i',i}, B_{j',j})$$

$$A_{i+1,i} = \varepsilon$$

$$\Im_{j'1,j} = \varepsilon$$

Optimal trace:

Most similar substrings

Recurrence relation:

$$H_{i,j} = \max \begin{cases} H_{i-1,j-1} + s(a_i, b_j) \\ H_{i-1,j} - c \\ H_{i,j-1} - c \\ \hline \bigcirc \\ \end{bmatrix} \quad \text{empty substring parille}$$

Base cases:

$$H_{0,0} = H(\varepsilon,\varepsilon) = 0$$

$$H_{i,0} = H(A_i,\varepsilon) = 0$$

$$H_{0,j} = H(\varepsilon,B_j) = 0$$