
IBM ILOG OPL V6.3

IBM ILOG OPL IDE Tutorials

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

COPYRIGHT NOTICE

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Acknowledgement

The language manuals are based on, and include substantial material from, The OPL
Optimization Programming Language by Pascal Van Hentenryck, © 1999 Massachusetts
Institute of Technology.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

IDE Tutorials..7
About IDE tutorials..9

Understanding solving statistics and progress (MP models)...11
Purpose of the tutorial..13
The scalable warehouse example..14
The scalable warehouse project...15
Executing the warehouse project with scalable data..18
Examining the statistics and progress chart (MP)..19

The Progress Chart (MP models)...20
The Statistics table (MP models)..21

Examining the engine log...22
Examining the results and the data..24
Changing a CPLEX parameter value...26

Understanding solving statistics and progress (CP models)...29
Purpose of the tutorial..30
The steel mill example..31
Executing the model in the OPL IDE..32
Coloring of CP keywords and functions in the IDE...33
Examining the statistics and progress chart (CP)..35

Statistics..36
The progress chart (CP models)...37
The statistics table (CP models)...38

Examining the engine log...39

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Changing a CP parameter value..41

Working with external data...43
Purpose and prerequisites...44
Using data sources...45
The oil database example..47

Description of the example..48
The oil database tables...50
The oil database project..53
The oil database data file..55
Executing the oil database example..58
Viewing the result in the database..60
The Result table after execution..61

The oil sheet example..63
Description of the example..64
The oil data spreadsheet...65
The oil sheet project..67
The oil sheet data file..69
Executing the oil sheet example..71
Viewing the result in the spreadsheet...73
The RESULT sheet after execution...74

Using IBM ILOG Script for OPL..75
Purpose and prerequisites...76
Features of IBM ILOG Script for OPL...78
The multiperiod production planning example..79

Presenting the multiperiod production planning example...80
Setting up the multiperiod production model and data..82
Executing a flow control script...83
Purpose of the flow control script..84
Debugging a flow control script...85

The transportation example..91
Presenting the transportation example...92
Setting up the transportation model and data...94
Executing preprocessing scripts...95
Purpose of the preprocessing scripts..96
Debugging a preprocessing script...98

The covering example..105
Presenting the covering example..106
Setting up the covering model and data..108
Purpose of the postprocessing script..110
Executing a postprocessing script...111
Postprocessing a feasible solution..112

Relaxing infeasible models..115
Presenting the nurse scheduling example..116

I B M I L O G O P L I D E T U T O R I A L S4

Setting up the nurses model and data..118
Executing the nurses project (1)...119
Working on the execution results..123

Studying the suggested relaxation..124
Studying the suggested conflicts...125
Changing the data...126

Executing the nurses project (2)...128
How relaxation and conflict search works..131

Relaxations...132
Setting the relaxation level..133
Conflicts..134

Profiling the execution of a model...135
Purpose and prerequisites...136
Identifying slow and memory-consuming model elements...139

Presenting the profiler example..140
Executing the profiler model..141
Description of the profiling information..142
Examining the profiling information...146

Examining model extraction and solving..147
Presenting the scalable run configuration...148
Executing the scalable run configuration..149
Examining the extraction and search information...150
Turning off the Profiler...152
Drawing conclusions...153

Working with the solution pool..155
Purpose and prerequisites...156
The solution pool in the OPL IDE...157

How the solution pool works...158
Examining pool solutions in the Problem Browser..159
Obtaining more solutions..161
Setting solution pool options...162

Filtering the solution pool...163
Solution pool filters..164
Adding a range filter..165

Flow control script and solution pool..167
How the flow control script works..168
Executing the flow control script..169

Using the performance tuning tool..171
Purpose and prerequisites...172
How performance tuning works..173
How to use performance tuning in the IDE...175

Tuning without fixed settings...176
Results..179

I B M I L O G O P L I D E T U T O R I A L S 5

Tuning with fixed settings..180
Tuning options...181
Temporary tuning files...183

Index..185

I B M I L O G O P L I D E T U T O R I A L S6

IDE Tutorials

A collection of tutorials that use examples from the product distribution to illustrate typical
features and use cases of the OPL IDE.

In this section

About IDE tutorials
Gives the prerequisites for reading this document and outlines the structure.

Understanding solving statistics and progress (MP models)
Shows how the IDE displays a dynamically updated progress chart for a mixed integer
programming (MIP) example that takes some time to solve.

Understanding solving statistics and progress (CP models)
Shows how the IDE displays a dynamically updated progress chart for a constraint
programming example that takes a few seconds to solve.

Working with external data
Explains how to connect to data sources from OPL, based on the example of databases, and
then provides two practical cases.

Using IBM ILOG Script for OPL
Teaches the features of the IDE for scripts written in IBM ILOG Script for OPL, including
the script debugging facilities.

Relaxing infeasible models
Uses the nurses example to demonstrate how the IDE detects conflicts and searches for
relaxations in models that appear infeasible after execution.

© Copyright IBM Corp. 1987, 2009 7

Profiling the execution of a model
Explains how the IDE Profiler table can help you improve your model to make it run faster
while consuming less memory.

Working with the solution pool
Explains how to access a project solution pool in the IDE and how you can set options and
define filters on solution pool generation.

Using the performance tuning tool
Describes how to improve the combination of parameters for the CPLEX® part of your
model(s).

I B M I L O G O P L I D E T U T O R I A L S8

About IDE tutorials

This manual assumes that you are familiar with the IDE graphical user interface. Read
Getting Started with the IDE first if this is not the case.

You may also need to read How to read the OPL documentation for details of prerequisites,
conventions, documentation formats, and other general information.

This manual is organized as follows:

♦ Understanding solving statistics and progress (MPmodels): A relatively longMIP example
presents the pause feature and the display in the Progress chart of the Output window.

♦ Understanding solving statistics and progress (CP models): An example that uses a
manufacturing problem solved by the CP Optimizer engine to describe the Statistics and
Progress chart in the IDE Output window.

♦ Working with external data: An IP example presents the use of a database through SQL
instructions in the data file; the example database is a Microsoft® Access file accessed
through ODBC connectivity.

♦ Using IBM ILOG Script for OPL: Several examples illustrate the use of scripting through
script statements in model files; the scripting language is IBM ILOG Script for OPL.

♦ Relaxing infeasible models: The nurse scheduling example illustrates how to use the IDE
to search for relaxations and conflicts in an MP model that appears infeasible after
execution. This feature may help you detect errors in the model or data of your project.

♦ Profiling the execution of a model: A tutorial shows how the IDE can help you improve
your model to make it run faster while consuming less memory.

♦ Working with the solution pool: This section explains what solution pools are and how
solution pools are populated. An example shows how you can use IBM ILOG Script to
work with solution pools.

♦ Using the performance tuning tool: This section explains, with an example, how to use
this IDE feature to fine-tune CPLEX® parameters for MP models.

I B M I L O G O P L I D E T U T O R I A L S 9

I B M I L O G O P L I D E T U T O R I A L S10

Understanding solving statistics
and progress (MP models)

Shows how the IDE displays a dynamically updated progress chart for a mixed integer
programming (MIP) example that takes some time to solve.

In this section

Purpose of the tutorial
Describes the type of model used.

The scalable warehouse example
Summarizes the problem.

The scalable warehouse project
Examines the project in the OPL IDE.

Executing the warehouse project with scalable data
Explains how to pause and observe the results of the suspended execution.

Examining the statistics and progress chart (MP)
Describes the engine log, progress chart and statistics table for MP models.

Examining the engine log
Describes the Engine Log tab.

Examining the results and the data
Describes how results are displayed in the IDE after model execution.

I B M I L O G O P L I D E T U T O R I A L S 11

Changing a CPLEX parameter value
Explains how to change a mathematical programming option in the IDE.

I B M I L O G O P L I D E T U T O R I A L S12

Purpose of the tutorial

The tutorial assumes that you know how to work with projects in the IDE. If this is not the
case, read Getting Started with the IDE first.

The tutorial uses a model solved by the CPLEX® engine to describe the statistics and
progress chart in the IDE output view. However, statistics and progress chart work in a very
similar manner for models solved with the CP Optimizer engine. Where slight differences
can be observed, they are indicated as appropriate.

Starting from a scalable run configuration of the warehouse example presented in The
scalable warehouse example, this tutorial covers:

♦ Executing the warehouse project with scalable data

♦ Examining the results and the data

♦ Changing a CPLEX parameter value

I B M I L O G O P L I D E T U T O R I A L S 13

The scalable warehouse example

The scalableWarehouse.mod file is a scalable version of the warehouse location model that
is described in detail in Warehouse location in the Language User’s Manual.

This section assumes that you are familiar with the integer and Boolean variables used to
solve this problem as explained in that document. Here is a summary the problem:

A company is considering a number of locations for building warehouses to supply its existing
stores. Each possible warehouse has a fixed maintenance cost and a maximum capacity
specifying howmany stores it can support. Each store can be supplied by only one warehouse
and the supply cost to the store differs according to the warehouse selected. The application
consists of choosing which warehouses to build and which of them should supply the various
stores in order to minimize the total cost, which is the sum of the fixed costs and the supply
costs.

The model instance used in this section considers 50 warehouses and 200 stores. The fixed
costs for the warehouses are all identical and equal to 10. The warehouse project folder
contains the model scalableWarehouse.mod.

I B M I L O G O P L I D E T U T O R I A L S14

The scalable warehouse project

You will now take a look at this project in the IDE.

Use the File>New>Example menu command to open the warehouse example.

If you need a reminder of how to use the New Example wizard, see Opening distributed
examples in the OPL IDE. As a hint, the fastest way to find this example in the wizard is to
choose IBM ILOG OPL examples on the first screen and then on the second screen type
warehouse into the field that by default contains type filter text. When you do this, all
other examples are filtered out, and you can double-click the warehouse example to open
it.

The project
The warehouse project opens in the IDE. Its contents are shown below, with all elements in
the OPL Projects Navigator expanded.

The warehouse project

Note that:

♦ There are two models, warehouse.mod and scalableWarehouse.mod, used in different
run configurations.

♦ There is a warehouse.dat file declaring external data for the warehouse.mod model but
there is no scalableWarehouse.dat file.

♦ There are four run configurations:

● The first one associates the basic warehouse model and data.

● The second one uses a variation of scalableWarehouse.mod for you to learn the tuning
tool. See Using the performance tuning tool.

I B M I L O G O P L I D E T U T O R I A L S 15

● The third one has been created specifically from scalableWarehouse.mod for you to
work with scalable data.

● The fourth one uses another variation of scalableWarehouse.mod for you to work with
solution pools. See Working with the solution pool.

The data
The scalable warehouse model has no associated data file. The numbers of warehouses and
stores and the fixed cost are declared within the model file as shown below.

Data initialization in scalableWarehouse.mod
int Fixed = 10;
int NbWarehouses = 50;
int NbStores = 200;

assert(NbStores > NbWarehouses);

range Warehouses = 1..NbWarehouses;
range Stores = 1..NbStores;

The capacity values and transportation cost values are internal data (that is, they are
calculated in the model file) as shown below.

Internal data in scalableWarehouse.mod
int Capacity[w in Warehouses] =
NbStores div NbWarehouses +
w % (NbStores div NbWarehouses);

int SupplyCost[s in Stores][w in Warehouses] =
1 + ((s + 10 * w) % 100);

Note: 1. When there is no separate data file, all the variables must be initialized in the
model file; there cannot be statements of the form:

int myvar = ...;

2. The scalable warehouse model has been artificially increased in size so that the
search is long enough for you to interrupt and look at feasible solutions that are
not the best with respect to the objective. The resulting size is greater than the
size allowed in trial mode.You therefore need a full copy of OPL to run this
example.

Note the use of the integer division operator div in the capacity calculation and the modulus
operator mod.

The matrix supply [s][w] represents the amount of the product delivered to store s from
warehouse w. The total delivered to a store could be represented by a very large integer
value. Instead, it is normalized to 1, so that each supply [s][w] value is a proportion of 1
with a floating-point value. Thus, one warehouse could deliver 0.5 (half the total for that
store), another 0.2 (a fifth of the total for that store) and so on.

I B M I L O G O P L I D E T U T O R I A L S16

You are now going to execute the run configuration with scalable data and examine the
resulting statistics and chart.

I B M I L O G O P L I D E T U T O R I A L S 17

Executing the warehouse project with scalable data

Basic Configuration is predefined as the default run configuration to be executed. Since
it is not the configuration you want to work on, you will first make another run configuration
the default one.

The scalable model has been designed to be solved by the CPLEX® engine in several seconds
so that you have time to observe and interact with the execution process. To experience
such interaction and observe the results, you are now going to start, then suspend, the
execution and observe the output in the Statistics tab.

1. Right-click on Scalable data and choose Set as Default.

This configuration name is now labeled as the new default.

2. To execute this run configuration, right-click on Scalable data, and select Run this.

3. In the Execution toolbar, the Pause the current solve button appears. Click
this button just after launching the solve to interrupt the process and examine the
current solution.

(See What happens when you execute a run configuration in the IDE Reference for
details.)

4. Click the Statistics tab.

See Examining the statistics and progress chart (MP) to understand what you see at
this stage of the execution process.

5. The Pause button is replaced with the Continue the current solve button .
Click to continue and wait until execution is complete.

The IDE returns to the running state and completes the solve.

You will see the shape of the green line that represents the best integer solution change
as more iterations are made.

6. Proceed to the next section of the tutorial.

I B M I L O G O P L I D E T U T O R I A L S18

Examining the statistics and progress chart
(MP)

Describes the engine log, progress chart and statistics table for MP models.

In this section

The Progress Chart (MP models)
Analyses the results of the solve process displayed as a chart in the IDE.

The Statistics table (MP models)
Analyses the results of the solve process displayed as statistics in the IDE.

I B M I L O G O P L I D E T U T O R I A L S 19

The Progress Chart (MP models)

The diagram in the right part of the Statistics tab displays the solve process and results as
a chart. The vertical axis of this chart is the value of the objective and the horizontal axis is
time in seconds. The chart below is displayed after a pause in the solve process.

MP models: Progress Chart at feasible solution (scalableWarehouse.mod)

The shapes of the lines on the chart depend on exactly when you pause execution; the
progress chart shown above is just an example of a first pause.

The progress chart shows the variation of the best node and best integer values and highlights
the integer values found during the search:

♦ The green line shows the evolution of the Best Integer value, that is, the best value of
the objective found that is also an integer value.

♦ The red line shows the evolution of the best value of the remaining open nodes (not
necessarily integer) when moving from one node to another. This gives a bound on the
final solution.

♦ The yellow point indicates a node where an integer value has been found. These points
generally correspond to the stars (asterisks) in the Engine Log. See also the Engine Log
tab.

The values in the Value column are dynamic and are updated every second; they change to
indicate how the algorithm is progressing. The values in the Statistic frame are static; they
indicate the model characteristics.

Since one feasible solution has been found for scalableWarehouse.mod, this is listed in the
Solutions tab.

I B M I L O G O P L I D E T U T O R I A L S20

The Statistics table (MP models)

The table in the left part of the Statistics tab reflects the contents of the Engine Log
hierarchically as a tree. The table shown below is displayed at the end of the solve process
for scalableWarehouse.

MP models: results for scalableWarehouse.mod

The top level of the Statistic tree indicates the solving engine (CPLEX®). You see certain
statistic values change dynamically as the solving takes place.

For most algorithms, the statistics items are:

♦ the CPLEX problem

● Number of constraints and variables, in a format similar to that of the Engine Log,
with various characterizations.

● Number of non-zero coefficients

● Number of quadratic constraints and coefficients, when applicable

♦ the presolve stage (not shown in the scalableWarehouse example)

● Number of rows and columns removed, when applicable

♦ the solve stage, with the names of the algorithms used, such as MIP, Barrier, Simplex,
and so on, with the corresponding statistics for each of them.

I B M I L O G O P L I D E T U T O R I A L S 21

Examining the engine log

The Engine Log tab in the Output window shows the CPLEX® node log when an LP model
is solved.

Engine log for the warehouse example (scalable warehouse.mod)

When CPLEX® optimizes mixed integer programs, it builds a tree with the linear relaxation
of the original MIP at the root, and subproblems to optimize at the nodes of the tree. CPLEX
reports its progress in optimizing the original problem in a node log file as it traverses this
tree. You control how information in the log file is recorded and displayed through two
CPLEX parameters.

♦ The MIPDisplay parameter controls the general nature of the output that goes to the
node log.

♦ The MIP node log interval parameter, MIPInterval, controls how frequently node log
lines are printed. Its default value is 100.

These parameters can be set in the OPL settings file. See Changing a CPLEX parameter
value. The values for these parameters are also given in CPLEX parameters and OPL
parameters.

CPLEX records a line in the node log for every node with an integer solution if the parameter
controllingMIP node log display information (MIPDisplay) is set to 1 or higher. If MIPDisplay
is set to 2 or higher, then for any node whose number is a multiple of the MIPInterval value,
a line is recorded in the node log for every node with an integer solution.

CPLEX logs an asterisk (*) in the left-most column for any node where it finds an
integer-feasible solution or new incumbent. In the next column, it logs the node number. It
next logs the number of nodes left to explore.

In the Objective column, CPLEX either records the objective value at the node or a reason
to fathom the node. (A node is fathomed if the solution of a subproblem at the node is
infeasible; or if the value of the objective function at the node is worse than the cutoff value
for branch & cut; or if the linear programming relaxation at the node supplies an integer
solution.) This column is left blank for lines that report that CPLEX found a new incumbent
by primal heuristics. A plus (+) after the node number distinguishes such lines.

I B M I L O G O P L I D E T U T O R I A L S22

In the column labeled IInf, CPLEX records the number of integer-infeasible variables and
special ordered sets. If no solution has been found, the column titled Best Integer is blank;
otherwise, it records the objective value of the best integer solution found so far.

The column labeled Cuts/Best Node records the best objective function value achievable.
If the word Cuts appears in this column, it means various cuts were generated; if a particular
name of a cut appears, then only that kind of cut was generated.

The column labeled ItCnt records the cumulative iteration count of the algorithm solving
the subproblems.

Until a solution has been found, the column labeled Gap is blank. If a solution has been
found, the relative gap value is printed: when it is less than 999.99, the value is printed;
otherwise, hyphens are printed. The gap is computed as:

(best integer - best node) * objsen / (abs (best integer) + 1e-10)

Consequently, the printed gap value may not always move smoothly. In particular, there
may be sharp improvements whenever a new best integer solution is found. Moreover, if
the populate procedure of the solution pool is invoked, the printed gap value may become
negative after the optimal solution has been found and proven optimal.

CPLEX also logs its addition of cuts to a model. Cuts generated at intermediate nodes are
not logged individually unless they happen to be generated at a node logged for other
reasons. CPLEX logs the number of applied cuts of all classes at the end.

CPLEX also indicates, in the node log file, each instance of a successful application of the
node heuristic. The + denotes an incumbent generated by the heuristic. Periodically, if the
MIP display parameter is 2 or greater, CPLEX records the cumulative time spent since the
beginning of the current MIP optimization and the amount of memory used by branch &
cut. (For example, if the MIPInterval parameter is set to 10, time and memory information
appears either every 20 nodes or ten times theMIP interval parameter, whichever is greater.)

CPLEX prints an additional summary line in the log if optimization stops before it is complete.
This summary line shows the best MIP bound, that is, the best objective value among all the
remaining node subproblems.

I B M I L O G O P L I D E T U T O R I A L S 23

Examining the results and the data

After model execution, the results are displayed in the Solutions tab and the data structure
is displayed in the Problem browser.

The results
If you scroll down through the Solutions tab, you see the results for the Open and Supply
variables. The Open array specifies which warehouses are open. The Supplymatrix specifies
which stores are supplied by which (open) warehouses.

The data structure
After execution, the data structure for scalableWarehouse.mod is displayed in the Problem
Browser.

I B M I L O G O P L I D E T U T O R I A L S24

Viewing the model structure in the Problem Browser (scalableWarehouse.mod)

The navigation tools of the IDE are available for your use at this time.

♦ You can view a model element in a separate table by double-clicking it.

♦ If you click the drop-down list at the top, you can see the final solution and, if the model
expresses a MIP problem, all the solutions of the pool. See Working with the solution
pool for details.

♦ You can select an item and see its property in the Property column.

See Understanding the Problem Browser in Getting Started with the IDE for details.

I B M I L O G O P L I D E T U T O R I A L S 25

Changing a CPLEX parameter value

Changing CPLEX® parameters is useful to experiment with different values. The convenient
way is to create a settings file and a different run configuration for each value, or set of
values, you want to test. However, if you decide eventually that a particular setting is always
needed for the model concerned, you can even set the parameter within the model by writing
an execute IBM ILOG Script block. For an example, see Changing CPLEX parameters in
the Language User’s Manual.

In the scalableWarehouse example, if you increase the relative MIP gap tolerance to 0.05
(5%), the first solution found is immediately considered to be the final solution because it
is at most 3.3333% from the optimal solution (as displayed in the notification message).

To set a CPLEX parameter in the IDE:

1. Right-click on Scalable data and select New>Settings to create a settings file with
an .ops extension. Name the file warehouse.ops.

This is explained in Adding a settings file in Getting Started with the IDE.

2. Add the new warehouse.ops settings file to the run configuration Scalable data,
using drag and drop.

3. ClickMixed Integer Programming>Tolerances in the option tree on the left.

4. Enter the value 0.05 for Relative MIP gap tolerance and press Enter.

Because this value is not the default value, a red exclamation mark appears to the left
of the option name.

I B M I L O G O P L I D E T U T O R I A L S26

Changing the value of a CPLEX parameter

You can also create a specific run configuration as explained in Creating and executing
a different configuration in Getting Started with the IDE.

5. Click the Run button to rerun the same configuration (Scalable data). If you are
prompted to save, click OK.

Execution ends almost immediately and the progress chart reflects this fact.

The Run button re-executes the last executed
configuration.

Note:

I B M I L O G O P L I D E T U T O R I A L S 27

MP models: Progress Chart, New MIP gap tolerance (scalableWarehouse.
mod)

There are fewer solutions in the Solutions tab and in the Problem Browser list than when
the gap tolerance was not user-defined.

You can now close the warehouse example (see Closing projects in IDE Reference for details
if necessary).

I B M I L O G O P L I D E T U T O R I A L S28

Understanding solving statistics
and progress (CP models)

Shows how the IDE displays a dynamically updated progress chart for a constraint
programming example that takes a few seconds to solve.

In this section

Purpose of the tutorial
Describes the type of model used.

The steel mill example
Summarizes the problem.

Executing the model in the OPL IDE
Explains how to solve the steel mill problem and examine the results.

Coloring of CP keywords and functions in the IDE
Constraint programming in the OPL IDE is distinguished by the colored names of the
functions.

Examining the statistics and progress chart (CP)
Describes the statistics and progress chart for CP models.

Examining the engine log
Describes the contents of the CP engine log displayed in the OPL IDE.

Changing a CP parameter value
Explains how to change a constraint programming option in the IDE.

I B M I L O G O P L I D E T U T O R I A L S 29

Purpose of the tutorial

In this tutorial, you will see how the IDE displays a dynamically updated progress chart for
a constraint programming (CP) example.

The tutorial assumes that you know how to work with projects in the IDE. If this is not the
case, read Getting Started with the IDE first.

The tutorial uses a manufacturing problem solved by the CP Optimizer engine to describe
the statistics and progress chart in the IDE Output window. Statistics and progress chart
work in a very similar manner for models solved with the CPLEX® engine. Slight differences
can be observed.

For more information, see the topics dedicated to constraint programming in the Language
User’s Manual.

I B M I L O G O P L I D E T U T O R I A L S30

The steel mill example

The steel mill problem consists in building steel coils from slabs that are available in a
work-in-process inventory of semi-finished products. It is described in The steel mill problem
in the Samples manual.

I B M I L O G O P L I D E T U T O R I A L S 31

Executing the model in the OPL IDE

To execute the steelmill example:

1. Select File>New>Example and use the New Example wizard to open the steelmill
example if you have not already done so.

2. To run the model, open Run Configurations, right-click on Basic Configuration,
and select Run this.

SeeWhat happens when you execute a run configuration in IDE Reference for details.)

3. Click the Engine Log tab in the Output window and examine its contents as you did
in the previous tutorial.

4. Click the Statistics tab in the Output window.

See Examining the statistics and progress chart (CP) to understand what you see at
this stage of the execution process.

I B M I L O G O P L I D E T U T O R I A L S32

Coloring of CP keywords and functions in the IDE

If you double-click steelmill.mod to open it in the IDE editor, you will notice that the first
support of constraint programming in the IDE is the colored names of the functions used in
the model to define specialized constraints, for example pack on line 48.

I B M I L O G O P L I D E T U T O R I A L S 33

I B M I L O G O P L I D E T U T O R I A L S34

Examining the statistics and progress chart
(CP)

Describes the statistics and progress chart for CP models.

In this section

Statistics
Describes the contents of the CP Statistics tab displayed in the OPL IDE.

The progress chart (CP models)
Analyses the results of the solve process displayed as a chart in the IDE.

The statistics table (CP models)
Analyses the results of the solve process displayed as statistics in the IDE.

I B M I L O G O P L I D E T U T O R I A L S 35

Statistics

The Statistics tab of the IDE Output window also provides information on the search such
as number of choice points, fails, and memory usage.

When you click the Statistics tab in the Output window, you can see the CP Optimizer
solving statistics.

Statistics for the steel mill example (default CP settings)

Pausing search
You can pause the CP Optimizer search, explore the current feasible solution (if any) in the
Problem Browser and then continue the search. This is not meaningful in the steel mill
example, however, as the solution is found very quickly.

Progress chart
The progress chart shows all the feasible solutions, and the final one. Again, the progress
chart is not particularly interesting for the steel mill example because the optimal solution
is found immediately. See the progress chart of the route problem in The progress chart
(CP models) for comparison.

I B M I L O G O P L I D E T U T O R I A L S36

The progress chart (CP models)

If you execute a constraint programming model solved with the CP Optimizer engine, the
progress chart is slightly different from the progress chart of CPLEX® models. To observe
it, you are going to open the route project.

1. Use the File>New>Example menu command to open the Call route example.

The route project will appear in the OPL Projects navigator.

2. To run the model, open Run Configurations, right-click on Basic Configuration, and
select Run this from the popup menu to execute the run configuration.

3. Click the Statistics tab.

CP models: progress chart (route project)

The progress chart shows the variation of the objective. The yellow points show when
solutions are found and the green line basically follows these points, showing the evolution
of the best solution found over time.

I B M I L O G O P L I D E T U T O R I A L S 37

The statistics table (CP models)

The statistics table and progress chart work in a very similar manner for models solved with
the CP Optimizer engine. However, take a look at the route example to observe the
differences.

Click the Statistics tab after executing the Basic Configuration for the route project.
The statistics are on the left.

CP models: Statistics table (route project)

The top level of the Statistic tree indicates the solving engine (CP). You see certain statistic
values change dynamically as the solving takes place. The statistics items are:

♦ Number of constraints after initial propagation

♦ Number of variables

♦ Memory usage (including after initial propagation)

♦ Number of choice points

♦ Number of fails

♦ The objective

Click on the Solutions tab to see the number of solutions obtained.

You can change constraint programming parameters by changing values in the Constraint
Programming page of the settings editor. See also Constraint programming options in IDE
Reference.

I B M I L O G O P L I D E T U T O R I A L S38

Examining the engine log

When you click the Engine Log tab in the Output window, you can see the CP Optimizer
log.

Engine Log for the Steel Mill example (default CP settings)

The first line of the log indicates the type of problem, along with the number of decision
variables and constraints in the model. In the steel mill example, there is an objective included
in the model, so the problem is reported to be a Minimization problem. When the model
does not include an objective, the problem type is reported as a Satisfiability problem.

In this example, we have one line each 50 branches as indicated by the parameter set in the
model steelmill.mod.

cp.param.LogPeriod = 50;

The next three lines of the log provide information regarding the initial constraint
propagation.

The Initial process time is the time in seconds spent at the root node of the search tree
where the initial propagation occurs. This time encompasses the time used by the optimizer
to load the model, called extraction, and the time spent in initial propagation.

I B M I L O G O P L I D E T U T O R I A L S 39

The value for Log search space provides an estimate of the size of the depth-first search
tree; this value is the log (base 2) of the products of the domains sizes of all the decision
variables of the problem. Typically, the estimate of the size of the search tree should be
smaller after the initial propagation, as choices will have been eliminated. However, this
value is always an overestimate of the log of the number of remaining leaf nodes of the tree
because it does not take into account the action of propagation of constraints at each node.

The memory used by the optimizer during the initial propagation is reported. Also, any
parameter change from its default is displayed at the head of the search log.

In order to interpret the remainder of the log file, you may want to think about the search
as a binary tree. The root of the tree is the starting point in the search for a solution; each
branch descending from the root represents an alternative choice or decision in the search.
Each of these branches leads to a node where constraint propagation during search will
occur. If the branch does not lead to a failure and a solution is not found at a node, the node
is called a choice point. The optimizer can make an additional decision and create two new
alternative branches from the current node, or it can jump in the tree and search from
another node.

The lines in the next section of the progress log, are displayed periodically during the search
and describe the state of the search. The display frequency of the progress log can be
controlled with parameters of the optimizer. See Changing a CP parameter value.

The progress information given in a progress log update includes:

Branches: the number of branches explored in the binary search tree.

Non-fixed: the number of uninstantiated (not fixed) model variables.

Branch decision: the decision made at the branch currently under consideration by the
optimizer

Best: the value of the best solution found so far, in the case of an optimization problem.

The final lines of the log provide information about the entire search, after the search has
terminated. This information about the search includes:

Solution status: the conditions under which the search terminated.

Number of branches: the number of branches explored in the binary search tree.

Number of fails: the number of branches that did not lead to a solution.

Total memory usage: the memory used by IBM ILOG Concert Technology and the IBM
ILOG CP Optimizer engine

Time spent in solve: the elapsed time from start to the end of the search displayed in
seconds.

Search speed: average time spent per branch.

The CP Engine Log enables you to trace the propagation (see Changing a CP parameter
value).

I B M I L O G O P L I D E T U T O R I A L S40

Changing a CP parameter value

Changing CP Optimizer parameters is useful to experiment with different values. The
convenient way is to create a settings file in the OPL IDE and a different run configuration
for each value, or set of values, you want to test. However, if you decide eventually that a
particular setting is always needed for the model concerned, you can even set the parameter
within the model by writing an execute IBM ILOG Script block. For an example, seeChanging
CP parameters in the Language User’s Manual.

For example, you can change the verbosity of the log displayed in the Engine Log tab of the
Output window.

To set a CP parameter in the IDE:

1. Create a settings file for the steelmill project by choosing File>New>Settings from
the main menu.

In the popup window, type steelmill.ops as the name of the settings file and click
Finish.

2. Drag and drop the steelmill.ops settings file into the Basic Configuration run
configuration.

See also Adding a settings file in Getting Started with the IDE.

3. In the settings file displayed in the IDE editor, click Constraint
Programming>Search control>Log control.

4. Select Quiet from the Log verbosity drop-down list (see Setting the Engine Log
verbosity).

Setting the Engine Log verbosity

5. Execute the Basic Configuration for the project.

The Engine Log tab is empty. This is the result of the Quiet setting.

You can now close the route and steelmill projects in the OPL IDE (see Closing projects
in IDE Reference for details if necessary).

I B M I L O G O P L I D E T U T O R I A L S 41

I B M I L O G O P L I D E T U T O R I A L S42

Working with external data

Explains how to connect to data sources from OPL, based on the example of databases, and
then provides two practical cases.

In this section

Purpose and prerequisites
Describes the type of model used and outlines the assumed knowledge.

Using data sources
As an example of working with databases, explains how to connect to a database using OPL
instructions.

The oil database example
Describes the oil database tables and project, and its execution.

The oil sheet example
Describes the oil data spreadsheet, the oil sheet project, and its execution.

I B M I L O G O P L I D E T U T O R I A L S 43

Purpose and prerequisites

IBM® ILOG® OPL allows you to read data from a data source (a database or calculation
spreadsheet). In this case, the data is said to be “external” to OPL. (As opposed to the data
in an internal OPL .dat file.)

The tutorial uses a model solved by the CPLEX® engine, but all the features described work
in the same way with a model solved by the CP Optimizer engine.

Both examples are variants of a blending application. This tutorial therefore assumes that:

♦ you know how to define, instantiate, and initialize data: see Data sources in the Language
Reference Manual,

♦ you know how to work with projects in the IDE: see Getting Started tutorial,

♦ you are familiar with the blending application and the solving strategy as described in A
blending problem in the Language User’s Manual.

I B M I L O G O P L I D E T U T O R I A L S44

Using data sources

Databases supported
IBM® ILOG® OPL interfaces with some of the RDBMS supported by IBM ILOG DBLink.
For a list of the databases supported by OPL, see Supported databases in Working
Environment.

Connection prerequisites

♦ If you are working with Oracle:

● As for most database management systems, you must have a user account and a
password allowing you to connect to an existing database.

● The Oracle client must be installed or accessible through the network.

♦ If you are working with ODBC, having Microsoft® Access installed will allow you to view
the contents of the tables in the database. However you do not have to install this product
on your computer.

♦ In order to follow the interactions with the database, some knowledge of the syntax of
the query language SQL is useful.

Connection to a database
The OPL keyword DBConnection establishes a connection to a database. It requires two
arguments: the database client you want to use and the connection string.

The first argument is a string indicating the name of a database system known to IBM
ILOG DBLink, which is a value such as oracle9.

Before using a database connection, you must make sure that the corresponding
database client is correctly installed on your system.

Note:

The connection string passed as second argument must respect a format that depends on
the target RDBMS.

For an example of connecting to an Oracle database, see Connection to Oracle.

For an example of connecting to a Microsoft® Access database through ODBC connectivity,
see The oil database example.

Connection to Oracle
If you are using an Oracle database, you should adapt the DBConnection statement to this
case. For example, in this connection string:

I B M I L O G O P L I D E T U T O R I A L S 45

DBConnection db("oracle9", "scott/tiger@ilog");

the user scott with the password tiger wants to connect to the Oracle database called
ilog.

♦ The string passed as first argument must take the value oraclex, where x depends on
the version of Oracle that the DB Link driver was built upon. A possible value is oracle9.

♦ The connection string passed as second argument must respect the format:

[user]/[password][@SQL Net id]

where:

● user and password indicate the user name and the password that the database
administrator has already assigned to you.

● the field SQL Net id has the format <instance name> for SQL Net V2

I B M I L O G O P L I D E T U T O R I A L S46

The oil database example

Describes the oil database tables and project, and its execution.

In this section

Description of the example
Includes what you will learn and where to find the files.

The oil database tables
Describes how to view the contents of these tables via Microsoft Access.

The oil database project
Describes the model file in the project.

The oil database data file
Describes the data file in the project.

Executing the oil database example
Execute the example and examine the result in the OPL IDE.

Viewing the result in the database
How to display the Result table after execution using Microsoft Access.

The Result table after execution
Shows the modified Result table after execution.

I B M I L O G O P L I D E T U T O R I A L S 47

Description of the example

Make sure you have read the section Using data sources before you start.

The oil database example is a linear programming (LP) problem delivered as a run
configuration of the oil project with the supplied database oilDB.mdb. In this example, the
data is stored in tables in a relational database. This data reflects an optimization problem
described in A blending problem in the Language User’s Manual. Here is a summary the
problem:

An oil company manufactures different types of gasoline by blending different types of crude
oil. Each type of gasoline must satisfy quality criteria with respect to its lead content and
octane rating. The company must satisfy customer demand, which is 3,000 barrels a day of
super, 2,000 of regular, and 1,000 of diesel. It can purchase up to 5,000 barrels of each type
of crude oil a day and process at most 14,000 barrels a day. It costs four dollars to transform
a barrel of oil into a barrel of gasoline.

The company has the option of advertising a type of gasoline, in which case the demand for
this type increases by ten barrels for every dollar spent.

What you are going to do
With this example, you will learn how to:

♦ establish a connection to a database from the IDE,

♦ read database tables into OPL sets,

♦ create a new relational table in a database from the IDE,

♦ write an OPL tuple set to a database by inserting the tuples as new rows in a table.

Where to find the files
For this example, you will use the following files.

♦ oil project: the oil blending example, in which one run configuration uses an ODBC
connection to aMicrosoft® Access database where there is data for a linear programming
(LP) problem.

♦ oilDB.mdb: the Microsoft Access database that contains the data for the oil database
example.

You can find the files in the oil folder:

<OPL_dir>\examples\opl\oil

where <OPL_dir> is your installation directory.

You will open this OPL project and all projects in these tutorials using the New Example
wizard, which allows you to open and work with a copy of the distributed example,

Note:

I B M I L O G O P L I D E T U T O R I A L S48

leaving the original example in place. If you need a reminder of how to use the New
Example wizard, see Opening distributed examples in the OPL IDE.

I B M I L O G O P L I D E T U T O R I A L S 49

The oil database tables

The data for the Oil example is stored in the following relational tables:

GasData
OilData
Result

If you have Microsoft® Access installed on your computer, you can view the contents of
any of these tables by simply double-clicking the database file in Windows Explorer.

You should view this file in the copy of the project you created when you opened the example
using the New Example wizard. If you did not change any of the default settings in the New
Example wizard, that should be in your default workspace, at the following location:

C:\Documents and Settings\<user>\Application Data\ILOG\OPL Studio IDE\<version>\
oil\oilDB.mdb

Microsoft® Access opens the database and displays the tables in alphabetical order.
Double-click the table whose contents you want to see.

The data structure for the oil database example and the oil sheet example is the same.

The tables in the oil database

The GasData table
The five-column table GasData stores the following values for each type of gasoline
manufactured:

I B M I L O G O P L I D E T U T O R I A L S50

name demand price octane lead

Each row is for one type of gasoline, with the product name of the gasoline stored as a
character string in the first column. The daily customer demand for each type of gasoline
is recorded and the price in this table is the sales price. The octane rating must be at least
the value stored and the lead content must not exceed the value stored.

The following GasData table is the table as you see it in Microsoft® Access.

The GasData table

The OilData table
The five-column table OilData stores the following values for each type of crude oil:

name capacity price octane lead

Each row is for one type of crude, with the name of the crude stored as a character string
in the first column. The capacity figure represents the amount that can be purchased each
day and the price is the purchase price. The other columns store the octane rating and the
lead content.

The following OilData table is the table as you see it in Microsoft Access.

The OilData table

The Result table
The table Result gives the results in rows for each crude/gasoline combination. It shows
the blend as the number of barrels of each crude used for each type of gasoline and the
amount, a, spent on advertising the type of gasoline.

I B M I L O G O P L I D E T U T O R I A L S 51

The Result table

The results for the data supplied are already included in the supplied database; when you
execute the model, the table Result is deleted and re-created.

If you wanted, you could experiment by changing values in these tables before executing
the model. For example, changing the prices in the GasData table to 65 (Super) and
55 (Diesel), is shown in the modified GasData table below:

Note:

The modified GasData table

You do not need to do this before continuing the tutorial. This is informational, in case
you want to modify the data in the tables on your own.

I B M I L O G O P L I D E T U T O R I A L S52

The oil database project

In the IDE, use the File>New>Example menu command to open the oil example.

The IDE displays the oil project in the OPL Projects navigator. Open the model file oilDB.
mod in the editing area.

Set definitions in the model
At the beginning of the model file, there are definitions of sets of string values to hold the
names of the gasolines and oils.

Set definitions (oilDB.mod)
{string} Gasolines = ...;
{string} Oils = ...;

Tuple definitions in the model
These are followed by definitions of tuples for the data, as shown in Tuple definitions (oilDB.
mod).

Tuple definitions (oilDB.mod)
tuple gasType {

string name;
float demand;
float price;
float octane;
float lead;

}

tuple oilType {
string name;
float capacity;
float price;
float octane;
float lead;

}

These tuple definitions closely follow the structure of the rows in the GasData and OilData
tables, respectively, of the database.

You will notice the type concordance between the table columns and the OPL fields. The
column name in each table contains character strings, so the field name in each tuple is of
type string ; the column lead in each table contains floating-point values, so the field lead
in each tuple is of type float.

Some columns that appear to store integer values need to be mapped to OPL fields
of type float, rather than of type int. This is to avoid integer arithmetic or, if you are

Note:

I B M I L O G O P L I D E T U T O R I A L S 53

using an Access database source, because the numeric values manipulated in Access
are of type float.

Tuple sets and arrays in the model
The rows in the Access GasData and OilData tables are first mapped to sets of tuples,
gasData and oilData, in OPL.

Tuple sets (oilDB.mod)
{gasType} GasData = ...;
{oilType} OilData = ...;

OPL supports sets of tuples as well as sets of int, float, and string values.Note:

The tuple sets are then preprocessed using generic indexed arrays (see Initializing Arrays
in the Language User’s Manual) to obtain one-dimensional arrays, gas and oil, in OPL.

Tuple sets preprocessed as generic indexed arrays (oilDB.mod)
gasType Gas[Gasolines] = [g.name : g | g in GasData];
oilType Oil[Oils] = [o.name : o | o in OilData];

The preprocessing is done by execute statements in IBM ILOG Script for OPL. The
transportation example explains such statements.

Table loading
In the oilDB2.mod example, you access the one-dimensional array right from the database,
as shown in the following code extract from the data file oilDB2.dat.

Reading database columns to a tuple (oilDB2.dat)
Gasolines,Gas from DBRead(db,"SELECT name,name,demand,price,octane,lead FROM
GasData");
Oils,Oil from DBRead(db,"SELECT name,name,capacity,price,octane,lead FROM
OilData");

I B M I L O G O P L I D E T U T O R I A L S54

The oil database data file

Double-click the oilDB.dat file in the project tree to see the contents of the data file.

Data for the Oil Database example (oilDB.dat)
DBConnection db("access","oilDB.mdb");
Gasolines from DBRead(db,"SELECT name FROM GasData");
Oils from DBRead(db,"SELECT name FROM OilData");
GasData from DBRead(db,"SELECT * FROM GasData");
OilData from DBRead(db,"SELECT * FROM OilData");
MaxProduction = 14000;
ProdCost = 4;
DBExecute(db,"drop table Result");
DBExecute(db,"create table Result(oil varchar(10), gas varchar(10), blend real,
a real)");
Result to DBUpdate(db,"INSERT INTO Result(oil,gas,blend,a) VALUES(?,?,?,?)");

Notice that the data file starts with the DBConnection statement used to connect to the
database.

You can have multiple data files and, within any of them, multiple connections to
databases.

Note:

Connecting to the database from OPL
The connection is established to an Access database by the following statement in oilDB.
dat:

DBConnection db("access","oilDB.mdb");

The string passed as first argument indicates that you want to connect to an Access database.
The string passed as second argument designates the Access database file. This is a helper
implementation actually based on ODBC and you do not need to specify the full path name.
Path names are resolved relatively to the directory of the current .dat file.

Reading from the database

Reading database columns
You can read columns from any table into an OPL set using the DBRead statement, as shown
in oilDB.dat.

Reading database columns to an OPL set (oilDB.dat)
Gasolines from DBRead(db,"SELECT name FROM GasData");
Oils from DBRead(db,"SELECT name FROM OilData");

I B M I L O G O P L I D E T U T O R I A L S 55

You can also read from any table into a tuple and its indexing set, as shown in the data file
oilDB2.dat.

Reading database columns to a tuple array (oilDB2.dat)
Gasolines,Gas from DBRead(db,"SELECT name,name,demand,price,octane,lead FROM
GasData");
Oils,Oil from DBRead(db,"SELECT name,name,capacity,price,octane,lead FROM
OilData");

Reading database columns to a tuple array (oilDB2.dat) is more efficient than Reading
database columns to an OPL set (oilDB.dat) because

♦ the code is shorter

♦ data is not duplicated

Reading database rows
You can read rows from any table into an OPL tuple set using the DBRead statement, as
shown in oilDB.dat.

Reading database rows (oilDB.dat)
GasData from DBRead(db,"SELECT * FROM GasData");
OilData from DBRead(db,"SELECT * FROM OilData");

Note that the data file also initializes some variables directly; it does not only take data from
the database.

Creating a new table and updating the database
At the end of the optimization process, you need to store the optimal blends and advertising
expenditures in a new database table.

Use the OPL statement DBExecute in the data file to create a new table called Result, which
has four columns, corresponding to the fields in the tuple Result.

With Microsoft Access, the instructions to delete the Result table if it exists and then
(re)create it are:

Deleting and recreating the Result table
DBExecute(db,"drop table Result");
DBExecute(db,"create table Result(oil varchar(10), gas varchar(10), blend real,
a real)");

You can then insert the oil, gas, blend, and a arrays as columns in the table Result using
a DBUpdate statement.

With Microsoft® Access, the insertion is made by the instruction:

Creating a Result table
Result to DBUpdate(db,"INSERT INTO Result(oil,gas,blend,a) VALUES(?,?,?,?)");

The difference between the DBUpdate instruction with ODBC (Microsoft Access) and the
DBUpdate instruction with Oracle lies in the different syntax for the placeholders inside the
SQL request, imposed by the two database systems. In the case of ODBC, you use a query

I B M I L O G O P L I D E T U T O R I A L S56

sign as a placeholder, while in Oracle you use a column sign followed by a column number,
with the columns numbered starting from one.

I B M I L O G O P L I D E T U T O R I A L S 57

Executing the oil database example

To execute the oil database example:

1. Right-click the run configuration Data from database and make it the default run
configuration.

2. Right-click again and select Run this.

In the Problem Browser, you can examine the model in the usual manner to see the contents
of the various data structures in this example. If you are not familiar with the Problem
Browser, see Understanding the Problem Browser in Getting Started with the IDE.

Problem Browser after execution (oilDB.mod)

At the end of execution you see the following message in the Solutions tab).

Solutions tab (oilDB.mod)

I B M I L O G O P L I D E T U T O R I A L S58

You can examine the data and variables in tabular form from the data structure tree built
in the Problem Browser. You can also see the table of all the results together in Microsoft
Access.

I B M I L O G O P L I D E T U T O R I A L S 59

Viewing the result in the database

When you have successfully executed the run configuration in the IDE, you can view the
contents of the newly created table Result in the database.

1. Close the IDE and Microsoft® Access (if it is still open).

2. Restart Microsoft Access by double-clicking the database file oilDB.mdb in Windows
Explorer.

3. Double-click Result in order to see the table’s contents.

I B M I L O G O P L I D E T U T O R I A L S60

The Result table after execution

The table Result gives the results in rows for each crude/gasoline combination. It shows
the blend as a number of barrels of each crude used for each type of gasoline and the amount
spent on advertising that type of gasoline.

The modified Result table

The optimal blending has changed after the prices were modified but the optimal advertising
expenditure has remained the same.

I B M I L O G O P L I D E T U T O R I A L S 61

I B M I L O G O P L I D E T U T O R I A L S62

The oil sheet example

Describes the oil data spreadsheet, the oil sheet project, and its execution.

In this section

Description of the example
Includes what you will learn and where to find the files.

The oil data spreadsheet
Describes the data stored in Microsoft Excel spreadsheets.

The oil sheet project
Describes the model file in the project.

The oil sheet data file
Describes the data file in the project.

Executing the oil sheet example
Describes the procedure to execute the example and examines the results.

Viewing the result in the spreadsheet
How to display the RESULT table after execution using Microsoft Excel.

The RESULT sheet after execution
Shows the modified RESULT table after execution.

I B M I L O G O P L I D E T U T O R I A L S 63

Description of the example

Make sure you have read the section Using data sources before you start.

The oil sheet example is a linear programming (LP) problem delivered within the oil project
as a specific run configuration associating the oil.mod and oilSheet.dat files, with the
spreadsheet oilSheet.xls. In this example, the data is stored in sheets of an Excel
spreadsheet. The optimization problem it reflects is described in A blending problem in the
Language User’s Manual.

What you are going to do
With this example, you will learn how to:

♦ establish a connection to a Microsoft Excel spreadsheet from the IDE,

♦ read data from the spreadsheet into OPL arrays,

♦ write data to the spreadsheet from the IDE.

Where to find the files
For this example, you will need to use the following files:

♦ oil project: the oil blending example, in which one run configuration uses a connection
to an Excel spreadsheet where there is data for a linear programming (LP) problem:

♦ oilSheet.xls: the Excel spreadsheet that contains the data for this run configuration

Both files are at the following location:

<OPL_dir>\examples\opl\oil

where <OPL_dir> is your installation directory.

You will open this OPL project and all projects in these tutorials using the New Example
wizard, which allows you to open and work with a copy of the distributed example,

Note:

leaving the original example in place. If you need a reminder of how to use the New
Example wizard, see Opening distributed examples in the OPL IDE.

I B M I L O G O P L I D E T U T O R I A L S64

The oil data spreadsheet

The data for the oil sheet example is stored in the following sheets:

gas
oil
RESULT

Provided that you have Microsoft® Excel installed on your computer, you can view the
contents of any of these sheets by simply double-clicking the Excel file in Windows Explorer.

You should view this file in the copy of the project you created when you opened the example
using the New Example wizard. If you did not change any of the default settings in the New
Example wizard, that should be in your default workspace, at the following location:

C:\Documents and Settings\<user>\Application Data\ILOG\OPL Studio IDE\<version>\
oil\oilSheet.xls

Microsoft Excel opens the spreadsheet and you can see the first sheet and the tabs for all
the sheets. Click a tab to see its contents. Notice that the RESULT sheet is initially empty.

The external data structure for the oil database example and the oil sheet example is the
same.

The oilSheet spreadsheet

I B M I L O G O P L I D E T U T O R I A L S 65

The gas data
Click the sheet gas if it is not visible when you open oilSheet.xls.

The five columns in gas store the following values for each type of gasoline manufactured:

name demand price octane lead

Each row is for one type of gasoline, with the product name of the gasoline stored as a
character string in the first column. The daily customer demand for each type of gasoline
is recorded and the price in this table is the sales price. The octane rating must be at least
the value stored and the lead content must not exceed the value stored.

The oil data
The five columns in oil store the following values for each type of crude oil:

name capacity price octane lead

Each row is for one type of crude, with the name of the crude stored as a character string
in the first column. The capacity figure represents the amount that can be purchased each
day and the price is the purchase price. The other columns store the octane rating and the
lead content.

The following graphic shows the oil spreadsheet as you see it in Microsoft Excel.

The oil spreadsheet

I B M I L O G O P L I D E T U T O R I A L S66

The oil sheet project

Use the File>New>Example menu command to open the oil example.

The IDE displays the oil project in the OPL Projects Navigator. Open the model file in the
editing area.

Set definitions in the model
At the beginning of the model file, there are definitions of sets of string values to hold the
names of the gasolines and oils:

Set definitions (oil.mod)
{string} Gasolines = ...;
{string} Oils = ...;

Tuple definitions in the model
These are followed by definitions of tuples for the data, as shown below.

Tuple definitions (oil.mod)
tuple gasType {
float demand;
float price;
float octane;
float lead;

}

tuple oilType {
float capacity;
float price;
float octane;
float lead;

}

Note that these tuple definitions follow the rows in the gas and oil data respectively but
do not include the name column.

Tuple arrays in the model
The model in OPL then declares one-dimensional arrays, gas and oil, containing tuples for
the gasolines and oils:

Tuple arrays (oil.mod)
gasType Gas[Gasolines] = ...;
oilType Oil[Oils] = ...;

I B M I L O G O P L I D E T U T O R I A L S 67

For data input from Microsoft Excel, OPL supports one-dimensional arrays of tuples
as well as one or two-dimensional arrays of int, float, and string values.

Note:

I B M I L O G O P L I D E T U T O R I A L S68

The oil sheet data file

Double-click the oilSheet.dat file in the project tree to see the contents of the data file.

Data file for the Oil Sheet example (oilSheet.dat)
SheetConnection sheet("oilSheet.xls");
Gasolines from SheetRead(sheet,"gas!A2:A4");
Oils from SheetRead(sheet,"oil!A2:A4");
Gas from SheetRead(sheet,"gas!B2:E4");
Oil from SheetRead(sheet,"oil!B2:E4");
MaxProduction = 14000;
ProdCost = 4;

a to SheetWrite(sheet,"RESULT!A2:A4");
Blend to SheetWrite(sheet,"RESULT!B2:D4");

The data file starts with the SheetConnection statement used to connect to the spreadsheet.

You can have multiple data files and, within any of them, multiple connections to
spreadsheets.

Note:

Connecting to the spreadsheet from OPL
The connection is established by the following statement:

Connecting to a spreadsheet (MS Excel)
SheetConnection sheet("oilSheet.xls");

The name of the spreadsheet file in quotes is passed as an argument.

You do not need to specify the full path name. Relative paths are resolved using the
directory of the current .dat files.

Note:

Reading from the spreadsheet

Reading spreadsheet columns
You can read data from a column in any sheet into an OPL array using the SheetRead
statement, as in the data file oilSheet.dat.

Reading spreadsheet columns (oilSheet.dat)
Gasolines from SheetRead(sheet,"gas!A2:A4");
Oils from SheetRead(sheet,"oil!A2:A4");

I B M I L O G O P L I D E T U T O R I A L S 69

Note that the cells are read from 2 upward as the name of the column is not stored.

Reading spreadsheet cell ranges
You can read blocks of cells from a spreadsheet into an OPL array using the SheetRead
statement, as in oilSheet.dat.

Reading spreadsheet cells (oilSheet.dat)
Gas from SheetRead(sheet,"gas!B2:E4");
Oil from SheetRead(sheet,"oil!B2:E4");

Note that the columns read are B to E (not A) and the cells read are from 2 upward as the
name column is not used and the names of the other columns are not stored in the data
arrays.

Note also that the data file initializes some variables directly; it does not only take data from
the spreadsheet.

Writing the results to the spreadsheet
At the end of the optimization process, you need to store the optimal blends and advertising
expenditures in the RESULTS sheet.

You can insert the oil, gas, blend, and a arrays as columns in the RESULT sheet using a
SheetWrite statement.

Writing results to a spreadsheet (oilSheet.dat)
a to SheetWrite(sheet,"RESULT!A2:A4");
Blend to SheetWrite(sheet,"RESULT!B2:D4");

I B M I L O G O P L I D E T U T O R I A L S70

Executing the oil sheet example

To execute the oil sheet example:

1. First make sure the spreadsheet file is not read-only, then close it, so that the IDE can
write to it.

If the spreadsheet file is read-only, the IDE displays an error message.

2. Exit Microsoft Excel.

Otherwise, the spreadsheet file is considered read-only and the IDE reports an error
message.

3. Right-click the run configurationData from spreadsheet and make it the default run
configuration.

4. Right-click again and select Run this.

Problem Browser after execution (oilSheet.dat)

In the Problem Browser, you can examine the model in the usual manner to see the contents
of the various data structures in this example. If you are not familiar with the Problem
Browser, see Understanding the Problem Browser in Getting Started with the IDE.

At the end of execution you see the following message in the Solutions tab.

I B M I L O G O P L I D E T U T O R I A L S 71

Solutions tab (oilSheet.dat)

You can examine the data and variables in tabular form from the data structure tree built
in the Problem Browser. You can also see all the results together in Microsoft Excel.

I B M I L O G O P L I D E T U T O R I A L S72

Viewing the result in the spreadsheet

When you have successfully executed the model in the IDE, you can view the contents of
RESULT in the spreadsheet.

1. Reopen the spreadsheet file oilSheet.xls from Microsoft® Excel.

2. Click the RESULT tab to see the contents.

I B M I L O G O P L I D E T U T O R I A L S 73

The RESULT sheet after execution

The RESULT sheet gives the results in rows for each crude/gasoline combination. It shows
the blend as a number of barrels of each crude used for each type of gasoline and the amount
spent on advertising that type of gasoline.

The RESULT sheet

I B M I L O G O P L I D E T U T O R I A L S74

Using IBM ILOG Script for OPL

Teaches the features of the IDE for scripts written in IBM ILOG Script for OPL, including
the script debugging facilities.

In this section

Purpose and prerequisites
Describes the types of models used and outlines the assumed knowledge.

Features of IBM ILOG Script for OPL
Briefly explains what you can do with IBM ILOG Script for OPL and introduces the main and
execute statements.

The multiperiod production planning example
Presents the example and explains how to execute it and debug the flow control script.

The transportation example
Presents the example and explains how to execute it and debug the preprocessing script.

The covering example
Presents the example and explains how to execute it and debug the postprocessing script.

I B M I L O G O P L I D E T U T O R I A L S 75

Purpose and prerequisites

IBM® ILOG® OPL enables you to use a scripting language called IBM ILOG Script for
OPL. This is an implementation of the ECMA-262 standard (also known as JavaScript™)
which supports the “nonmodeling” elements of OPL.

This tutorial assumes that you know how to work with projects in the IDE. If this is not the
case, read Getting Started with the IDE first.

This section uses several models solved by the CPLEX engine, but the features
described work in the same way with models solved with the CP Optimizer engine.

Note:

The first section, Features of IBM ILOG Script for OPL, is a short list of what IBM ILOG
Script enables you to write in your OPL projects. Then, as you go through this tutorial, you
will become familiar with the following examples, each illustrating one way of using IBM
ILOG Script for OPL:

♦ The multiperiod production planning example: flow control

♦ The transportation example: preprocessing

♦ The covering example: postprocessing

More complex examples of scripting are available in

<OPL_dir>\examples\opl

where <OPL_dir> is your installation directory.

They are used in IBM ILOG Script for OPL in the Language User’s Manual.

For more information, see also:

♦ IBM ILOG Script for OPL in the Language Reference Manual

♦ the Reference Manual of IBM ILOG Script Extensions for OPL for full details of the
language.

You can use the features of the New Example wizard to search for distributed OPL
examples that use IBM ILOG Script or OPL Flow Control Script or other features or

Note:

techniques you are interested in. For example, the following screenshot shows the
New Example wizard displaying its Sorted by Feature tab, displaying some of the
examples that show off OPL Flow Control Script.

I B M I L O G O P L I D E T U T O R I A L S76

Similarly, you can use the New Example wizard to search for examples by Complexity,
Industry represented, or programming Technique used.

I B M I L O G O P L I D E T U T O R I A L S 77

Features of IBM ILOG Script for OPL

IBM® ILOG® Script for OPL enables you to:

♦ Add preprocessing instructions to prepare data for the model

♦ Control the flow while the model is solved

♦ Set CPLEX® parameters, CP Optimizer parameters, CP Optimizer search phases, and
OPL options

♦ Add postprocessing instructions to aggregate, transform, and format data (including
results data) for display or for sending to another application, for example, a spreadsheet

♦ Solve repeated instances of the same model

♦ Create algorithmic solutions where the output of one model instance is used as the input
of a second model instance

Script statements
When you use IBM ILOG Script for OPL, you avoid having to compile and link; you just add
script statements to your model file.

There are two possible top-level statements:

♦ The main statement for a flow control script

♦ The execute statement for preprocessing and postprocessing scripts

You can also write script statements in data files by using the prepare and invoke keywords.

There are no separate script files; you write script statements directly in model files
within “execute” or “main” blocks.

Note:

I B M I L O G O P L I D E T U T O R I A L S78

The multiperiod production planning
example

Presents the example and explains how to execute it and debug the flow control script.

In this section

Presenting the multiperiod production planning example
Summarizes the problem and explains what to do and where to find the files.

Setting up the multiperiod production model and data
Presents the model and data file.

Executing a flow control script
Explains how to change the default run configuration.

Purpose of the flow control script
Explains how the script performs iterations to solve the model.

Debugging a flow control script
Describes breakpoint management, call stack display, variable object examination, and
stepping.

I B M I L O G O P L I D E T U T O R I A L S 79

Presenting the multiperiod production planning example

The multiperiod production planning example is a generalization of the single-period pasta
production example described in A production problem in the Language User’s Manual. The
multiperiod version considers the demand for the products over several periods and allows
the company to produce more than the demand in a given period. There is an inventory cost
associated with storing the additional production.

The approach to solving this mathematical programming problem is described in detail in
A multi-period production planning problem in the Language User’s Manual. This section
assumes that you are familiar with the solving strategy as explained in that document.

The filemulprod_main.mod contains the flow control script to implement the solving
strategy. See the code sample The flow control script (mulprod_main.mod).

A flow control script is encapsulated in a main statement:

main {
...
}

The main statement can be anywhere in the model file but usually follows the OPL statements
for the model. See Tutorial: Flow control and multiple searches in the Language User’s
Manual.

What you are going to do
Working from the example described in Presenting the multiperiod production planning
example, you will:

♦ open themulprod example and discover its flow control script: see Setting up the
multiperiod production model and data

♦ run the model: see Executing a flow control script

♦ debug the script, as explained in Debugging a flow control script, that is:

● add a breakpoint

● examine the call stack,

● step to the next instruction,

● abort execution or continue execution to the end of the script.

Where to find the files
To do so, you will work mainly with the run configuration Solve models sequence by
changing data which associates the filesmulprod_main.mod andmulprod.dat of the
mulprod project, available at the following location:

<OPL_dir>\examples\opl\mulprod

I B M I L O G O P L I D E T U T O R I A L S80

where <OPL_dir> is your installation directory.

You will open this OPL project and all projects in these tutorials using the New Example
wizard, which allows you to open and work with a copy of the distributed example,

Note:

leaving the original example in place. If you need a reminder of how to use the New
Example wizard, see Opening distributed examples in the OPL IDE.

I B M I L O G O P L I D E T U T O R I A L S 81

Setting up the multiperiod production model and data

To start working with this example:

1. Use the File>New>Example menu command to open themulprod example.

The IDE displays the mulprod project in the OPL Projects Navigator.

2. Open the mulprod_main.mod model file in the editing area.

Scroll to the main statement, presented here:

The flow control script (mulprod_main.mod)
main {
var status = 0;
thisOplModel.generate();

var produce = thisOplModel;
var capFlour = produce.Capacity["flour"];

var best;
var curr = Infinity;
var basis = new IloOplCplexBasis();
var ofile = new IloOplOutputFile("mulprod_main.txt");
while (1) {
best = curr;

Note that a semi-colon (;) at the end of a line is not mandatory; it is used for
consistency with the OPL modeling language. IBM ILOG Script for OPL does not
require a semi-colon at the end of a line; the OPL modeling language does.

3. Double-click themulprod.dat file to see the data.

The production data (mulprod.dat)
Products = { kluski capellini fettucine };
Resources = { flour eggs };
NbPeriods = 3;

Consumption = [
[0.5, 0.4, 0.3],
[0.2, 0.4, 0.6]

];
Capacity = [20, 40];
Demand = [

[10 100 50]
[20 200 100]
[50 100 100]

];
Inventory = [0 0 0];
InvCost = [0.1 0.2 0.1];
InsideCost = [0.4, 0.6, 0.1];
OutsideCost = [0.8, 0.9, 0.4];

I B M I L O G O P L I D E T U T O R I A L S82

Executing a flow control script

The first run configuration, Solve problem once, appears as the default. Since this not the
run configuration that contains the flow control script, you will first change the default run
configuration.

To execute the appropriate run configuration:

1. Right-click Solve models sequence by changing data and select Set as default.

2. Right-click again and select Run this. (You could also right-click the project name
and select Run>Default Run Configuration.)

The iterations appear one at a time in the Scripting log tab.

Upon completion, the IDE displays the number of solve iterations in the Engine Log tab.
SeeWhat happens when you execute a run configuration in IDE Reference for details of the
execution process.

I B M I L O G O P L I D E T U T O R I A L S 83

Purpose of the flow control script

The script performs iterations to solve the model. On each iteration, it creates a new instance
of the model with a changed value for the variable capFlour to improve the value of the
objective function. The loop ends when there is no further improvement in the objective
value.

After execution, the Engine Log ends as shown below.

Engine Log (mulprod_main.mod)

The last two objective values in the set of solutions are the same and so solving stops.

I B M I L O G O P L I D E T U T O R I A L S84

Debugging a flow control script

You are now going to learn how to debug a script. The debug features in the IDE are
breakpoint management, call stack display, variable object examination, and stepping.

A simple debugging scenario is to place a breakpoint in a script, execute the script by means

of theDebug button , examine the call stack, and then interactively execute statements
using the Step Over button.

This section covers the successive debugging steps:

♦ Adding a breakpoint to a flow control script

♦ Examining the flow control call stack

♦ Stepping to the next instruction

♦ Aborting execution

♦ Continuing without stepping

♦ Ending execution

Adding a breakpoint to a flow control script
Still using the Solve models sequence by changing data run configuration of the mulprod
model, you are going to add a breakpoint to set the debugging mode, then execute the script
again, using this time the Debug button.

1. If it is not already open, double-click themulprod_main.mod file in the editing area
and scroll down to this line just before the loop:

var curr = Infinity;

2. Right-click in the grey margin to the left of this line. From the popup menu, select
Toggle Breakpoint and a blue dot appears in the margin of the editing area to signal
the breakpoint.

To remove a breakpoint, right-click and select again Toggle Breakpoint
to make the blue dot disappear.

Note:

You can also double-click in the grey margin to set and remove break
points.

I B M I L O G O P L I D E T U T O R I A L S 85

Inserting a breakpoint

3. In the main toolbar, click the arrow on the Debug button in the toolbar and
select 1 mulprod Solve models sequence by changing data to run the script.

Execution stops at the breakpoint and a blue arrow in the margin shows the current
position, as shown below.

I B M I L O G O P L I D E T U T O R I A L S86

A breakpoint before the loop of the script (mulprod_main.mod)

Examining the flow control call stack
The call stack is now spread over two views: the Debug view, representing the call stack
(showing nested function calls) and the Variable view, showing the content of the selected
call frame.

1. The call stack appears in the Debug view. Each function called has information in a
stack frame. In this example, there is one frame, [mulprod_main.mod:58].

Click the + and – sign as necessary to expand or collapse nodes.

The call stack in the Debug view (mulprod_main.mod)

I B M I L O G O P L I D E T U T O R I A L S 87

2. The Variables view shows the content of the selected call frame. In this example,
there is only one call frame.

Many of the variables in this example are marked undefined because they are not
decision variables.

Stepping to the next instruction
When you execute a run configuration in debugging mode, the Debug view is displayed to
enable you to use the stepping buttons in its toolbar.

Debug toolbar

The Step Over button allows you to step through the script instruction by instruction,
executing each instruction as you go. Use it to step over:

♦ a function and go to the statement after the function call

♦ an instruction and go to the instruction after it

When you are stepping in a script, the blue arrow in the margin keeps track of the current
position.

To step to the next instruction:

1. Click the Step Over button .

I B M I L O G O P L I D E T U T O R I A L S88

The IDE executes the current instruction and the blue arrow in the margin moves to
the next line, which is the statement for warm start:

var basis = new IloOplCplexBasis();

as shown below.

Step by step execution of a script

2. By repeatedly clicking the Step Over button, you can follow the execution of the loop
one instruction after another.

Note that the Step Into button would give the same behavior as Step Over in this
script because there are no functions, so it just executes the current instruction.

Continuing without stepping

♦ At any moment while you are stepping in the script, you can ask the IDE to continue

executing until completion by clicking the Resume button in the toolbar of the
Debug view.

The IDE executes the rest of the script without stopping at instructions. The possible
outputs of the script are printed in the Scripting log.

Aborting execution
At any moment while you are stepping in the script, you can abort execution.

1. Click the Abort the current solve button in the execution toolbar of the main
window. (You can also click the Terminate button in the toolbar of the Debug view.)

The Debug view shows that the status of the execution is 'terminated'.

I B M I L O G O P L I D E T U T O R I A L S 89

Aborting the execution of a script in debugging mode

2. After aborting, you can relaunch the script by clicking the Debug button.

Ending execution
To summarize, while stepping through a script, you can end execution in one of three ways:

1. Click the Continue the current solve button : the IDE completes the script.

2. Click the Abort the current solve button : the script terminates without being
completed.

3. Click the Step Over button (or Step Into button , if there are no functions)
repeatedly; the IDE completes the script, instruction by instruction.

Examining the output

The output of execution is displayed in the Scripting log.

I B M I L O G O P L I D E T U T O R I A L S90

The transportation example

Presents the example and explains how to execute it and debug the preprocessing script.

In this section

Presenting the transportation example
Summarizes the problem and explains what to do and where to find the files.

Setting up the transportation model and data
Describes the model and data files.

Executing preprocessing scripts
Run a different run configuration that utilizes preprocessing scripts.

Purpose of the preprocessing scripts
Explains how to initialize an array, set a CPLEX parameter, set an OPL option, and set the
display of variables.

Debugging a preprocessing script
Describes the successive debugging steps.

I B M I L O G O P L I D E T U T O R I A L S 91

Presenting the transportation example

This is a multicommodity flow problemwith cities that supply products and cities that demand
products. In addition, there is a capacity constraint on the connections between the cities.
One issue in large-scale transportation problems like this is that only a fraction of the cities
are interconnected. Because of this sparsity issue, a good representation for this application
consists of explicit sets of connections, routes, and costs of routes, as well as the demand
and supply information.

The approach to solving this example is described in detail in Exploiting sparsity in the
Language User’s Manual. This section assumes that you are familiar with this example and
the solving strategy as explained in that document.

The file transp4.mod contains preprocessing scripts to prepare data and options and to
display data. See Preprocessing statements (transp4.mod).

Preprocessing scripts are execute blocks declared before constraints, like this:

execute {
...
}

Any execute statement for preprocessing must precede the objective function
in the model file.

Important:

What you are going to do
Working from the example described in Presenting the transportation example, you will:

♦ set up the model and data: see Setting up the transportation model and data

♦ run the model without a breakpoint and examine specific preprocessing scripts: see
Executing preprocessing scripts

♦ add a breakpoint and start debugging, as explained in Debugging a preprocessing script,
that is:

● examine the call stack,

● monitor a loop by using a breakpoint to stop at each iteration,

● step out of the execute function,

● step into a function,

● step out of the function,

● monitor a function in a loop.

I B M I L O G O P L I D E T U T O R I A L S92

The script variant of the example is supplied as file transp4.mod, used in the run configuration
named Even better sparsity, which associates the model file transp4.mod and the data
file transp4.dat of the transp project, available at the following location:

<OPL_dir>\examples\opl\transp

where <OPL_dir> is your installation directory.

I B M I L O G O P L I D E T U T O R I A L S 93

Setting up the transportation model and data

To start working with this example:

1. Use the File>New>Example menu command to open the transp example.

The IDE displays the transp project in the OPL Projects Navigator. Open the model
file in the editing area.

2. Double-click transp4.mod to display this model in the editor.

3. Scroll to the execute blocks.

There are three preprocessing execute blocks before the objective, as shown below.

Preprocessing statements (transp4.mod)
execute PARAMS {
cplex.tilim = 100;

}

execute SETTINGS {
settings.displayComponentName = true;
settings.displayWidth = 40;
writeln("Routes: ",Routes);

}

execute DISPLAY {
function printRoute(r) {
write(" ",r.p,":");
writeln(r.e.o,"->",r.e.d);

}

writeln("Routes:");
for (var r in Routes) {
printRoute(r);

}
}

The data is initialized in the transp4.dat data file. You can double-click transp4.dat to
open that file in the editing area if you want to follow along with what is being described
below.

Note that the tuple set TableRoutes is database-friendly in that it would allow the loading
of data on routes and costs with a single SELECT statement.

In this example, the tuples in set TableRoutes and in arrays Supply and Demand are explicitly
initialized in the data file because the matrix is sparse and only some tuples exist.

The model requires routes and costs separately, so in the model file, the tuples in tuple set
Routes are derived from those in TableRoutes and the tuples in sets Supplies and Customers
are then derived from those in Routes.

I B M I L O G O P L I D E T U T O R I A L S94

Executing preprocessing scripts

Basic Configuration is the default run configuration in this project, but it does not contain
the preprocessing scripts you will be working with. So in the steps below you run the Even
better sparsity run configuration.

♦ Right-click the run configuration Even better sparsity and choose Run this.

You could also right-click Even better sparsity and choose Set as default,
and then run it by right-clicking the project and choosing Run>Default
Run Configuration.

Note:

Upon completion, the IDE displays the results in the Scripting log.

SeeWhat happens when you execute a run configuration in IDE Reference for details
of the execution process.

I B M I L O G O P L I D E T U T O R I A L S 95

Purpose of the preprocessing scripts

In this model, preprocessing scripts are used for:

♦ Initializing an array

♦ Setting a CPLEX parameter

♦ Setting an OPL option

♦ Setting the display of variables

Initializing an array
The recommended syntax to initialize arrays is via generic indexed arrays, as shown in the
code extract below, which sets up a cost array for the routes.

Generic indexed arrays, an example (transp4.mod)

float Cost[Routes] = [<t.p,<t.o,t.d>>:t.cost | t in TableRoutes];

This cost array is used in the objective, which aims to minimize the sum of transportation
costs along all routes. See also As generic indexed arrays in the Language ReferenceManual.

However, you can also use a preprocessing execute block as shown in the following code
extract, which contains a script named INITIALIZE.

Preprocessing script: initializing an array (transp4.mod)
float Cost[Routes];
execute INITIALIZE {
for(var t in TableRoutes) {

Cost[Routes.get(t.p,Connections.get(t.o,t.d))] = t.cost;
}

}

Setting a CPLEX parameter
The script named PARAMS sets a CPLEX® parameter for the algorithm.

Preprocessing script: setting a CPLEX parameter (transp4.mod)
This parameter sets a time limit on each call to the optimizer. See Changing CPLEX
parameters in the Language User’s Manual.

Setting an OPL option
The script statement named SETTINGS sets the display of the component name on
40 characters.

I B M I L O G O P L I D E T U T O R I A L S96

Preprocessing script: setting an OPL option (transp4.mod)

Setting the display of variables
The script statement named DISPLAY displays the routes in the Routes tuple set in the format:

product: origin->destination

The DISPLAY script uses a function to do this. You can see this display of the routes in the
Scripting Log tab.

Preprocessing script: displaying variables (transp4.mod)
execute DISPLAY {
function printRoute(r) {
write(" ",r.p,":");
writeln(r.e.o,"->",r.e.d);

}

writeln("Routes:");
for (var r in Routes) {
printRoute(r);

}
}

I B M I L O G O P L I D E T U T O R I A L S 97

Debugging a preprocessing script

This section covers the successive debugging steps:

♦ Adding a breakpoint to a preprocessing script

♦ Examining the preprocessing call stack

♦ Stepping out of an execute function

♦ Stepping into a function

♦ Stepping out of a lower-level function

♦ Monitoring a function in a loop

Adding a breakpoint to a preprocessing script
You are going to add a breakpoint to set the debugging mode, then execute the script again,
using this time the Debug button.

To add a breakpoint:

1. In the transp4.mod file, scroll to the line containing the printRoute function in the
DISPLAY execute block.

function printRoute(r)

2. Double-click in the grey margin to the left of the line.

A blue dot appears in the margin of the editing area to signal the breakpoint.

3. In the main toolbar, click the arrow to the right of the Debug button and select
1 transp Even better sparsity to run the script.

Execution stops at the breakpoint and information appears in the Variables view and
the Scripting log.

I B M I L O G O P L I D E T U T O R I A L S98

Execution stopped at the breakpoint in transp4.mod

Examining the preprocessing call stack
The call stack, showing nested function calls, is displayed in the Debug view. The content
of a selected call frame is displayed in the Variables view.

In this example, the call stack contains one call frame, [transp4.mod:66].

Debug view for transp4.mod

I B M I L O G O P L I D E T U T O R I A L S 99

Variables view for call frame [transp4.mod:66] (transp4.mod)

For a large tuple set, the values may not all be visible within the window. In this case, an
ellipsis appears at the end of the cell. Pass the cursor over the column to display all the
values in a tooltip.

♦ Click the Step Over or Step Into button repeatedly to watch the value
of the variables change in the call stack. The variables are highlighted when their
values change.

I B M I L O G O P L I D E T U T O R I A L S100

The Variables view after stepping

Stepping out of an execute function
If you are stepping in an execute statement and the current instruction is within a loop (for,
forall, while, or repeat), you can make the IDE execute the loop without stopping at

instructions by stepping out of the execute function using the Step Return button.
The IDE executes the entire loop, then stops at the first instruction after the loop.

The Step Return button allows you to step out of a function in a script, to the statement
following the function call. For example, if you were to click the Step Return button at
this statement:

writeln("Routes":);

the current instruction becomes:

I B M I L O G O P L I D E T U T O R I A L S 101

for (var r in Routes) {

Stepping out of an execute function (transp4.mod)

1. Click the Step Over button to execute the instruction.

If you open the nodes in the call stack, you can see the CPLEX® parameter setting
listed for the predefined cplex object.

2. Click Step Over four more times.

The current instruction is now:

printRoute(r);

Note that Step Over does not move to the statement within the function because it is at a
lower level.

Stepping into a function

The Step Into button allows you to step into a function. Use it to step to:

♦ the first statement, or

♦ to the instruction after the current one if there is no function called.

♦ To step into the printRoute(r) function, click the Step Into button.

I B M I L O G O P L I D E T U T O R I A L S102

The IDE executes the current instruction and the blue arrow in the margin moves to
the first line in the function:

write(" ",r.p,":");

Stepping into a function (transp4.mod)

Stepping out of a lower-level function

♦ Click the Step Return button to execute the write and writeln statements,
and step out of the printRoute(r) function.

The current instruction becomes:

for (var r in Routes) {

because the loop iteration is completed and so the next instruction is the loop
statement.

I B M I L O G O P L I D E T U T O R I A L S 103

Stepping out of the PrintRoute(r) function (transp4.mod)

Monitoring a function in a loop

♦ To continue execution, stopping at each pass through the printRoute(r) function,

click the Step Into button repeatedly.

The routes appear one at a time in the Scripting log.

Note that the Step Into button can continue iterating through the loop as well as stepping
into the function. When the loop is completed, the statement is also complete and so the
model is solved.

At any point you can continue execution to the end of the script without stopping by clicking

the Resume button in the Debug view.

I B M I L O G O P L I D E T U T O R I A L S104

The covering example

Presents the example and explains how to execute it and debug the postprocessing script.

In this section

Presenting the covering example
Summarizes the problem and explains what to do and where to find the files.

Setting up the covering model and data
Describes the model and data files.

Purpose of the postprocessing script
Enables you to postprocess solutions by placing an execute statement after the objective.

Executing a postprocessing script
Explains how to execute a run configuration and examine the result in the IDE.

Postprocessing a feasible solution
Discusses changing a language option and adding a settings file before postprocessing.

I B M I L O G O P L I D E T U T O R I A L S 105

Presenting the covering example

The covering example is described in detail in Set covering in the Language User’s Manual.
This section assumes that you are familiar with this integer programming problem and the
solving strategy as explained in that document. Here is a summary of the problem.

A set covering problem involves selecting items to fill (cover) a need. In this case, the need
is to build a house and the items are workers. The construction of a house can be divided
into a number of tasks, each requiring one or more skills, such as plumbing or masonry. A
worker may or may not be able to perform a task, depending on his or her skills, and the
cost of hiring a worker also depends on his or her skills (qualifications). The problem consists
of selecting a set of workers to perform all tasks, while minimizing the cost. A 0/1 variable
is associated with each worker to represent whether or not the worker is hired.

The file covering.mod contains the postprocessing script which manipulates the results
data to show the resulting crew of hired workers. See Postprocessing script, covering.mod.

A postprocessing script is encapsulated in an execute statement:

execute {
...
}

The execute statement for postprocessing must follow the objective function in the model
file.

What you are going to do
Working from the covering example described above, you will:

♦ set up the model and data: see Setting up the covering model and data

♦ run the default configuration, including the postprocessing script, as explained in
Executing a postprocessing script, and then:

● examine the Scripting Log tab

● change an OPL Language option

● rerun the model and see the difference in the Scripting Log tab

Where to find the files
The covering example is supplied in the covering project, at the following location:

<OPL_dir>\examples\opl\covering

where <OPL_dir> is your installation directory.

The model for the covering project is contained in the file covering.mod. Data for the
model covering.mod is contained in the file covering.dat.

I B M I L O G O P L I D E T U T O R I A L S106

You will open this OPL project and all projects in these tutorials using the New Example
wizard, which allows you to open and work with a copy of the distributed example,

Note:

leaving the original example in place. If you need a reminder of how to use the New
Example wizard, see Opening distributed examples in the OPL IDE.

I B M I L O G O P L I D E T U T O R I A L S 107

Setting up the covering model and data

To start working with this example:

1. Use the File>New>Example menu command to open the covering example.

The IDE displays the covering project in the OPL Projects Navigator.

2. Open the covering.mod model file in the editing area.

Scroll to the DISPLAY postprocessing script, in the execute block just after the objective.

Postprocessing script, covering.mod

3. Open the covering.dat file.

The data is initialized in the data file. Notice that 32 workers are available.

The covering data (covering.dat)
NbWorkers = 32;
Tasks = { masonry, carpentry, plumbing, ceiling,

electricity, heating, insulation, roofing,
painting, windows, facade, garden,

I B M I L O G O P L I D E T U T O R I A L S108

garage, driveway, moving };
Qualified = [

{ 1 9 19 22 25 28 31 }
{ 2 12 15 19 21 23 27 29 30 31 32 }
{ 3 10 19 24 26 30 32 }
{ 4 21 25 28 32 }
{ 5 11 16 22 23 27 31 }
{ 6 20 24 26 30 32 }
{ 7 12 17 25 30 31 }
{ 8 17 20 22 23 }
{ 9 13 14 26 29 30 31 }
{ 10 21 25 31 32 }
{ 14 15 18 23 24 27 30 32 }
{ 18 19 22 24 26 29 31 }
{ 11 20 25 28 30 32 }
{ 16 19 23 31 }
{ 9 18 26 28 31 32 }

];
Cost = [1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 6 6 6 7 8 9
];

I B M I L O G O P L I D E T U T O R I A L S 109

Purpose of the postprocessing script

Any execute IBM® ILOG® Script statement placed after the objective enables you to
postprocess the solutions found by the execution process. For example, in the statement
named DISPLAY in covering.mod, it allows you to write to the Scripting log (see
Postprocessing script, covering.mod).

I B M I L O G O P L I D E T U T O R I A L S110

Executing a postprocessing script

The covering example defines only one run configuration.

To execute the run configuration:

1. Right-click onRun Configurations and selectRun>Basic Configuration (default).

Upon completion, the IDE displays the number of solutions found in the Solutions tab.
SeeWhat happens when you execute a run configuration in IDE Reference for details
of the execution process.

2. Examine the Scripting log.

At the end of execution, the Scripting log contains the line written by the
postprocessing script.

Scripting log output written by the engine and a script (covering project)

The line written to the Scripting Log by the postprocessing script shows the crew, that is,
the workers that are hired. Three out of thirty-two workers are used in this solution.

I B M I L O G O P L I D E T U T O R I A L S 111

Postprocessing a feasible solution

You are now going to change anOPL Language option for the covering project and observe
the different output in the Scripting Log after execution. First, you need to add a settings
file to that project if it does not already exist.

To change an OPL Language option for a project:

1. Right-click the covering project in OPL Projects Navigator and chooseNew>Settings
to create a settings file as explained in Adding a settings file in Getting Started with
the IDE.

2. Name it covering.ops and add it to the default run configuration using drag and drop.

After you have done this the variousMP, CP, and OPL Language options become visible
in the settings editor.

3. Click Language>Run, then check the Postprocess feasible solutions box and save
the settings file.

Note the red exclamation mark indicating that the option is set to a user-defined value.

Turning on the Postprocess feasible solutions option

4. Re-runBasic Configuration in the covering project to execute the covering example
again and postprocess any feasible solutions found before the final solution.

Result

I B M I L O G O P L I D E T U T O R I A L S112

At the end of execution, observe the difference in the Scripting log. It contains two sets of
output written by the engine and by the postprocessing script, one for the feasible solution,
and one for the final solution.

Postprocessing a feasible solution (covering project)

The non optimal feasible solution appears because the Postprocess feasible solutions
was checked.

I B M I L O G O P L I D E T U T O R I A L S 113

I B M I L O G O P L I D E T U T O R I A L S114

Relaxing infeasible models

Uses the nurses example to demonstrate how the IDE detects conflicts and searches for
relaxations in models that appear infeasible after execution.

In this section

Presenting the nurse scheduling example
Summarizes the problem and explains what to do and where to find the files.

Setting up the nurses model and data
Describes the elements of the model.

Executing the nurses project (1)
Describes how to observe infeasibility, conflicts and proposed relaxations.

Working on the execution results
Describes how to study the conflict and suggested relaxation, and change the data to remove
infeasibility.

Executing the nurses project (2)
Explains how to observe the new result after changing the data.

How relaxation and conflict search works
Relaxations and conflicts both express the infeasibility of a model and propose steps towards
feasibility. After you have had hands-on experience with the nurse scheduling example, learn
how to differentiate between Relaxations and Conflicts.

I B M I L O G O P L I D E T U T O R I A L S 115

Presenting the nurse scheduling example

The tutorial assumes that you know how to work with projects in the IDE. If this is not the
case, first read Getting Started with the IDE.

You can also search for relaxations and conflicts using the IBM® ILOG® Script
methods printRelaxations and printConflicts. See Searching for relaxation
and conflicts.

Note:

The nurses example
The nurses example describes a nurse scheduling problem: the hospital Human Resources
department needs to create work schedules for nurses and nurse teams. A good schedule
is an optimal one, that is, a schedule that meets as many of the hospital's overall goals as
possible. If some of these goals prove incompatible, then the solution consists in nevertheless
finding a schedule that will work out, in other words, a feasible schedule. The goals include:

♦ staffing each hospital department with the proper number of nurses at all times;

♦ matching a nurse's skills, such as a Board Certification in Cardiac Care, with the
requirements of the department;

♦ establishing a minimum and maximum number of hours worked per week;

♦ maximizing fairness in how nurses are allocated to shifts, that is, making sure that no
nurses are scheduled for 50 hours a week when others are scheduled for only 25 hours;

♦ incorporating best practice guidelines, such as trying to schedule nurses with compatible
skills or with a proven history of working well together on the same team;

♦ taking into account individual nurse preferences for days off as much as possible;

♦ keeping salary costs to a reasonable level.

Sometimes, several of these goals will conflict, for example, during a week when many
nurses are on vacation. In such a case, the solving engine finds no solution. As this is not
acceptable because a hospital needs a nurse schedule, you have to make choices, prioritize
the goals, and relax some constraints accordingly. You will see in this tutorial how the IDE
guides you through this task.

What you are going to do
Working from the nurse scheduling example, you will:

♦ become familiar with the nurses project: see Setting up the nurses model and data

♦ solve the model and discover that it is infeasible: see Executing the nurses project (1)

♦ analyze and understand the suggested relaxation: see Studying the suggested relaxation

I B M I L O G O P L I D E T U T O R I A L S116

♦ analyze and understand suggested conflicts: see Studying the suggested conflicts

♦ change some data: see Changing the data

♦ execute the project again and find a solution to the feasible model: Executing the nurses
project (2)

♦ learn more about How relaxation and conflict search works

Conflicts and relaxations are supported only for models solved by the CPLEX
engine. They are not currently supported with the CP Optimizer engine.

Important:

Where to find the files
The project folder is at the following location:

<OPL_dir>\examples\opl\nurses\

where <OPL_dir> is your installation directory.

You will open this OPL project and all projects in these tutorials using the New Example
wizard, which allows you to open and work with a copy of the distributed example,

Note:

leaving the original example in place. If you need a reminder of how to use the New
Example wizard, see Opening distributed examples in the OPL IDE.

I B M I L O G O P L I D E T U T O R I A L S 117

Setting up the nurses model and data

Use the File>New>Example menu command to open the nurses example.

The IDE displays the nurses project in the OPL Projects Navigator.

Open the model in the editing area. Since this is a rather long model, it cannot be shown
entirely. Scroll down or resize the main window to see more of it.

The model instance, nurses.mod, contains the following elements:

♦ nurses

♦ nurse shifts

♦ nurse teams

♦ maximal and per-nurse work time

♦ nursing skills requirements

♦ hospital departments

♦ department incompatibilities

♦ vacations

♦ required assignments

Double-click nurses.dat in the OPL Projects Navigator to display the data instances
associated with this model in the editing area.

Notice that the Outline window presents a convenient view of the model or data elements.

I B M I L O G O P L I D E T U T O R I A L S118

Executing the nurses project (1)

The nurse scheduling project has been designed with infeasible data. The IDE lets you know
when a project is infeasible, proposes relaxations, and displays conflicts to help you make
it feasible. In this section, you are going to execute the model and observe infeasibility.

1. Double-click on the settings file, nurses.ops, to open it in the editing area.

2. In the displayed settings file, select Language>Run in the left panel and make sure
that the Display relaxations and Display conflicts options are checked.

These options, which are turned on by default, tell the IDE to compute and display
suggested relaxations and conflicts, when they exist, in theConflicts andRelaxations
tabs.

Relaxations and conflicts checked by default

3. Right-click on the nurses project and select Run>Basic configuration.

After a few seconds, theConflicts andRelaxations tabs indicate where the relaxations
and conflicts are, as shown in the following screen shots.

When a conflict or relaxation is selected in either theConflicts andRelaxations tabs,
the corresponding code is highlighted in the model.

I B M I L O G O P L I D E T U T O R I A L S 119

Displaying conflicts for nurses.mod

I B M I L O G O P L I D E T U T O R I A L S120

Displaying relaxations for nurses.mod

When you get such messages after execution of a model, the next step consists in Studying
the suggested relaxation.

I B M I L O G O P L I D E T U T O R I A L S 121

I B M I L O G O P L I D E T U T O R I A L S122

Working on the execution results

Describes how to study the conflict and suggested relaxation, and change the data to remove
infeasibility.

In this section

Studying the suggested relaxation
Suggests places where you can change the data or the way constraints are expressed to
remove incompatibilities.

Studying the suggested conflicts
Explains the conflict in the model and how to avoid it.

Changing the data
Shows how to change the data in the nurses.dat file.

I B M I L O G O P L I D E T U T O R I A L S 123

Studying the suggested relaxation

When a model proves infeasible, the IDE suggests the places where you can change the data
or the way constraints are expressed so as to remove the incompatibilities.

Only ranged constraints are relaxable. Logical constraints are not.Note:

Click the Relaxations tab. For the nurses example, you should see what is shown below.

Suggested relaxation (nurses.mod)

The proposed relaxation consists in changing the bound of the given constraint to [0,1]
instead of [1,1]. The relaxation refers to the constraint on required assignments.

// respect required assignments
forall(n in Nurses, s in Shifts : RequiredAssignments[n][s] == 1)
ctRequiredAssignmentConstraints:
NurseAssignments[n][s] == 1;

This means that the equality to 1 would no longer be mandatory in the relaxed model.
The constraint itself seems correctly expressed. Practically, it means that a feasible solution
can be found, and hence a schedule can be worked out, if Anne is not necessarily assigned
to Consultation on Monday from 8 to 12. In other words, changing this data is sufficient
for the model to be feasible (see Changing the data).

Be aware, however, that infeasibility may be the consequence of an error in the
modeling of another constraint.

Important:

Let us now take another view at infeasibility by Studying the suggested conflicts.

I B M I L O G O P L I D E T U T O R I A L S124

Studying the suggested conflicts

When a model is proved infeasible, OPL also searches possible conflicts between the
constraints of the model. A conflict is a set of constraints that cannot be all true at the same
time. At least one of them must be removed or modified to avoid the conflict. See How
relaxation and conflict search works for more information.

Return to the Conflicts tab if necessary. For the nurses example, the IDE displays the
proposed conflict in the Conflicts tab.

The conflict is that Anne cannot be assigned simultaneously to both the Emergency and the
Consultation shifts. In other words, to avoid this particular conflict, one of the required shifts
(that is, one of the constraints on assignments to shifts)must be removed. If no other
conflicts exist in the model, the model then becomes feasible.

I B M I L O G O P L I D E T U T O R I A L S 125

Changing the data

The list of required assignments is given in the data file nurses.dat.

In this example, it appears that the assignment to relax is the fifth value from the left in the
top row.

1. Open nurses.dat in the Editing Area and scroll to the RequiredAssignments section.

2. Change it to 0 to make the model feasible.

I B M I L O G O P L I D E T U T O R I A L S126

I B M I L O G O P L I D E T U T O R I A L S 127

Executing the nurses project (2)

After you have changed an assignment value as shown in Changing the data, you are going
to execute the project again and see the new result.

To observe the new result:

1. Right-click on the nurses project and select Run>Basic Configuration. Click OK
in the popup to save the modified file.

The Conflicts and Relaxations tabs are now empty while the Solutions tab displays
the solutions found. You now get a feasible solution with cost 24950, as shown below.

Feasible model after change in data

You can also see that Anne is assigned to Emergency on the “Monday 8 to 12” shift
(not to Consultation). To view Anne’s assignment, do as follows.

2. In the Problem Browser, scroll down in the Name column to Decision variables /
NurseAssignments as shown:

I B M I L O G O P L I D E T U T O R I A L S128

Problem Browser, scrolling to variables/NurseAssignments

3. Click the Show data view button in the NurseAssignments row.

The table of nurse assignments opens, as shown.

I B M I L O G O P L I D E T U T O R I A L S 129

A table view of NurseAssignments

The second line shows that Anne is assigned to Emergency, Monday 8-12.

For further information on views of model elements, seeUnderstanding the Problem Browser
in Getting Started with the IDE.

Now you may want to know more on How relaxation and conflict search works.

I B M I L O G O P L I D E T U T O R I A L S130

How relaxation and conflict search works

Relaxations and conflicts both express the infeasibility of a model and propose steps towards
feasibility. After you have had hands-on experience with the nurse scheduling example, learn
how to differentiate between Relaxations and Conflicts.

In this section

Relaxations
Provides a definition of a relaxation.

Setting the relaxation level
Explains how to set the relaxation level in the OPL IDE.

Conflicts
Discusses conflicts and potential conflicts.

I B M I L O G O P L I D E T U T O R I A L S 131

Relaxations

In this context, a relaxation is a modified model where some bounds (of variables and/or
constraints) have been made wider than in the first version. For example, an integer variable
with the original bound [0,100] could be relaxed to [0,200], or a range constraint expr <=
10 could be relaxed to expr <= 12.

The relaxation search process looks for a way to make the model and its data more flexible
so that the problem becomes feasible while keeping modifications to a minimum. In other
words, the suggested relaxation in the Relaxations tab is a sufficient minimal change
to make the model feasible.

More about constraint relaxation
More specifically, only constraints that have been labeled are taken into account for possible
relaxation and conflicts. As variables are systematically named, they are always considered
by the search process. Constraints, however, may be unlabeled. If you choose not to label
the constraints in your model, they will not be taken into account for relaxation or conflict
search. In this case, only the variables will be affected by the relaxation process, which may
lead to surprising suggestions. Moreover, some existing conflicts may not be found. This is
another reason why labeling constraints is a recommended practice (see Constraint labels
in the Language Reference Manual).

I B M I L O G O P L I D E T U T O R I A L S132

Setting the relaxation level

You can set whether you want OPL to relax only the labeled constraint or also the variables.

To set the relaxation level:

♦ In the settings file, nurses.ops, click Language>General and choose an option from
the Relaxation level list.

By default, both variables and constraints are relaxed. You can choose to relax only
labeled constraints.

Setting the relaxation level

I B M I L O G O P L I D E T U T O R I A L S 133

Conflicts

The conflict search process looks for a way to remove as many constraints as possible while
it stays infeasible. Consequently, a conflict is the subset of constraints from the infeasible
model in which removing any of the constraints makes that set feasible. When a conflict is
displayed in the Conflicts output window, it expresses the necessary change to make the
model feasible: you must remove or modify at least one of the conflicting constraints.

Important: 1. Be aware that minimality may not be achieved if the search process is stopped
by a time limit, an unexpected interruption, or some similar event.

2. If the model happens to contain multiple independent causes of infeasibility,
it may be necessary for the user to repair one cause and then repeat the
process with a further refinement.

A basic example summarizes the difference still more clearly.

dvar int+ x;
dvar int+ y;

maximize y;
subject to {

ct1: x >= 10;
ct2: x <= 0;

}

This model contains two incompatible constraints. To remove this incompatibility, you can:

♦ either change ct1 to x <= 0 : this is relaxing the constraint;

♦ or remove ct1 or ct2 : this is removing the conflicting constraint.

Potential conflicts
The CPLEX® engine differentiates in infeasible models between identified conflicts, as
described in this tutorial from the nurses example, and possible conflicts.

It may happen that the engine is not capable of completely proving the conflict. In this case,
it returns some constraint that “may be” in the conflict. This corresponds to the
ConflictPossibleMember status of the method IloCplex:getConflict.

I B M I L O G O P L I D E T U T O R I A L S134

Profiling the execution of a model

Explains how the IDE Profiler table can help you improve your model to make it run faster
while consuming less memory.

In this section

Purpose and prerequisites
Explains what to do in this tutorial and where to find the files.

Identifying slow and memory-consuming model elements
The information displayed in the table of the Profiler enables you to identify slow or
memory-consuming elements during execution of the profiler model, and, possibly, to infer
what changes in your model might improve execution performance. This part of the tutorial
uses the profiler example to demonstrate this.

Examining model extraction and solving
In addition to time and memory consumption, the Profiler table displays the extraction and
solving phases of the model execution. This part of the tutorial uses the scalable configuration
of the warehouse example to demonstrate this.

I B M I L O G O P L I D E T U T O R I A L S 135

Purpose and prerequisites

When you execute a run configuration, information about execution time, memory
consumption, and model extraction is collected as part of the execution. When execution
stops, the information appears as a table in the Profiler output window.

This tutorial uses models solved with the CPLEX engine but all the features described work
in the same way with models solved by the CP Optimizer engine.

In this tutorial, “faster” and “consuming less memory” may apply both to creating
the model and to searching for solutions. This tutorial gives hints only on how to

Important:

improve the model creation part. For the model solving part, the tutorial explains
what kind of information the profiler can display. Using this information to make
the model solve faster falls out of the scope of this documentation.

In other words, this tutorial does not explain how to write a better model that finds
an optimal solution faster.

Prerequisites
It is assumed that you know how to work with projects in the IDE. If this is not the case,
read Getting Started with the IDE first.

What you are going to do
The tutorial is based on two different examples:

♦ Working with the profiler example described in Presenting the profiler example, you
will:

● solve the model: see Executing the profiler model

● become familiar with the profiling information: see Description of the profiling
information

● identify slow or memory consuming elements: see Examining the profiling information

♦ Then, working with the scalable configuration of the warehouse example described in
Presenting the scalable run configuration, you will:

● solve the model: see Executing the scalable run configuration

● look at the information on model extraction and engine search: see Examining the
extraction and search information

Where to find the files
The profiler example is supplied as the model profiler.mod included in the profiler project
at the following location:

I B M I L O G O P L I D E T U T O R I A L S136

<OPL_dir>\examples\opl\profiler\

The scalable warehouse example is a run configuration of the warehouse project at the
following location:

<OPL_dir>\examples\opl\warehouse\

where <OPL_dir> is your installation directory.

You will open this OPL project and all projects in these tutorials using the New Example
wizard, which allows you to open and work with a copy of the distributed example,

Note:

leaving the original example in place. If you need a reminder of how to use the New
Example wizard, see Opening distributed examples in the OPL IDE.

I B M I L O G O P L I D E T U T O R I A L S 137

I B M I L O G O P L I D E T U T O R I A L S138

Identifying slow and memory-consuming
model elements

The information displayed in the table of the Profiler enables you to identify slow or
memory-consuming elements during execution of the profiler model, and, possibly, to infer
what changes in your model might improve execution performance. This part of the tutorial
uses the profiler example to demonstrate this.

In this section

Presenting the profiler example
Discusses the model profiler.mod.

Executing the profiler model
Explains how to obtain profiling information.

Description of the profiling information
Describes the information about execution time, memory consumption and model extraction,
collected after execution of the model.

Examining the profiling information
Explains how to analyze time and memory consumption after execution of the model.

I B M I L O G O P L I D E T U T O R I A L S 139

Presenting the profiler example

The profiler example is a variation of the transportation example (see Profiling in the Samples
manual).

Use the File>New>Example menu command to open the profiler example.

The IDE displays the profiler project in the OPL Projects Navigator. Open the model in
the editing area.

Model of the Profiler example (profiler.mod)
int n = 300;
range r = 1..n;
int Values1[r][r];

execute INIT_Values1 {
for(var i in r)
for(var j in r)
if (i == 2*j)
Values1[i][j] = i+j;

writeln(Values1);
}

int Values2[i in r][j in r] = (i==2*j) ? i+j : 0;

execute INIT_Values2 {
writeln(Values2);

}

tuple T {
int i;
int j;

}
{T} indexes = { < i , 2 * i > | i in r };
int Values3[<i,j> in indexes] = i+j;

execute INIT_Values3 {
writeln(Values3);

}

The profiler example is supplied with no data file. This example is a dummy unrealistic
model where the same data is created in three different ways so as to demonstrate how the
profiler helps you find which data is slow and/or memory consuming.

The code extract above shows that the identical data to be created is a structure of values
depending on two indices i and j. Non-null values exist only when i is equal to 2*j.
The values are then i+j.

In the supplied example, i and j range from 1 to 300. This range makes the execution run
in an acceptable amount of time on an average laptop computer. Still, the model is not too
small, so that differences in modeling significantly affect execution time and memory
consumption. You can change the value of the upper range limit n to adjust the execution
time if it is too fast or too slow on your own machine.

I B M I L O G O P L I D E T U T O R I A L S140

Executing the profiler model

To execute the model and display the Profiler table:

1. Right-click on the profile project and selectRun>Basic Configuration. (If necessary,
see Executing a project inGetting Started with the IDE for a reminder of the execution
process.)

The model solves with no error message.

2. Click the Profiler tab to display profiling information.

Next, read the Description of the profiling information.

I B M I L O G O P L I D E T U T O R I A L S 141

Description of the profiling information

When execution stops, the information collected about execution time, memory consumption,
and model extraction is organized in tabular form in the Profiler tab, as shown below.

Note: 1. If the profiler table is empty and the run configuration includes a settings file, first
make sure the “Collect profiling information” option is turned on in the
Language/General window of the settings editor.

2. The figures shown in the illustrations may be different on your machine.

Each column header is a sort criterion (see Sorting) and there are two icons at the top right
of the Profiler tab for the commands Copy contents to clipboard and Customize
thresholds. The Description column presents the execution steps in sequential order as a
tree. The root item corresponds to the full execution.

Profiling information for the profiler example

The Description tree
Most categories below the root item include two important kinds of item, as shown in
Execution tree items.

Execution tree items
NotationExecution steps

EXECUTE <block_name>Script block execution

INIT <data_element_name>Data initialization

Then, for each execution step, the elements listed below are displayed in columns.

I B M I L O G O P L I D E T U T O R I A L S142

Profiling information measured for each execution step
DefinitionInformation for each execution

step

The total time consumed by the task...Time

...as a proportion of the total timePercentage of time

The maximal memory used to process the OPL problem. See
also the Glossary.

Peak Memory

... as a proportion of the total memoryPercentage of peak memory

The time used by the task minus the time used by the subtasks...Self time

...as a proportion of the total timePercentage of self time

The memory usage observed by comparing the start and the
end of a step. See also the Glossary.

Local Memory

...as a proportion of the total memoryPercentage of local memory

The number of times that same node is repeated on this tree
level

Count

The number of nodes in the branch starting at this nodeNodes

Processing time vs. user time
All figures indicated in the Time column are processing times, not user times. This means
that if your computer is executing other tasks at the same time or is paging because it has
too much memory to handle, these extra times are not taken into account by the profiler.

In other words, the OPL profiler records the user+kernel time (which Microsoft® calls the
process time) given the following definitions.

The total elapsed (wall-clock) time required for an operation.This includes time spent
waiting for I/O, synchronization objects, timers, scheduling, and other delays.

elapsed time

The amount of time executing code in the thread. It does not include time spent
waiting for devices or servicing other processes.

user+kernel time

Sorting
By default, the Profiler table rows are sorted sequentially in the order of execution, as
reflected by the Description tree. However, you can sort the table, in ascending or descending
order, on the figures of any column by clicking on that column header name.

I B M I L O G O P L I D E T U T O R I A L S 143

For example, in Profiler table sorted on the peak memory column (profiler.mod), the figures
in the Peak Memory column are sorted in descending order and as a consequence, the
Description tree is no longer displayed sequentially. Compare to Profiling information for
the profiler example, which shows the default, sequential order.

Click the Description column header to restore the default order.

Profiler table sorted on the peak memory column (profiler.mod)

Thresholds

Click the Customize thresholds icon at the top right of the Profiler tab to display
the sliders.

The Time % threshold andMemory % threshold sliders, at the top of the Output window,
enable you to dynamically change the minimum percentage of time or memory above which
you want the figures to appear on a blue (time) or pink (memory) background. Compare
Time % threshold set to 10 and memory % threshold set to 50 (profiler.mod) to Profiling
information for the profiler example: more time figures are shown against a blue
background when the time threshold is set to 10% and fewer memory figures appear against
a pink background when the memory threshold is set to 50%.

The figures shown in the illustrations may be different on your machine.Note:

I B M I L O G O P L I D E T U T O R I A L S144

Time % threshold set to 10 and memory % threshold set to 50 (profiler.mod)

Copying Profiler contents to a clipboard

Click the Copy contents to clipboard icon at the top right of the Profiler tab to copy
the Profiler table and then paste it to a text editor or spreadsheet. The following screen
shows the Profiler table in Microsoft® Excel.

The next step consists in Examining the profiling information.

I B M I L O G O P L I D E T U T O R I A L S 145

Examining the profiling information

You are now going to analyze the time and memory figures of the profiler.mod example.

The figures shown in the illustrations may be different on your machine.Note:

Slow elements
In the profiling context, slow elements are elements with a bad execution time. All three
data structures are equivalent (see Presenting the profiler example). However, if you look
at the first column (Time) of the Profiler table, you can see that execution of
EXECUTE INIT_Values1 (which includes initializing the structure plus setting the values in
the script) takes nearly twice as long as execution of EXECUTE INIT_Values2 (which includes
initialization of Values2).

Comparing execution time (profiler.mod)

In other words, inline initialization of the Values2 array is faster than initialization in the
script.

Memory consuming elements
If you now examine the Profiler table from the point of view of memory consumption and
look at the Local Memory column, you can see that initialization of Values2 uses much more
memory than initialization of Values3. It even increases the Peak Memory.

Memory consumption (profiler.mod)

This shows the interest of using tuple-based indexing when the structure is very sparse.

I B M I L O G O P L I D E T U T O R I A L S146

Examining model extraction and solving

In addition to time and memory consumption, the Profiler table displays the extraction and
solving phases of the model execution. This part of the tutorial uses the scalable configuration
of the warehouse example to demonstrate this.

In this section

Presenting the scalable run configuration
Discusses the model scalableWarehouse.mod.

Executing the scalable run configuration
Explains how to modify the default run configuration.

Examining the extraction and search information
After execution of the model.

Turning off the Profiler
To save execution time and memory.

Drawing conclusions
Contains some recommendations for improving your model.

I B M I L O G O P L I D E T U T O R I A L S 147

Presenting the scalable run configuration

The warehouse location model is described in detail in Warehouse location problems in the
Samples manual. It includes a run configuration Scalable data defined by the model
scalableWarehouse.mod supplied with the warehouse project at the following location:

<OPL_dir>\examples\opl\warehouse\

where <OPL_dir> is your installation directory.

There is no data file in that configuration. The scalable data is declared in the
scalableWarehouse.mod model, as shown in Model of the scalableWarehouse example
(scalableWarehouse.mod).

Use the File>New>Example menu command to open the warehouse example.

The IDE displays the project in the OPL Projects Navigator. Open the model in the editing
area.

Model of the scalableWarehouse example (scalableWarehouse.mod)
int Fixed = 10;
int NbWarehouses = 50;
int NbStores = 200;

assert(NbStores > NbWarehouses);

range Warehouses = 1..NbWarehouses;
range Stores = 1..NbStores;
int Capacity[w in Warehouses] =
NbStores div NbWarehouses +
w % (NbStores div NbWarehouses);

int SupplyCost[s in Stores][w in Warehouses] =
1 + ((s + 10 * w) % 100);

dvar int Open[Warehouses] in 0..1;
dvar float Supply[Stores][Warehouses] in 0..1;
dexpr int TotalFixedCost = sum(w in Warehouses) Fixed * Open[w];
dexpr float TotalSupplyCost = sum(w in Warehouses, s in Stores) SupplyCost
[s][w] * Supply[s][w];
minimize TotalFixedCost + TotalSupplyCost;

subject to {
forall(s in Stores)
ctStoreHasOneWarehouse:
sum(w in Warehouses)
Supply[s][w] == 1;

forall(w in Warehouses)
ctOpen:
sum(s in Stores)
Supply[s][w] <= Open[w] * Capacity[w];

}

I B M I L O G O P L I D E T U T O R I A L S148

Executing the scalable run configuration

Basic Configuration is predefined as the default run configuration. Since it is not the
configuration you want to work on, you will first make another run configuration the default
one.

To execute the run configuration:

1. Right-click Scalable data and choose Set as default .

The word 'default' appears in parentheses after the run configuration name.

2. Right-click on Scalable data and select Run this . (If necessary, see Executing a
project in Getting Started with the IDE for a reminder of the execution process.)

The model solves with no error message.

3. Click the Profiler tab in the Output window.

The next step consists in Examining the extraction and search information.

I B M I L O G O P L I D E T U T O R I A L S 149

Examining the extraction and search information

The extraction, search, and execution information is collected in a table as explained in
Description of the profiling information.

Profiling information for the scalable configuration of the warehouse example

You can see the two columns Count and Nodes.

♦ The Count column displays the number of times that same node is repeated on this tree
level. This count is 1 most of the time, except for extractions of labeled leaf constraints
inside a forall statement, and during the CPLEX® search.

♦ The Nodes column displays the number of subnodes in the branch starting at this node.
The node count for leaves is 1.

In the Description tree, you can see an item called EXTRACTING <model_name>
-<random_number>. This branch of the execution tree includes all of the extraction phase of
the model from OPL to the CPLEX® engine. Each labeled constraint is shown as a leaf as
it is extracted. A constraint may take much more time and memory than another even if it
appears very simple in OPL. This reflects the fact that the aggregate forall construct and
the slicing feature enable you to write very complex sets of linear constraints in a compact
OPL formulation.

Even a simple forall statement may be constructed on top of a huge set and then translated
into a lot of constraints in the CPLEX matrix.

You can see another branch, at the top of the tree, called CPLEX MIP Optimization which
reflects the CPLEX search. Different CPLEX suboperations are described. You may see
relevant information such as the amount of time spent generating cuts and using heuristics
to find solutions.

I B M I L O G O P L I D E T U T O R I A L S150

Profiler for a CP model
For a constraint programming model, the extraction and solving information appears as
shown in CP models: Profiler (steelmill project).

CP models: Profiler (steelmill project)

I B M I L O G O P L I D E T U T O R I A L S 151

Turning off the Profiler

The profiling functionality is controlled by an OPL language option, which tells the IDE to
compute and display the profiling information in the Profiler tab. This option is turned on
by default but you can turn it off to save execution time and memory.

To turn off the profiler:

1. Create an .ops file as explained in Adding a settings file in Getting Started with the
IDE, and add it to the run configuration (drag and drop).

2. Click Language>Run.

3. Uncheck the Collect profiling information box, as shown below.

Turning off Collect profiling information

I B M I L O G O P L I D E T U T O R I A L S152

Drawing conclusions

The Profiler can help you improve your model so as to reduce or eliminate slow or memory
consuming structures. For example, in profiler.mod, we would recommend using the third
construct. Likewise, in scalableWarehouse.mod, you might want to use the optimization
part of the Description tree to fine-tune the CPLEX® search by changing some CPLEX
parameter values.

I B M I L O G O P L I D E T U T O R I A L S 153

I B M I L O G O P L I D E T U T O R I A L S154

Working with the solution pool

Explains how to access a project solution pool in the IDE and how you can set options and
define filters on solution pool generation.

In this section

Purpose and prerequisites
Explains what to do in this tutorial and where to find the files.

The solution pool in the OPL IDE
Explains how the solution pool works, how to use it from the IDE Problem Browser, and how
to set options.

Filtering the solution pool
Describes how to write filters by means of IBM® ILOG® Script statements.

Flow control script and solution pool
Describes how to use the IBM® ILOG® Script API to populate the solution pool and use
the solutions found.

I B M I L O G O P L I D E T U T O R I A L S 155

Purpose and prerequisites

OPL supports the CPLEX® solution pool feature for mixed integer programming (MIP)
models. The solution pool is a way of generating and keeping more than one solution to a
MIP problem. This allows you to evaluate and explore alternative solutions. For example,
you might prefer a solution which also meets a secondary objective over the incumbent.

Prerequisites
The tutorial assumes that you know how to work with projects in the IDE. If this is not the
case, read Getting Started with the IDE first.

What you are going to do
Working with various run configurations of the warehouse project based on different models,
you will:

1. Learn how the IDE supports the solution pool for MIP projects. See The solution pool
in the OPL IDE. You will:

a. learn about the default pool of feasible solutions

b. obtain more non-optimal solutions

c. set some solution pool options

2. Learn about solution filters and add a range filter. See Filtering the solution pool.

3. Use the IBM ILOG Script API, instead of OPL settings. See Flow control script and
solution pool. You will:

a. populate the solution pool and use the solutions

b. add a range filter to control which solutions are kept in the pool

Where to find the files
The tutorial is based on the warehouse project available at the following location:

<OPL_dir>\examples\opl\warehouse

where <OPL_dir> is your installation directory.

The warehouse location problem is described inWarehouse location problems in the Samples
manual.

You will open this OPL project and all projects in these tutorials using the New Example
wizard, which allows you to open and work with a copy of the distributed example,

Note:

leaving the original example in place. If you need a reminder of how to use the New
Example wizard, see Opening distributed examples in the OPL IDE.

I B M I L O G O P L I D E T U T O R I A L S156

The solution pool in the OPL IDE

Explains how the solution pool works, how to use it from the IDE Problem Browser, and how
to set options.

In this section

How the solution pool works
For a mixed-integer problem (MIP) that generates multiple solutions.

Examining pool solutions in the Problem Browser
Explains how to change the default run configuration and analyze the result after a new
run.

Obtaining more solutions
Explains how to set CPLEX parameters to obtain additional feasible solutions.

Setting solution pool options
To change the gap tolerance, the number of solutions stored, and the criteria on which
solutions are substituted for others when the pool has reached its maximal capacity.

I B M I L O G O P L I D E T U T O R I A L S 157

How the solution pool works

The solution pool feature allows you to generate and store multiple solutions to a mixed
integer programming (MIP) model. This feature uses an extension of the CPLEX®
branch-and-cut algorithm to generate multiple solutions in addition to the optimal solution.

If your model expresses a mixed-integer problem (MIP) and generates intermediate feasible
solutions, the OPL IDE displays the pool of solutions obtained after execution at the top of
the Problem Browser (see Solution pool in the Problem Browser (scalableWarehouse.mod)).
You can set a number of options (CPLEX parameters) to change how the pool is populated.

There are two ways to collect pool solutions: the default accumulation of feasible solutions
over the incumbent and the explicit choice of populating the pool according to default or
custom settings.

♦ In the default mode, any feasible solution found during the regular search by the MIP
optimization algorithm is listed as a pool solution. The solution pool may contain only the
incumbent solution or it may contain more. Sometimes, CPLEX finds a solution that is
worse than the current incumbent. In this case, the worse solution may enter the pool
although the incumbent callback is not called.

♦ Populate is the mode where, after the MIP search, you explicitly make the choice of
finding more solutions by turning on an option that activates a special heuristic (by means
of a call to the populate method).

I B M I L O G O P L I D E T U T O R I A L S158

Examining pool solutions in the Problem Browser

After you execute a run configuration of a MIP problem, the information on the solutions
found is displayed as follows:

♦ The Statistics tab displays the number of solutions in the pool.

♦ The Solutions tab displays the optimal solution. If there are pool solutions in the Problem
Browser, by clicking on a pool solution you display the details of that intermediate feasible
solution in the Solution tab.

♦ The drop-down list at the top of the Problem Browser numbers each solution other than
the final one and identifies it by its objective value.

To view pool solutions:

1. In the warehouse example, right-click on Basic Configuration and set it to default
(if it is not the default). This run configuration should contain warehouse.mod +
warehouse.dat.

2. Right-click on Basic Configuration and select Run this.

You obtain only one solution. In the Solutions tab:

// optimal solution with objective 383.

3. You decide to see what solutions you get with different data.

Right-click the configuration Scalable data and select Set as Default.

4. Right-click on Scalable data and select Run this to execute the run configuration.

The Solutions tab displays the optimal solution. The other feasible solutions are
summarized in the solution pool in the Problem Browser.

I B M I L O G O P L I D E T U T O R I A L S 159

Solution pool in the Problem Browser (scalableWarehouse.mod)

The solutions in the pool are identified by an index number starting from 0 (zero). Generally,
the lowest index numbers are for the solutions found earliest. The index numbers may change
after re-populating the pool, depending on the strategy in use when the pool reaches its size
limit.

When you select a solution from the list in the Problem Browser, the values are displayed
in the Solutions tab. If you select pool solution #1, this solution will be displayed in the
Solutions tab. If you select pool solution #2, both #1 and #2 will be displayed.

By default, the pool collects the feasible solutions, if any; that is, all the solutions that worked
out at the cost of not satisfying the objective by a certain gap. You can use option settings
to collect more of these non-optimal solutions.

I B M I L O G O P L I D E T U T O R I A L S160

Obtaining more solutions

If you realize after a MIP optimization that you need additional solutions, you can set the
IDE to show more of them by activating the Populate solution pool option. The number
of solutions you see depends on the values you select for the associatedMIP/Solution pool
options. These options set CPLEX® to spend some extra time after the search to find more
feasible solutions by using some specific strategies.

To obtain more solutions:

1. Add a settings file to the Scalable data configuration, as explained in Adding a settings
file in Getting Started with the IDE.

2. In the settings editor, selectMixed Integer Programming>Solution pool.

3. Check the Populate solution pool box.

Turning on the Populate solution pool option

4. Run the configuration again.

The Problem Browser displays more solutions for you to examine. The number of
additional solutions collected relies on a number of associated CPLEX parameters
described in Setting solution pool options.

I B M I L O G O P L I D E T U T O R I A L S 161

Setting solution pool options

When you activate the Populate solution pool option, you can use the other options of the
Mixed Integer Programming>Solution pool page to change the gap tolerance, the
number of solutions stored, and the criteria on which solutions are substituted for others
when the pool has reached its maximal capacity.

You can also set a limit to the number of solutions generated by the populate phase. In the
tree on the left, select theMixed Integer Programming>Solution pool. Then modify the
value for Limit on number of solutions kept in pool.

As an example:

1. Set the Basic Configuration as the default run configuration.

2. Create a settings file and drag it to the Basic Configuration.

3. In the settings file, selectMixed Integer programming>Solution pool from the
tree on the left. Check the Populate solution pool box and set the value of Limit on
number of solutions kept in pool to 3. Then execute the run configuration.

The Problem Browser displays only 3 feasible solutions.

4. Click the Reset button to restore the Limit on number of solutions kept in pool
to its default value, then set the Solution pool intensity option to Aggressive and
execute again.

The execution yields many more solutions.

Other parameters may also have an effect on the solution pool, just as they affect MIP
optimization or feasibility generally. See CPLEX parameters and OPL parameters in
Mathematical programming options for more information.

Note:

See also the part dedicated to the solution pool in the CPLEX User’s Manual, in
particular to understand the difference between collecting solutions and populating the
pool.

I B M I L O G O P L I D E T U T O R I A L S162

Filtering the solution pool

Describes how to write filters by means of IBM® ILOG® Script statements.

In this section

Solution pool filters
Explains diversity filters and range filters.

Adding a range filter
Also explains how to add a diversity filter.

I B M I L O G O P L I D E T U T O R I A L S 163

Solution pool filters

You can use IBM® Script statements to filter out solutions from the pool. If, for example,
you are not satisfied with the solutions yielded by the Scalable data configuration with the
MIP>Solution pool options you set, you may decide to go further and create arrays of
variables and coefficients to add range or diversity filters.

There are two kinds of filters for the solution pool.

♦ Diversity filters allow you to generate solutions that are similar to (or different from) a
set of reference values that you specify for a set of binary variables.

♦ Range filters allow you to generate solutions that obey a new constraint, specified as a
linear expression within a range.

See the section about filtering the solution pool in the CPLEX User’s Manual for details on
how these filters work.

I B M I L O G O P L I D E T U T O R I A L S164

Adding a range filter

A range filter adds a constraint over a linear expression. You add a range filter if, for example,
you have used the solution pool to get many solutions, but you are interested only in the
solutions where the number of open warehouses is between 30 and 43. The
warehouseCplexFilters.mod model has been written for this purpose as a variation of
scalableWarehouse.mod. This model contains the execute block shown in the code extract
below.

Preprocessing script to filter solutions (warehouseCplexFilters.mod)
// define a range filter applied to solution pools
execute {

var vars = new Array();
var coefs = new Array();
for (var w in Warehouses) {

vars[w-1] = Open[w];
coefs[w-1] = 1;

}
cplex.addRangeFilter(30, 43, vars, coefs);

}

With this data instance:

int Fixed = 30;
int NbWarehouses = 50;
int NbStores = 100;

when the pool is populated, 6 solutions out of the range defined in the filter are removed
(26 without the filter, 20 with the filter).

To observe filter scripts:

1. Select the warehouse project.

2. Right-click the run configuration name Filter script and choose Set as Default.

3. Add a settings file, as explained in Adding a settings file in Getting Started with the
IDE, to the Filter script configuration.

4. In the settings editor, scroll down the option tree and clickMixed Integer
Programming>Solution pool.

5. Check the Populate solution pool box.

6. Execute the run configuration.

You can also add diversity filters using the method cplex.addDiversityFilter. See the
IBM ILOG Script Reference Manual.

I B M I L O G O P L I D E T U T O R I A L S 165

I B M I L O G O P L I D E T U T O R I A L S166

Flow control script and solution pool

Describes how to use the IBM® ILOG® Script API to populate the solution pool and use
the solutions found.

In this section

How the flow control script works
Illustrated via the model solpoolscript.mod.

Executing the flow control script
Using the warehouse project.

I B M I L O G O P L I D E T U T O R I A L S 167

How the flow control script works

The model solpoolscript.mod is a variation of scalableWarehouse.mod and has been
written to illustrate how the flow control script works. It contains the main flow control
script shown in the following code extract.

Flow control script for pool solutions (solpoolscript.mod)
main {

thisOplModel.generate();
cplex.solve();
cplex.populate();
var nsolns = cplex.solnPoolNsolns;
writeln("Nsolns = ",nsolns);
for (var s=0; s<nsolns; s++) {
thisOplModel.setPoolSolution(s);
writeln("---------");
writeln("sol ", s, " objective = ", cplex.getObjValue(s));
for (var i in thisOplModel.Warehouses)
writeln("Open[",i,"] = ", thisOplModel.Open[i]);

}

This flow control script

1. creates and extracts the model, and populates the solution pool after a regular MIP
solve

thisOplModel.generate();
cplex.solve();
cplex.populate();

2. gets the number of solutions in the solution pool

var nsolns = cplex.solnPoolNsolns;
writeln("Number of solutions found = ",nsolns);

3. uses the solutions in the model

writeln();
for (var s=0; s<nsolns; s++) {
thisOplModel.setPoolSolution(s);

4. gets the objective values for those solutions

writeln("solution #", s, ": objective = ", cplex.getObjValue(s));

5. writes the results to the Scripting Log

write("Open = [");
for (var i in thisOplModel.Warehouses)
write(thisOplModel.Open[i], " ");

writeln("]");
writeln("---------");

I B M I L O G O P L I D E T U T O R I A L S168

Executing the flow control script

To execute the flow control script:

1. Select the warehouse project.

2. Right-click the run configuration name Solution pool script and choose Set as
Default.

3. Execute the run configuration.

Notice that:

♦ The result of the script execution is reported in the Scripting log. The number of
solutions found is written at the top of the Scripting log tab.

♦ You cannot see the list of solutions from the Problem Browser.

♦ If you add an .ops file and check the option Populate solution pool, it is not taken
into account because script statements prevail over IDE settings.

For more information

– on the solution pool in general: see the CPLEX documentation, in particular the specific
chapter in the CPLEX User’s Manual.

– on the IBM ILOG Script API for the solution pool: see the IBM ILOG Script Reference
Manual.

I B M I L O G O P L I D E T U T O R I A L S 169

I B M I L O G O P L I D E T U T O R I A L S170

Using the performance tuning tool

Describes how to improve the combination of parameters for the CPLEX® part of your
model(s).

In this section

Purpose and prerequisites
Introduces the CPLEX performance tuning tool and tells you where to find the files for the
tutorial.

How performance tuning works
Describes the CPLEX performance tuning tool.

How to use performance tuning in the IDE
Two ways of using the performance tuning tool, first without fixed settings, then by specifying
the settings you want to use.

I B M I L O G O P L I D E T U T O R I A L S 171

Purpose and prerequisites

The purpose of the CPLEX® performance tuning tool is to find the best combination of
parameters for the CPLEX part of your model(s) that can be set in the OPL settings. The
tuning can be done for one or several run configurations so that the search performs best
when your application is deployed. Because, in a deployed application, data changes between
each invocation of the engine, performance tuning can be executed on a set of problem
instances.

Prerequisites
The tutorial assumes that you know how to work with projects in the IDE. If this is not the
case, read Getting Started with the IDE first.

Where to find the files
The tutorial is based on the warehouse project available at the following location:

<OPL_dir>\examples\opl\warehouse

where <OPL_dir> is your installation directory.

The warehouse location problem is described inWarehouse location problems in the Samples
manual.

You will open this OPL project and all projects in these tutorials using the New Example
wizard, which allows you to open and work with a copy of the distributed example,

Note:

leaving the original example in place. If you need a reminder of how to use the New
Example wizard, see Opening distributed examples in the OPL IDE.

I B M I L O G O P L I D E T U T O R I A L S172

How performance tuning works

The tuning tool works as follows:

♦ It considers one or more run configurations you specify.

If the run configurations selected contain different models, the tuning process generates
a .sav file for each selected configuration and optimizes the parameters for all these .
sav files considered together.

Even if the run configurations use the same model, the tuning process always passes
different .sav files to CPLEX® because the data may be different from one configuration
to the next.

♦ It ignores any change to the default settings specified in execute script statements.

♦ If you want it to define some CPLEX parameters that should remain unchanged, you must
pass them as a specific .ops file, known as the Fixed Settings file.

♦ The tuning process executes the models several times in the background, each time with
a different set of settings (which may affect the solving time).

♦ If there is a main block, tuning won't work.

At the end of the solve iterations, the process generates an .ops file containing the OPL
settings (CPLEX parameters) that it has found to be the best to solve the problem the fastest.
This tutorial focuses on the IDE implementation but the performance tuning feature also
works from the oplrun command. See the document oplrun Command Line Interface.

For a more complete description of the tuning process, please refer to the CPLEX
documentation.

I B M I L O G O P L I D E T U T O R I A L S 173

I B M I L O G O P L I D E T U T O R I A L S174

How to use performance tuning in the IDE

Two ways of using the performance tuning tool, first without fixed settings, then by specifying
the settings you want to use.

In this section

Tuning without fixed settings
Provides a procedure for tuning a model in the OPL IDE.

Results
Discusses the new settings file created at the end of the tuning process.

Tuning with fixed settings
How to tune parameters to get the best performance in a specific context.

Tuning options
To set the level of information reported by the tuning process.

Temporary tuning files
Temporary files created by the tuning process can be saved to disk to examine later.

I B M I L O G O P L I D E T U T O R I A L S 175

Tuning without fixed settings

To observe this:

1. Right-click on the warehouse project and select Tune project .

The tuning wizard opens.

I B M I L O G O P L I D E T U T O R I A L S176

Tuning wizard

By default, all the run configurations defined in the project are selected. Uncheck the
ones you don’t want to tune. If all run configurations are unchecked, the Finish button
is not available.

I B M I L O G O P L I D E T U T O R I A L S 177

2. In this exercise, uncheck all configurations except Scalable data.

3. In the Result file area, you need to provide a name for the settings file (.ops) output.

4. Click Finish. During the tuning process, the Engine Log reports the percentage of
progress, the settings worked on at each solve iteration, the execution time, the
objective value, the best bound value. "Time limit exceeded" means that the particular
tuning iteration took longer than the fastest iteration run so far.

Please note that the progress of the tuning operation is shown in two
different locations — in the Engine Log tab, and at the right of the IDE's

Note:

Status Bar. The percentages shown in these two locations may not be
identical.

I B M I L O G O P L I D E T U T O R I A L S178

Results

When the tuning process is completed, a new .ops file is created and automatically added
to the project. If you double-click it, you can see in the editor what values have been modified.

Depending on your hardware configuration, the execution speed may change, hence the
results of the tuning process may be different.

If you add the tuning result file to the scalable data run configuration and execute this
configuration, notice that the execution time is shorter (almost reduced by half) and that
the Engine Log is different.

I B M I L O G O P L I D E T U T O R I A L S 179

Tuning with fixed settings

Sometimes, you may want to tune parameters to get the best performance in your own
specific context. For example, in your context the best performance may be, instead of the
optimal solution, a solution that is within a certain gap from the optimal one. To achieve
this, you can pass the performance tuning tool a set of fixed parameters which the tuning
process cannot change as they will be used in your model. These settings are taken into
account “as is” to calculate the tuning results.

To observe how tuning results differ if you pass a file of fixed settings.

1. Select the warehouse project.

2. Add a new settings file, as explained in Adding a settings file in Getting Started with
the IDE to the Scalable data configuration.

3. In theMixed Integer Programming >Tolerances page, change the Relative MIP
gap tolerance to 0.02.

4. Right-click on the warehouse project and select Tune project .

5. Make sure that only the run configuration Scalable data is selected.

6. In the Fixed settings field, select the name of the .ops file you have just created with
a custom value for Relative MIP gap tolerance.

7. Change the name of the tuning-result file so as not to overwrite the existing one.

8. Click Finish.

The Relative MIP gap tolerance value you have set appears in the tuning results.

Please note that the progress of the tuning operation is shown in two
different locations — in the Engine Log tab, and at the right of the IDE's

Note:

Status Bar. The percentages shown in these two locations may not be
identical.

I B M I L O G O P L I D E T U T O R I A L S180

Tuning options

TheMathematical programming>Tune options enable you to set the level of information
reported by the tuning process, the measure for evaluating the progress, the number of
times the process should be repeated on perturbed versions, and the time limit per run
configuration and test set. These options are documented in Mathematical programming
options, section CPLEX parameters and OPL parameters.

MP Tune options

The possible Tune settings are:

♦ Tuning information display—Specifies the level of information reported by the tuning
tool as it works. Options are:

● No display (0)

● Display standard, minimal reporting (1 — the default)

● Display standard report plus parameter settings (2)

● Display exhaustive report and log (3)

♦ Tuning measure—Controls the measure for evaluating progress when a suite of models
is being tuned. You can specify whether you want the best average performance or the
least worst performance across a set of models. Options are:

● Average (mean time — the default)

● Minmax (minmax time)

I B M I L O G O P L I D E T U T O R I A L S 181

♦ Tuning repeater— Specifies the number of times tuning is to be repeated on reordered
versions of a given problem. Options are:

● Any non-negative integer (Default: 1)

♦ Tuning time limit—Sets a time limit per model and per test set (that is, suite of models)
applicable in tuning. Options are:

● Any non-negative number (Default: 10000)

I B M I L O G O P L I D E T U T O R I A L S182

Temporary tuning files

You can save the temporary .sav files created by the tuning process to disk to examine their
content later.

To save the temporary tuning files:

1. Add a settings file as explained in Adding a settings file in Getting Started with the
IDE.

2. Make sure you add it to the run configurations you want to tune.

3. In the new settings file, check the option Language > General > Keep temporary
tuning files.

4. Enter a target directory for the temporary files.

Keeping temporary tuning files

Next time you tune run configurations of the project, you will find the corresponding
.sav file in the directory you have selected. You can reuse this file in IBM ILOG CPLEX.

I B M I L O G O P L I D E T U T O R I A L S 183

I B M I L O G O P L I D E T U T O R I A L S184

A
Abort Execution button 89, 90
aborting execution 89
Access databases

connection to 55
creating a table 56
updating 56

Add/Remove Breakpoint button 85, 98
addRangeFilter method

IloCplex class 163
arrays

initialization (IBM® ILOG Script) 96
one-dimensional, in oil database example 54
one-dimensional, in oil spreadsheet example
67

asterisks in Engine Log output tab 20

B
Best Integer value, in progress charts of MPmodels
20
Best Mode value, in progress charts of MP models
20
blending problem

oil example 48
oilSheet example 64
working with external data 44

blue arrow 86, 88, 102
breakpoints

adding/removing 85, 98
and Run to Cursor button 89

buttons
Continue 104
Debug 85, 98
Step Into 89, 90, 99, 102, 104
Step Out 101, 103
Step Over 85, 88, 90, 99, 101

C
call stack 87
cells, reading 69
code samples

covering.dat 110
mulprod.dat 82
mulprod_main.mod 82
nurses.mod 118
oil.mod 67
oilDB.dat 55
oilDB.mod 53
oilSheet.dat 69
profiler.mod 140
scalableWarehouse.mod 148
transp4.mod 94
warehouse example 15

conflicts 116
potential 134

Conflicts output tab 119
conflicts when relaxing infeasible models 134
constraint programming

working with external data 44
constraints

in the transportation example 92
labeling 132

Continue button 89, 90, 104
Copy contents to clipboard, right-click command

from Profiler column headers 142
Count, column header in Profiler 150
counting

in Profiler table 150
covering, sample models 105, 106
CP Optimizer

working with external data 44
CPLEX engine

warm start 88
CPLEX node log 22

© Copyright IBM Corp. 1987, 2009 185

I N D E X

Index

CPLEX parameters
for the solution pool 162
ignored by performance tuning tool 173
in the call stack 88
setting a value 26, 41, 96

CPLEX performance tuning tool 172
cplex, model instance

predefined object 88
creating

a database table 56

D
data

display 97
external 44
initialization

and sparsity 94
table view in Problem Browser 24

data files
oil database example 55
oil sheet example 69

data sources
connecting to 45
table loading 54

data structures
in Problem Browser 24

data tables
oil database example 50

database connection
connectivity 45
data tables 50
model 53
ODBC 55
Oracle 45
prerequisites 45
reading columns and rows from a database
55
storing results in a database 56
supported databases 45
the oil database example 47
updating a database 56
viewing the data tables 50

database table, creating 56
DBConnection, OPL keyword 45, 55
DBExecute, OPL keyword 56
DBRead, OPL keyword 55
DBUpdate, OPL keyword

ODBC vs. Oracle 56
Debug button 85, 98
debugging

flow control script 85
preprocessing scripts 98
Run to Cursor button 89
stepping into a loop 102

decision variables
table view in Problem Browser 24

Description tree
in Profiler output tab 142

diversity filters for the solution pool 163
division

div operator 16
Dual Simplex algorithm

output 97

E
ECMA-262 standard 76
editing area

navigation 24
efficient models

labeling constraints 132
ellipsis

in call stack 99
end of execution 89
end of line 82
Engine Log (CPLEX node log) 22
Engine Log output tab

stars 20
Engine Log output tab (CP engine)

steel mill example 39
error checking

read-only spreadsheet 71
examples

covering 105
multiperiod production planning 79
nurses 116
oil database 47
oil sheet 63
profiler 140
scalable warehouse 148
transportation 91

execute, IBM® ILOG Script block 106, 110
covering example 108
for preprocessing 92
transportation example 94
using the function keyword 97

executing
flow control script 83
oil database example 58
oil sheet example 71
preprocessing scripts 95
projects 18, 119, 141, 149
scripts 111, 112

execution
abort 89
events, description 18
slow 136, 139

external data 44
extraction and solving info, in Profiler output
window 150

F
feasible solutions

I B M I L O G O P L I D E T U T O R I A L S186

postprocessing 112
files

mulprod_main.mod 80
oil example 48
oilSheet example 64
profiler example 136
read-only spreadsheet 71
scalableWarehouse example 148
warehouse example 14, 136

filtering
solution pool 163

fixed settings, in performance tuning process 180
flow control 80

and the solution pool 167
debugging a script 85
executing a script 83

function, IBM® ILOG Script keyword
used in an execute statement 97

functions
in an execute block 97

G
generic indexed arrays

in oil database example 54
getConflict method

IloCplex class 134
green status indicator 24, 89

I
IBM® ILOG Script

executing 83, 111, 112
multiperiod production example 79
stepping out into a loop 102
tutorial 76

IBM® ILOG Script Objects window 86, 87
idle state 24, 90
IloCplex class

getConflict method 134
IloOplModel class 88
infeasible models 115, 116
initializing

arrays, via scripting 96
integer division operator 16
integer programming 106
integer solutions

notification 24
intermediate solutions

postprocessing 112
iterations in flow control script 84

J
JavaScript, definition 76

K
kernel time 143
keywords

DBConnection 45, 55

DBExecute 56
DBRead 55
SheetConnection 69
SheetRead 69
SheetWrite 70

L
labeling constraints 132
linear programming 48
lines, end of 82
loops

monitoring 92, 103

M
main, IBM® ILOG Script block

in multiperiod production planning example
80
last expression value, in the Scripting Log
tab 84

memory consumption
by model elements 139, 146
displayed in Profiler table 136

MIP
example 13, 30, 156
solution pool 156
tolerances 26

models
blending 44
covering 105, 106
extraction and solving info, in Profiler table
147
infeasible 116
linear programming 48
mixed integer programming 13, 30, 156
multiperiod production planning 79
new instance in script 84
nurses 116
profiling 136
slow or memory-consuming elements 139
transportation 91
tuning performance 172
warehouse location 14

modifying parameter values 26
modulus operator 16
monitoring loops 92, 103
MP options 181
mulprod_main.mod production example 80
multicommodity flow problem 92
multiperiod

production planning 79
multiple spreadsheets 69

N
named script statement 110
navigation tools, within a model 24
new database table 56
New Example wizard 76

I B M I L O G O P L I D E T U T O R I A L S 187

features of 76
Nodes, column header in Profiler 150
notification of integer solutions 24
nurses example 116

O
ODBC

database connection through Access 55
placeholder syntax 56
vs. Oracle 56

oil blending examples
with database connection 47
with spreadsheet connection 63

one-dimensional arrays
in oil database example 54
in oil spreadsheet example 67

Open Project File button 159
options

setting via scripting 96
Oracle 45

placeholder syntax 56
vs. ODBC 56

orange status indicator 18
order

of Profiler table rows 143
output

from postprocessing 112

P
partial solution. See feasible solutions 18
performance tuning tool 172
placeholders in database systems 56
Populate solution pool, OPL Language option 161
postprocessing

executing 111
output for the covering example 112
script 106

preprocessing scripts 92
arrays 54
CPLEX parameters, setting 96
debugging 98
displaying data 97
executing 95
filtering solutions 163
OPL options, setting 96

prerequisites
for database connection 45

Problem Browser
displaying data structure 24
navigating the model file 24
solution pool 159

processing time vs. user time 143
profiler example 136
Profiler output tab

analyzing contents 146
description of contents 142

profiling model execution 136
profiler example 140
scalable warehouse example 148

Progress chart 19, 35
projects

executing
nurses example 119
profiler example 141
scalable warehouse example 18, 149

Q
quadratic constraints, number displayed in
Statistics output tab 21

R
range filters for the solution pool 163
reading

columns/cells from a spreadsheet 69
columns/rows from a database 55

red dot 85
red exclamation mark/red star, default value
changed 26
red status indicator 89
relational database. See database connection 48
Relative MIP gap tolerance, MIP Tolerances option
26
relaxations

setting the relaxation level 133
suggested for infeasible models 116

Relaxations output tab 119
relaxing infeasible models 115
removing

breakpoint 85, 98
results

of database update, viewing 60
storing in a spreadsheet 70
viewing in a spreadsheet 73

run configurations
executing using the Debug button 85
tuning model performance 172

Run to Cursor button 89
running state 18

S
scalableWarehouse.mod, model for the warehouse
problem 148
scripting

changed settings ignored by performance
tuning tool 173

Scripting Log output tab
writing to 110

scripts
debugging 76
execute blocks 92
execute, IBM® ILOG Script block 110
executing 83, 111, 112
flow control 80

I B M I L O G O P L I D E T U T O R I A L S188

postprocessing 106
preprocessing 95
stepping into a loop 102
using a function 97
value of the last expression in Scripting Log
page 84
write to Scripting Log 110

semi-colon
optional/mandatory 82

set covering problem 106
sets

in oil database example 53
in oil sheet example 67

SheetConnection, OPL keyword 69
SheetRead, OPL keyword 69
SheetWrite, OPL keyword 70
slow model elements 139, 146
solution pool

filters 163
populating 161
setting options 162
tutorial 156

solutions
feasible, postprocessing 112
notification 24
obtaining more (MIP) 161
progress chart 19, 35

sorting order
in Profiler table 143

sparsity
and data initialization 94
in the transportation example 92

spreadsheets
connecting to

oil sheet example 64
multiple 69
read-only file 71
reading from 63
viewing the data 65
viewing the result of an update 73
writing to 63, 70

SQL requests
knowing the syntax 45
syntax of placeholders 56

stars in Engine Log output tab 20
statements

in IBM® ILOG Script for OPL 78
states

running 18
Statistics output tab

progress chart 19, 35
steel mill example 36

status after main script 84
status indicator

green 24, 89

orange 18
red 89

status messages
after execution 24

Step Into button 89, 90, 99, 102, 104
Step Out button 101, 103
Step Over button 85, 88, 90, 99, 101
stepping, when debugging a script 88
storing results in a spreadsheet 70

T
table loading 54
thisOplModel, implicit model 88
thresholds

in Profiler table 144
time

measured in Profiler table 136
time limit 96
tolerances (MIP) 26
tooltips

values in tuple set 99
transportation problem

preprocessing scripts 91
presentation 92

tuning process 172, 181
temporary files 183
with fixed settings 180

tuple arrays
in oil sheet example 67
in oil spreadsheet example 67

tuple sets
in call stack 99
in oil database example 54

tuples
in oil database example 53
in oil sheet example 67

tutorials
connection to a database or spreadsheet 44
IBM® ILOG Script for OPL 76
infeasible models 116
profiling a model 136
progress chart 13, 30
solution pool 156
tuning a model 172

U
updating a database 56

viewing the result 60
user time vs. processing time 143

V
variables

display
via scripting 97

viewing
contents of spreadsheets 65
results in spreasheet 73

I B M I L O G O P L I D E T U T O R I A L S 189

results of database update 60
tables in a database 50

W
warehouse example 136, 148, 159, 172

solution pool 156
warehouse location problem

execution of run configuration with scalable
data 18
presentation 14

warehouse project
tuning tool 176

warm start 88

I B M I L O G O P L I D E T U T O R I A L S190

	Table of contents
	IDE Tutorials
	About IDE tutorials
	Understanding solving statistics and progress (MP models)
	Purpose of the tutorial
	The scalable warehouse example
	The scalable warehouse project
	Executing the warehouse project with scalable data
	Examining the statistics and progress chart (MP)
	The Progress Chart (MP models)
	The Statistics table (MP models)

	Examining the engine log
	Examining the results and the data
	Changing a CPLEX parameter value

	Understanding solving statistics and progress (CP models)
	Purpose of the tutorial
	The steel mill example
	Executing the model in the OPL IDE
	Coloring of CP keywords and functions in the IDE
	Examining the statistics and progress chart (CP)
	Statistics
	The progress chart (CP models)
	The statistics table (CP models)

	Examining the engine log
	Changing a CP parameter value

	Working with external data
	Purpose and prerequisites
	Using data sources
	The oil database example
	Description of the example
	The oil database tables
	The oil database project
	The oil database data file
	Executing the oil database example
	Viewing the result in the database
	The Result table after execution

	The oil sheet example
	Description of the example
	The oil data spreadsheet
	The oil sheet project
	The oil sheet data file
	Executing the oil sheet example
	Viewing the result in the spreadsheet
	The RESULT sheet after execution

	Using IBM ILOG Script for OPL
	Purpose and prerequisites
	Features of IBM ILOG Script for OPL
	The multiperiod production planning example
	Presenting the multiperiod production planning example
	Setting up the multiperiod production model and data
	Executing a flow control script
	Purpose of the flow control script
	Debugging a flow control script

	The transportation example
	Presenting the transportation example
	Setting up the transportation model and data
	Executing preprocessing scripts
	Purpose of the preprocessing scripts
	Debugging a preprocessing script

	The covering example
	Presenting the covering example
	Setting up the covering model and data
	Purpose of the postprocessing script
	Executing a postprocessing script
	Postprocessing a feasible solution

	Relaxing infeasible models
	Presenting the nurse scheduling example
	Setting up the nurses model and data
	Executing the nurses project (1)
	Working on the execution results
	Studying the suggested relaxation
	Studying the suggested conflicts
	Changing the data

	Executing the nurses project (2)
	How relaxation and conflict search works
	Relaxations
	Setting the relaxation level
	Conflicts

	Profiling the execution of a model
	Purpose and prerequisites
	Identifying slow and memory-consuming model elements
	Presenting the profiler example
	Executing the profiler model
	Description of the profiling information
	Examining the profiling information

	Examining model extraction and solving
	Presenting the scalable run configuration
	Executing the scalable run configuration
	Examining the extraction and search information
	Turning off the Profiler
	Drawing conclusions

	Working with the solution pool
	Purpose and prerequisites
	The solution pool in the OPL IDE
	How the solution pool works
	Examining pool solutions in the Problem Browser
	Obtaining more solutions
	Setting solution pool options

	Filtering the solution pool
	Solution pool filters
	Adding a range filter

	Flow control script and solution pool
	How the flow control script works
	Executing the flow control script

	Using the performance tuning tool
	Purpose and prerequisites
	How performance tuning works
	How to use performance tuning in the IDE
	Tuning without fixed settings
	Results
	Tuning with fixed settings
	Tuning options
	Temporary tuning files

	Index

