n

Algorithms Theory

15 - Text search

P.D. Dr. Alexander Souza

Text search

Various scenarios:

Dynamic texts

- Text editors
- Symbol manipulators

Static texts

- Literature databases
- Library systems
- Gene databases
- World Wide Web

Text search

Data type string:

- array of character
- file of character
- list of character

Operations (let T, P be of type string)
length: length ()
i-th character : T [i]
concatenation: cat (T, P) T.P

Problem definition

Given:

text $\quad t_{1} t_{2} \ldots t_{n} \in \Sigma^{n}$
pattern $p_{1} p_{2} \ldots p_{m} \in \Sigma^{m}$

Goal:

Find one or all occurrences of the pattern in the text, i.e. positions $i(0 \leq i \leq n-m)$ such that

$$
\begin{align*}
p_{1} & =t_{i+1} \\
p_{2} & =t_{i+2} \\
\vdots & \\
p_{m} & =t_{i+m}
\end{align*}
$$

cmuplete match.

Problem definition

Running time:

1. \# possible alignments: $\underline{n-m+1}$, \# pattern positions: \underline{m}
$\rightarrow \mathrm{O}(n \cdot m)$
2. At least 1 comparison per m consecutive text positions:

Winter term 11/ 12

Naive method

For each possible position $0 \leq i \leq n-m$, check at most m character pairs. Whenever a mismatch occurs, shift to the next position.

```
textsearchbf := proc (T : : string, P : : string)
# Input: text T, pattern P
# Output: list L of positions i, at which P occurs in T
    n := length (T); m := length (P);
    L := [ ];
    for i from 0 to n-m do
        j:= 1;
        while j\leqm and T[i+j]=P[j]
            do j:= j+1 od;
            if j=m+1 then L:= [L[ ] , i] fi;
    od;
    RETURN (L)
end;
```


Naive method

Running time:

all zero

Worst case: $\Omega(m \cdot n)$

In practice, a mismatch usually occurs very early.

$$
\rightarrow \text { running time } \sim c n \quad \text { in prachice. }
$$

The Knuth-Morris-Pratt algorithm (KMP)
We wart to find the largest prefix in the pattern which is also a proper suffix.
Let t_{i} and p_{j+1} be the characters to be compared:

If, for a certain alignment, the first mismatch occurs for characters t_{i} and p_{j+1}, then:

- the last j characters compared in T equal the first j characters of P
- $t_{i} \neq p_{j+1}$

Naive: Shift pattern only ane position ahead
Idea: Do not necencorly stat from scratch, lat try to shift the patton by mare than just portico. How far?

The Knuth-Morris-Pratt algorithm (KMP)

Idea:
Find $(\hat{j})=\operatorname{next}[j]<j$ such that t_{i} can then be compared to $p_{j^{\prime}+1}$.
Find greatest $j^{\prime}<j$ such that $P_{1 \ldots j^{\prime}}=P_{j-j^{\prime}+1 \ldots . j}$.
Find the longest prefix of P that is a proper suffix of $P_{1 \ldots j}$.

The Knuth-Morris-Pratt algorithm (KMP)

Example for determining next [j]:

next [j] = length of the longest prefix of P that is a proper suffix of $P_{1 \ldots j}$

The Knuth-Morris-Pratt algorithm (KMP)

$$
\left.\Rightarrow \text { for } P=0101101011 \text {, next }=\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0,0,1, & 10,0,1,2,3,4,5
\end{array}\right]:
$$

The Knuth-Morris-Pratt algorithm (KMP)

```
KMP := proc (T : : string, P : : string)
# Input: text T, pattern P
# Output: list L of positions }\underline{i}\mathrm{ at which P occurs in T
    n := length(T); m := length(P);
    L := []; next := KMPnext(P);
    j := 0;
    for }i\mathrm{ from }1\mathrm{ to }n\mathrm{ do
            {while j> 0 and T[i] <> P [j+1 ] do j:= next[j] od;
                if T[i] =P[j+1] then j:=j+1 fi;
    O(1) if j=m then L:= [L[], i-m ];
                        j:= next[j]
        fi;
    od;
    RETURN (L);
end;
```


The Knuth-Morris-Pratt algorithm (KMP)

Pattern: abrakadabra, next $=[0,0,0,1,0,1,0,1,2,3,4]$
abrakadabrabrababrak...

$$
i=0
$$

next [11] $=4$
in
abrakadabrabrababrak...
[a] brac
next [4] $=1$

The Knuth-Morris-Pratt algorithm (KMP)

abrakadabrabrababrak...

abrak adabrabrababrak...

The Knuth-Morris-Pratt algorithm (KMP)

Correctness:

When starting the for-loop:
$P_{1 . . . j}=T_{i-j . . . j-1}$ and $j \neq m$
if $j=0$: we are located at the first character of P
if $j \neq 0: P$ can be shifted while $j>0$ and $t_{i} \neq p_{j+1}$

The Knuth-Morris-Pratt algorithm (KMP)

If $T[i]=P[j+1], j$ and i can be increased (at the end of the loop).

If P has been compared completely $(j=m$), an occurrence of P in T has been found and we can shift to the next position.

The Knuth-Morris-Pratt algorithm (KMP)

Running time:

- the text pointer i is never reset
- text pointer i and pattern pointer j are always incremented together
- always: next [j]<j; j can be decreased only as many times as it has been increased

If the next-array is known, the KMP algorithm runs in $\mathrm{O}(n)$ time.

$$
O(n+m)
$$

Computation of the next-array

next [i] = length of the longest prefix of P that is a proper suffix of $P_{1} \cdots i$
next [1] $=0$
Let next $[i-1]=j$:

p_{1}	p_{2}	\cdots	\ldots		p_{i}	\ldots
		$=$	$==$	$=$	\neq	
		p_{1}	\cdots	p_{j}	p_{j+1}	\ldots

Computation of the next-array

Consider two cases:

1) $p_{i}=p_{j+1} \rightarrow \operatorname{next}[i]=j+1$
2) $p_{i} \neq p_{j+1} \rightarrow$ replace j by next $\left[j\right.$] until $p_{i}=p_{j+1}$ or $j=0$ If $p_{i}=p_{j+1}$, set next $[i]=j+1$, otherwise next $[i]=0$.

Computation of the next-array

```
KMPnext := proc ( \(P\) : : string)
\# Input: pattern \(P\)
\# Output: next-array for \(P\)
    \(m\) := length ( \(P\) );
    next := array (1.. m);
    next [1] := 0;
    \(j:=0\);
    for \(i\) from 2 to \(m\) do
        while \(j>0\) and \(P[i]<>P[j+1]\)
            do \(j:=\) next \([j]\) od;
        if \(P[i]=P[j+1]\) then \(j:=j+1 \mathrm{fi} ;\)
        next[i]:=j
    od;
    RETURN (next);
end;
```


Running time of KMP

The KMP algorithm runs in $\mathrm{O}(n+m)$ time.

Can text search be realized even faster?

The Boyer-Moore algorithm (BM)

Idea: For any alignment of the pattern with the text, scan the characters from right to left rather than from left to right.

Example:

```
he said abrakadabra but
    \lambda
but
he said abrakadabra but
    }
    but
```


The Boyer-Moore algorithm (BM)

```
he said abrakadabra but
        }
    but
he said abrakadabra but
                        \ell
                        but
he said abrakadabra but
    but
```


The Boyer-Moore algorithm (BM)

BM: last-occurrence function

For $c \in \Sigma$ and the pattern P let
$\delta[c]:=$ index of the right-most occurrence of c in P

$$
=\max \left\{j \mid p_{\mathrm{j}}=c\right\}
$$

$$
=\left\{\begin{array}{lc}
0 & \text { if } c \notin P \\
j & \text { if } c=p_{j} \text { and } c \neq p_{k} \text { for } j<k \leq m
\end{array}\right.
$$

What is the cost for computing all δ-values?
Let $|\Sigma|=l$:

BM: last-occurrence function

Let
$c=$ the character causing the mismatch
$j=$ the index of the current character in the pattern $\left(c \neq p_{j}\right)$

BM: last-occurrence function

Computation of the pattern shift

Case $1 c$ does not occur in $P \quad(\delta[c]=0)$ Shift the pattern j characters to the right.

$$
\Delta[i]=j
$$

BM: last-occurrence function

Case $2 c$ occurs in the pattern $(\delta[c] \neq 0)$ Shift the pattern to the right until the rightmost c in the pattern is aligned with a potential c in the text.

BM: last-occurrence function

Case 2 a: $\delta[c]>j$

Shift the rightmost c in the pattern to a potential c in the text.

$$
\Rightarrow \text { shift by } \Delta[\mathrm{i}]=\mathrm{m}-\delta[\mathrm{c}]+1
$$

BM: last-occurrence function

Case 2 b: $\delta[c]<j$

Shift the rightmost c in the pattern to c in the text.

$$
\Rightarrow \text { shift by } \Delta[\mathrm{i}]=\mathrm{j}-\delta[\mathrm{c}]
$$

BM: Algorithm (version 1)

```
Algorithm BM-search1
Input: text \(T\), pattern \(P\)
Output: all positions of \(P\) in \(T\)
\(1 n\) := length \((T) ; m\) := length \((P)\)
2 compute \(\delta\)
\(3 i:=0\)
4 while \(i \leq n-m\) do
\(5 \quad j:=m\)
\(6 \quad\) while \(j>0\) and \(P[j]=T[i+j]\) do
\(7 \quad j:=j-1\)
    end while;
```


BM: Algorithm (version 1)

8 if $j=0$ 9\quad then output position i
10

BM: Algorithm (version 1)

Analysis:

Desired running time: $\mathrm{O}(m+n / m)$
Worst-case running time: $\quad \Omega(n m)$

Match heuristic

Use the information collected before a mismatches $p_{j} \neq t_{i+j}$ occurs.

$g s[\mathrm{i}]=$ position of the end of the next occurrence of the suffix $P_{j+1 \ldots m}$ from the right that is not preceded by character P_{j} (good suffix function)

Possible shift: $\gamma[]=m-g s[j]$

Example of computing gsf

$g s f[j]=$ position of the end of the closest occurrence of the suffix $P_{j+1 \ldots m}$ from the right that is not preceded by character P_{j}
pattern: banana

gsf[j]	inspected suffix	forbidden character	further occurrence	position
gsf[5]	a	n	bannana	2
gsf[4]	na	a	*** bana na	0
gsf[3]	ana	n	banana	4
gsf[2]	nana	a	banana	0
gsf[1]	anana	b	banana	0

Example of computing gsf

$\Rightarrow g s f$ (banana) $=[0,0,0,4,0,2]$
$a b a a b a b a n a n a n a n a$
$\neq==$
banana
banana

BM: Algorithm (version 2)

Algorithm BM-search2

Input: text T, pattern P
Output: shift for all occurrences of P in T
$1 n$:= length $(T) ; m$:= length (P)
2 compute δ and γ
$3 i:=0$
4 while $i \leq n-m$ do
$5 \quad j:=m$
$6 \quad$ while $j>0$ and $P[j]=T[i+j]$ do
$7 \quad j:=j-1$
end while;

BM: Algorithm (version 2)

$$
\begin{array}{lc}
8 & \text { if } j=0 \\
9 & \text { then output position } i \\
10 & i:=i+\gamma[0] \\
11 & \text { else } i:=i+\max (\gamma[j], j-\delta[T[i+j]])
\end{array}
$$

$$
12 \text { end while; }
$$

