
Optimization modeling with IBM ILOG OPL

Instructor workbook

© Copyright IBM Corporation 2009. All rights reserved.
IBM, the IBM logo, and WebSphere are trademarks or registered trademarks of International Business Machines Corporation in the
United States, other countries, or both.
Other company, product, and service names may be trademarks or service marks of others. References in this publication to IBM
products or services do not imply that IBM intends to make them available in all countries in which IBM operates.

IBM ILOG OPL
Course version: 6.3
Course reference: OPL63-tr1_0731 / Document ID: OPL63-WB-IN-tr1_0731

Contents

Lesson 1: Introduction to Optimization with IBM ILOG OPL...11
The big picture: IBM ILOG Optimization Suite...12
Inside OPL...15
Example: a production planning problem...21
Summary...29

Lesson 2: Working with the OPL Language..31
OPL model structure..32
OPL data files..36
OPL data structures...37
A telephone production problem..45
Combining OPL data structures...52
General OPL syntax ..56
Sparsity and slicing..57
A pasta production model..61
Summary...67

Lesson 3: Working with IBM ILOG Script: basic tasks...69
About IBM ILOG Script..70
IBM ILOG Script basics...71
Preprocessing and postprocessing..72
Data initialization..75
Processing values in the .dat file...77
Flow control..78
Summary...79

Lesson 4: Solving Simple LP Problems...81
LP modeling structures..82
Supermarket display problem..86
Summary...94

Lesson 5: Solving Simple CP Problems..95
Introduction to CP..96
CP models in OPL ..101
Summary...115

Lesson 6: Infeasibility and Unboundedness - When the Problem Can't be Solved.......................117
Solving the infeasible model..118
Summary...124

Lesson 7: Data Consistency...125
Data membership consistency...126
Verifying data consistency...127
Summary...128

Lesson 8: Linking to Spreadsheets and Databases with OPL...129
Exchanging data with a spreadsheet...130
Connecting to a database..135
Reading from a database...137
Writing to a database...140
Summary...145

Lesson 9: Scheduling in OPL with CP Optimizer..147
Introduction to scheduling..148
A simple scheduling problem...149
Scheduling constraints...152
Putting everything together - a staff scheduling problem...160
Model the staff scheduling problem...162

© Copyright IBM Corporation 2009. All rights reserved. 3

A house building calendar problem..170
Matters of State: Understanding State Functions..175
A wood cutting problem...177
Summary...181

Lesson 10: Integer and Mixed Integer Programming ..183
IP and MIP models in OPL...184
A warehouse allocation model...188
Summary...193

Lesson 11: Piecewise Linear Problems...195
Modeling piecewise linear functions..196
Summary...201

Lesson 12: Network Models..203
Product delivery: a network problem..204
Summary...217

Lesson 13: Portfolio Optimization with Quadratic Programming..219
Quadratic programming and OPL..220
Summary...229

Lesson 14: From Model to Application - The ODM Connection...231
What is an ODM application?..232
ODM architecture...234
Generating a basic ODM application...236
Creating an ODM application from a CP Scheduling model..245
Extending ODM applications: custom visualizations..247
Working with multiple scenarios in ODM Studio..250
ODM Requirements...255
Copy to Microsoft Office...258
Summary...259

Lesson 15: Flow Control with IBM ILOG Script...261
IBM ILOG Script extensions for OPL...262
Flow control and the main block...264
Model and data access..269
Postprocessing and debugging..276
Lab – The Staffing Problem...278
Column generation with IBM ILOG Script..283
Summary...285

Lesson 16: Integrating OPL Models with Applications..287
The process of OPL model integration..288
The IBM ILOG OPL Interfaces...291
OPL extension classes..296
The oplrun command...298
Summary...303

Lesson 17: Optimizing Engines and Algorithms..305
Choosing your optimization engine..306
CPLEX optimization algorithms...307
Controlling optimization..311
Summary...314

Lesson 18: Performance Tuning...315
Prefer declarative syntax..316
Use sparse arrays..317
Think about data instantiation..318
Scripting hints..320
Choose your MP optimizer...321
Additional performance tuning tips...322

© Copyright IBM Corporation 2009. All rights reserved.4

Summary...323

Lesson 19: Appendix: The OPL IDE Graphical Interface..325
The OPL IDE main window..326
Working with projects...333
Managing projects..339
Problem browsing..343
Solving and debugging..346
Summary...352

Conclusion...353

© Copyright IBM Corporation 2009. All rights reserved. 5

About this course

This section provides you with a brief description of the course, audience, suggested
prerequisites, and course objectives.

Course description
This is a 3-day course on the fundamentals of IBM® ILOG®Optimization Programming
Language (OPL) Development Studio.

Audience
Specialists who need to design models to solve business optimization problems.

Course objectives
• Learn to use IBM ILOG OPL by solving practical problems
• Gain a working knowledge of OPL features and functions
• Understand the role of OPL and its relationship to other tools in the solving of
complex business optimization problems

© Copyright IBM Corporation 2009. All rights reserved.6

Prerequisites
• Working knowledge of the Microsoft Windows operating system
• Knowledge of basic algebra
• For problems that use CPLEX, basic knowledge of mathematical programming
and/or modeling concepts

How to use
This workbook provides you with the information that you need in order to present the
main concepts of OPL to the students. The slides that accompany the workbook show
the structure of the workbook (through its lesson and topic headings) as well as some
of the graphics and main points.

Use the slides as a guide, and to prompt you to cover topics in the correct order, but you
will need to refer to the workbook to prepare the complete standard content.

The material is divided into three groups of modular lessons:

• Core lessons – the basic information needed to use OPL
• Additional modules – additional topics of interest to many users

See the HTML Notes for Instructor page for details of how these are organized. You
will also find a guide as to how you can present an MP-only or CP-only progression.

You should go through the core material in sequence as it is presented in the workbook,
adding examples and explanation as appropriate. It is possible to insert some optional
topics between the core lessons if it seems appropriate.

Additional modules should be programmed by you as a function of expressed needs of
the customer and interests of your training group.

© Copyright IBM Corporation 2009. All rights reserved. 7

There are instructor notes throughout the workbook that are only available in your
copy of the workbook. These either remind you of particular points to make that are
not part of the main flow of the workbook, or contain additional information and hints
to help you illustrate a point.

Some lessons contain practices. Practices can be any of the following:

•

Labs (indicated by a small computer icon) are formal exercises accessed
from your web browser that have associated OPL model and data files. They
are to be performed by the students with your guidance.

•

Hands-on (indicated with a small hand icon) are less formal
demonstrations and exercises. They can be carried out by both the instructor
and the students, or just used by the instructor to demonstrate a particular
feature. Students should try to complete all the hands-on practices to further
their understanding of the product.

•

Discussions (indicated with a small icon of two people talking) are
informal and can be used to start a discussion or exploration of a theme developed
during the training sessions.

<TrainingDir>refers to the directory in which the practical part of the training is
stored. Usually this is a directory that can be found directly on C:, for example:
C:\OPLTraining. This contains a directory of lab files, including both work and solution
files.

You should encourage the trainees to consult the user documentation, as it contains
descriptions of procedures that may help them to complete the hands-on practices. The
documentation can be found within the standard help system of the graphical
environment provided in the OPL IDE. To access the OPL Online Help, click Help on
the Help menu. Dynamic contextual help for many functions in OPL and IBM ILOG
Script is available via the F1 key.

Typographical conventions used in this workbook

ExampleMeaningTypography

forall (p in products)
production[p] >=

Min[p];

Code sample, screen output,
directory paths or file names, user
input to be typed

Text in fixed
width font

<FileName>Token for data (in code samples
or templates)

<Fixed width
font in angle
brackets>

<Explanation>
</Explanation>

XML tag (in code samples or
templates)

<enter>Key press other than a character

File >New >New Default
Scenario

Menu selections, buttons,
navigation tree items

Bold text

In ODM, scenarios are
grouped together in one ormore
workspaces.

Key terms in the body of the
workbook

© Copyright IBM Corporation 2009. All rights reserved.8

ExampleMeaningTypography

int a[1..10] = [i-1 : i
| i in 2..11];

In a model file, represents the
mathematical such that

| (vertical bar)

<type> <name>[index] =
<member1>, <member2>; |
...;

In a command line or syntax
model, exclusive or

The use of {curly braces} or [square brackets] is as per the language sampled

(e.g. JavaTM, OPL language, XML, etc.)

Parentheses – () – in code samples are used only when required by the syntax, and
are thus to be typed in all languages

Classroom information
Read through the workbook paying particular attention to the instructor notes.

Classroom preparation list
• Try all demonstrations/practices to make sure that you are familiar with their

aims, and that OPL [ODM] and the training material are correctly installed.
• Read through the slides making sure that you are familiar with the main points

in the sections that they reference.
• Verify the installation of OPL and the training practice files on each machine

in the classroom.
• Try all the labs and hands-on practices and make sure you are able to complete

them without problems.
Classroom setup list

• This list identifies what must be present in the classroom
• Projector
• Whiteboard
• Up to ten PCs each with the following installed:

• Any one of the following: Microsoft®Windows® Vista, Windows XP
Professional, Microsoft Windows 2003 Server

• Microsoft Excel 2003 Professional or higher
• Microsoft Access 2003 Professional or higher
• OPL V6.3
• OPL V6.3 training material
• ODM V3.3 (if you intend to demonstrate the ODM connection in your

training)
• To do the API based labs, you will need one or more development

environments such as JDK V5.0 or higher, Eclipse or Microsoft Visual
Studio.

To start the class, introduce yourself to the students and have them introduce themselves
to the group. You may also want to discuss logistical details: coffee breaks, lunch, and
so on.

A note about the timings of each lesson. These are given at the beginning of
each lesson in the instructor's workbook only, and are very approximate.
It is impossible to deliver all the modules of this training in three days. You
should determine which of the optional lessons are important for your trainees,
and organize the material in a logical sequence. In general, all the core lessons
should be presented (you can skip Lesson 3 for CP-only or lesson 4 forMP-only).
Feel free to insert some optional lessons in between the core lessons if it suits
you for timing or pedagogical purposes.

© Copyright IBM Corporation 2009. All rights reserved. 9

Depending on local customs about lunch hour, etc. you may need to break a
single lesson in the middle. If so, plan ahead where that break should occur so
that students can keep continuity before and after the break.

© Copyright IBM Corporation 2009. All rights reserved.10

Lesson 1: Introduction to Optimization with IBM
ILOG OPL

Instructor note
This lesson should last about 1 hour

In this lesson, you will meet IBM® ILOG® OPL and see how it fits into the IBM ILOG
Optimization Suite of products. You'll learn about the OPL Integrated Development
Environment (IDE) and the powerful IBM ILOG optimization engines available through
OPL. You'll get an overview of the functionality available through the OPL IDE, and
understand how OPL projects are managed. In addition, you'll learn how to recognize the
basic optimization model elements when looking at an OPL model, and understand what
IBM ILOG Script is.

By the end of this lesson, you will:

• Be able to understand how the IBM ILOG Optimization Suite components work
together to solve complex problems, and OPL's role in it.

• Know the optimization techniques and be able to identify the optimization engines
available through OPL.

• Understand the basic functionality of the OPL IDE.
• Understand what an OPL project is and how OPL projects are organized and

managed.
• Know how to recognize the basic model elements, namely data, decision variables,

objectives and constraints, when looking at an OPL model.

© Copyright IBM Corporation 2009. All rights reserved. 11

Lesson 1: Introduction to Optimization with IBM ILOG OPL

The big picture: IBM ILOG Optimization Suite

Learning objective
Understand the interworking of the

IBM® ILOG® Optimization Suite
components as a complete solution
system

Key terms
• IBM ILOG Optimization Suite
• OPL
• ODM
• application development and

deployment

The IBM ILOG Optimization Suite is a set of products for
developing custom optimization applications that use IBM's
powerful optimization engines.

It provides a complete support system for the optimization
application development process. Modelers and IT personnel can
collaborate to rapidly develop and deploy state-of-the-art planning,
scheduling and other optimization applications.

The components of the IBM ILOG Optimization Suite
• Model development tool: IBM ILOG OPL
• Application development tool: IBM ILOG Optimization

Decision Manager (ODM)
• Optimization engines:

• IBM® ILOG® CPLEX® for Mathematical
Programming (MP)

• IBM ILOG CP Optimizer for Constraint
Programming (CP)

What is IBM ILOG OPL?
IBM ILOG OPL is an integrated development environment (IDE) for optimization
model building, debugging and tuning.

• OPL models are written with easy-to-use declarative language.
• OPL is designed to take maximum advantage of IBM ILOG CPLEX and IBM

ILOG CP Optimizer:
• An OPL model can be used standalone, or as part of an ODM application.
• OPL includes a scripting language (IBM ILOG Script) for pre- and

post-processing, as well as flow control.

What is IBM ILOG ODM?
IBM ILOG ODM is a specialized application development and deployment tool used
to build highly interactive, state-of-the-art, custom decision support applications.

• ODM facilitates collaboration between
Operations Research (OR) experts,•

• Information Technology (IT) professionals, and
• Business decision makers.

• ODM includes advanced functionality such as scenario creation and comparison,
what-if analysis, and powerful graphics and charting tools.

• An ODM application is generated through the OPL IDE.
• An ODM application can use an OPL model, or any other optimization model

called through the OPL IDE (for example, a model written in JavaTM and called
in the OPL IDE using IBM ILOG Script).

To sum up:
• Use OPL for modeling
• Use ODM for prototyping, application development and deployment

as per the following diagram:

© Copyright IBM Corporation 2009. All rights reserved.12

Lesson 1: Introduction to Optimization with IBM ILOG OPL / Topic 1: The big picture: IBM ILOG Optimization Suite

Roles and goals
The IBM ILOG Optimization Suite is designed to facilitate the work of different people
involved in an application powered by optimization.

© Copyright IBM Corporation 2009. All rights reserved. 13

Lesson 1: Introduction to Optimization with IBM ILOG OPL / Topic 1: The big picture: IBM ILOG Optimization Suite

OPL is a tool for building optimization models. It is typically used by OR specialists
who work with other experts, for example:

• Software experts who perform data integration and integration with the target
deployment environment.

• Decision makers who provide the business and application requirements, and
who may also be the end users.

ODM is both an application environment, used by business users to do their analysis,
and an application development and deployment tool, used by OR and IT professionals
to develop custom applications.

The goals of the IBM ILOG Optimization Suite are:

• Allow creation of intuitive, interactive optimization applications:
Provide what-if analysis tools•

• Furnish understandable solutions to complex schedules and plans
• Leverage the power of optimization specialists
• Leverage the insight of humans where the plan or schedule meets reality

• Reduce development time and risk via tight integration of different components
of the system

• Allow rapid prototyping of applications
• Encourage and augment business stakeholders’ participation in the model

refinement and application development processes

© Copyright IBM Corporation 2009. All rights reserved.14

Lesson 1: Introduction to Optimization with IBM ILOG OPL / Topic 1: The big picture: IBM ILOG Optimization Suite

Inside OPL

Learning objective
Get an overview of the capabilities
and features of OPL.

Key terms
• OPL IDE
• optimization model
• optimization engine
• OPL project

You will now take a brief tour of OPL and discover its capabilities
and features.

OPL in a nutshell
OPL = Optimization Programming Language

Optimization modelers use OPL to create and test optimization
models consisting of a combination of data, decision variables,
objectives and constraints.

OPL is available as a standalone product or through ODM
Enterprise as the OPL perspective in the ODM Enterprise IDE.

Optimization techniques in OPL
The optimization techniques available in OPL are:

• Mathematical Programming (MP), specifically
Linear Programming (LP)•

• Integer Programming (IP)
In practice, many models that require integer decision variables also
require some continuous decision variables, and so it is more common
to use Mixed Integer Programming (MIP) than pure IP.

• Quadratic Programming (QP)
• Constraint Programming (CP), typically used for

• Detailed scheduling
• Certain combinatorial problems not well-suited for MP

In the context of MP, the word “programming” does not necessarily mean
computer programming, but refers to a problem-solving methodology. The
origins of this term come from the development of military “programs” to which
the technique was originally applied. In the CP context, unlike MP, the word
“programming” refers to a computer programming methodology.

Instructor note
Note that OPL releases V4.0–V5.1 do not support CP. CP support with a new
engine, IBM ILOG CP Optimizer, was reintroduced with release V5.2. OPL
V5.2 does not support IBM ILOG CP.
Students who have used an earlier version of OPL to write scheduling
applications based on constraint programming need to migrate their OPL
V3.7 (or earlier) projects to OPL V6.3. Instructions for doing this can be found
in the documentation.

In the case of MP problems, OPL can represent the following types of objective functions,
data, decision variables, and constraints:

© Copyright IBM Corporation 2009. All rights reserved. 15

Lesson 1: Introduction to Optimization with IBM ILOG OPL / Topic 2: Inside OPL

And constraints can be...
Decision variables
and data elements

can be...

When the
objective function

is...

• Linear inequalities (<= , >= ,
==)

• Logical relations (&&, | |, !, !=)

• Integer
• Continuous

Linear

• Linear or quadratic
inequalities (<= , >= , ==)

• Logical relations (&&, | |, !, !=)

• Integer
• Continuous

Quadratic

Not all quadratic problems can be addressed with OPL.

It is possible to have an MP model without an objective function. In this case,
OPL will simply instantiate data in the model without solving it.

In the case of CP, OPL can represent the following types of objective functions, data,
decision variables, and constraints:

And constraints can
contain...

Data
elements
can be...

Decision
variables can be...

The objective
function...

• arithmetic operations,
expressions and
constraints

• logical relations (and, or,
not, if-then)

• allowed and forbidden
assignments

• specialized constraints
(allDifferent,
allMinDistance, inverse,
lex, pack)

• integer
• real

• integers with
defined domain

• intervals (for
scheduling)

may be present or
absent

Optimization engines
IBM® ILOG® OPL gives the user access to the following solver engines:

• IBM® ILOG® CPLEX® forMathematical Programming (MP)
• IBM ILOG CP Optimizer for Constraint Programming (CP)

OPL's default setting is to use CPLEX.

The components of OPL
OPL consists of the following components:

• The OPL IDE (Windows® 64 and 32 bits) in which you write, execute, test, and
debug optimization models. In ODM Enterprise, this is the OPL perspective of
the ODM Enterprise IDE.

• IBM ILOG Optimization Programming Language (OPL), which allows you to
write optimization models in a declarative way

• IBM ILOG Script, a scripting language for OPL
• Application Programming Interfaces (APIs) to embed models into standalone

applications

© Copyright IBM Corporation 2009. All rights reserved.16

Lesson 1: Introduction to Optimization with IBM ILOG OPL / Topic 2: Inside OPL

• The ODM connection to automatically generate end-user applications (requires
a license for ODM when using OPL as a standalone product)

Writing OPL models in a declarative way means that you write them in a similar way
as you would on paper, except that you use OPL syntax.

OPL also includes oplrun, a tool to launch OPL from the command line.

OPL is built on IBM ILOGConcert Technology, which links with the IBM ILOGCPLEX
and IBM ILOG CP Optimizer optimization engines. Complete access to engine
algorithmic settings is provided.

When using OPL to generate ODM applications, you do not work with the oplrun
command, and instead generate the application directly from the IDE.

The OPL IDE
The OPL IDE (or the OPL perspective in the ODM Enterprise IDE) includes:

• An editor to create OPL models
• Views of data and solutions
• Debugging capabilities
• Online help, including contextual help
• Various other views to facilitate analyzing your model and solution

Instructor note
There are plans for the OPL IDE to also be available for Linux and/or MaxOS
in the future, but no specific date is set yet.

The OPL language
This high-level language provides:

• A compact declarative language for Mathematical Programming (MP) and
Constraint Programming (CP)

• Advanced data types
• Connections to relational databases and Excel spreadsheets
• The ability to call external JavaTM functions from inside OPL
• IBM ILOG Script

IBM ILOG Script
This scripting language is used for:

• Preprocessing of data and engine parameters
• Postprocessing of solutions, or data. or both
• Flow control, for example, in decomposition or incremental modification of the

model

The OPL APIs
The APIs allow you to embed OPL models and scripts into applications using:

• C++
• Microsoft® .NET

• Visual Basic.NET, C#, etc.
• Microsoft Office 2003 or higher via Visual Studio Tools for Office

• JavaTM

• Web
• ASP.NET, JSP

© Copyright IBM Corporation 2009. All rights reserved. 17

Lesson 1: Introduction to Optimization with IBM ILOG OPL / Topic 2: Inside OPL

The ODM connection
If you have the desktop version of ODM installed on your system together with the
standalone version of OPL, the OPL-ODM connection allows generation of an ODM
application from the OPL IDE. An ODM application can be based on one or more OPL
models.

Instructor note

The ODM connection runs on Windows® installations only.

Models, data and projects
OPL lets you constructmodelswhich are independent of the data they use. This means
that you don't need to change your model each time the data changes. The model is
maintained as a separate entity (model file) from the data (data file), and is therefore
reusable for multiple instances of the same problem with different input data.

One or more model files and, optionally, one or more data files are grouped together
into a project, which, in addition to models and data, contains control information to
instantiate one or more problems.

The project control information is contained in 2 types of structure:

• One or more settings files (.ops files) that control such elements as conflict
resolution, choice and behavior of linear programming algorithms, and constraint
programming control parameters.

If a settings file is not specified, OPL will use the default settings.
Settings can also be specified using IBM ILOG Script. A settings file
can be added to a project at any time.

• One or more run configurations. These are assemblies of models, data and
settings files that are meant to run together.

The relationships between these files are shown in the following diagram.

© Copyright IBM Corporation 2009. All rights reserved.18

Lesson 1: Introduction to Optimization with IBM ILOG OPL / Topic 2: Inside OPL

More about OPL projects
OPL projects are located inside directories, typically with the same name as the project,
on the computer's file system. These directories typically contain:

• The project description files (.project and .oplproject)
• Model files (.mod)
• Data files (.dat)
• Settings files (.ops)

The project files are XML files that contain a technical description of the project.

Model files contain data declarations, as well as the model definition in terms of decision
variables, the objective function and constraints. Model files may also contain IBM
ILOG Script statements.

Data files initialize the data declared in the model files. Data can be initialized directly
in the .dat file, or imported from external sources.

Setting files are used to change the default settings in OPL, for example parameters
that define solution algorithm behavior, display options, and so forth.

The directory for a particular project serves as a container for all the related files and
control information associated with the project. It provides a convenient way to group
all the related model, data and settings files for the project, and also maintains
information about the relationship between files and runtime options for the
environment.

More about run configurations
• Run configurations represent different combinations of model, data and settings

files associated with the same project.

© Copyright IBM Corporation 2009. All rights reserved. 19

Lesson 1: Introduction to Optimization with IBM ILOG OPL / Topic 2: Inside OPL

• They are defined within an OPL project in the OPL IDE (or OPL perspective in
the case of ODM Enterprise).

• A run configuration includes at least one model file.
• A run configuration can include multiple model and data files, and at most one

settings file.
• You can define as many run configurations as you need within a given project.

It is possible to use more than one settings file in a project, and to attach each to a
different run configuration. This is very useful to, for example, test different algorithmic
settings on the same model.

A minimal project has:
• One model file
• One default run configuration referencing that same model file

A typical project has:
• One or more model files
• Any number of data files (or no data file)
• One or more settings files
• One or more run configurations referencing various combinations of the model,

data, and settings files

Standalone models (i.e. model files that are not attached to a project) are not supported
in the IDE. It is, however, possible to use standalonemodels with the oplrun command.

A quick look at the OPL IDE
You instructor will now guide you in taking a quick look at the OPL IDE (or the OPL
perspective in the case of ODM Enterprise)

Instructor note
Spend about 15 minutes on this demo. Open a project in the OPL IDE or the
OPL perspective in the case of ODM Enterprise, and point out the following:

• Editing area
• Model outline
• Main toolbar
• OPL projects navigator
• Problem browser
• Output tabs
• Status bar

© Copyright IBM Corporation 2009. All rights reserved.20

Lesson 1: Introduction to Optimization with IBM ILOG OPL / Topic 2: Inside OPL

Example: a production planning problem

Learning objective
Gain familiarity with the OPL IDE.
Learn how to recognize data,
decision variables, objectives, and
constraints when looking at an OPL
model.

Key terms
• OPL IDE
• OPL project
• run configuration
• data file
• model file
• decision variable
• objective function
• constraint

In the example that follows, you'll gain some familiarity with the
OPL IDE and how projects and run configurations are structured.
You'll also learn to recognize the following when looking at an
OPL model:

• Data declarations
• Decision variables
• Objective functions
• Constraints

Problem description
Consider a typical production planning problemwhere a company
produces a number of products. Each product has a unit profit
associated with it, and is made up of different components. The
company's objective is to maximize the profit while using only the
available stock of components.

In the next steps you'll see how this problem is written using OPL
syntax in terms of the data, decision variables, objective and

constraints.

Here, you will concentrate on a simple example. A more complete explanation of OPL
syntax follows in a later lesson.

The data
The following table shows the data for this problem, together with the OPL data type
and OPL data declaration:

© Copyright IBM Corporation 2009. All rights reserved. 21

Lesson 1: Introduction to Optimization with IBM ILOG OPL / Topic 3: Example: a production planning problem

The decision variables
For the production problem, the decision variables are the quantities to produce of each
product in the set Products. This can be written as follows using OPL syntax:

dvar float+ production[Products];

Here, dvar is the OPL keyword used to declare decision variables.
float is the OPL keyword used for real numbers, and the + is added to denote that the
quantities are non-negative.
production is our choice of variable name, and it is defined as an array over the set
of Products.

Note that all declarations in OPL end with a semicolon.

The objective function
The objective is to maximize the total profit over all Products, where the profit for
each product, p, is defined as the unit profit, profit[p], multiplied by the quantity
produced, production[p]. The objective can be written as follows using OPL syntax:

maximize sum(p in Products) profit[p] * production[p];

Here, maximize is the OPL keyword used to declare an objective to be maximized.
sum is the OPL keyword to compute the summation of a collection of expressions, in
this case to sum up the profit over all products. Note that we use normal parentheses,
as in (p in Products), to denote the selection to sum over.
p is an index used to access each element of the set of Products.

The constraints
For this problem, the constraints are that, for each component, the amount of component
used across all products (according to the usageFactor of that product) should not
exceeded the available stock. This can be written as follows using OPL syntax:

subject to{
forall(c in Components)
sum(p in Products) usageFactor[p,c] * production[p] <= stock[c];}

In the OPL IDE, constraints are written inside a block starting with subject to {,
and ending with }
Here, forall is the OPL keyword used when expressions are similar, except for their
indices. In this case, it's used to write only one constraint for all components, seeing
that the constraints only differ according to the product or component they refer to.
c is an index used to access each element of the set of Components.

Complete problem formulation
The following diagram shows how the complete problem would look in the OPL IDE.

© Copyright IBM Corporation 2009. All rights reserved.22

Lesson 1: Introduction to Optimization with IBM ILOG OPL / Topic 3: Example: a production planning problem

A data instance
To be able to solve the model, it first has to be populated with data. Suppose that the
products to be produced are chemicals. The following table shows example data that
can be used in the model, and how it is can be instantiated in the OPL IDE (hard-coded
data instantiation is usually done in the .dat file):

Instantiation using OPL syntaxData Description

Products = { "gas", "chloride" };Products are:
• Ammonium gas (NH3)
• Ammonium chloride (NH4Cl)

Components = { "nitrogen",
"hydrogen", "chlorine" };

Components are:
• Nitrogen (N)
• Hydrogen (H)
• Chlorine (Cl)

usageFactor = [[1, 3, 0], [1, 4, 1]
];

Usage of components is:
• 1 unit of nitrogen and 3 units of

hydrogen to produce 1 unit of gas
• 1 unit of nitrogen, 4 units of

hydrogen, and 1 unit of chlorine
to make 1 unit of chloride

stock = [50, 180, 40];Stock on hand is:
• 50 units of nitrogen
• 180 units of hydrogen
• 40 units of chlorine

© Copyright IBM Corporation 2009. All rights reserved. 23

Lesson 1: Introduction to Optimization with IBM ILOG OPL / Topic 3: Example: a production planning problem

Instantiation using OPL syntaxData Description

profit = [30, 40];Profit for each product is:
• gas = 30
• chloride = 40

In a real application you will not normally hard code data in the data or model
files, but rather link to external databases or spreadsheets. OPL's spreadsheet
and database linking abilities will be discussed in another lesson.

© Copyright IBM Corporation 2009. All rights reserved.24

Lesson 1: Introduction to Optimization with IBM ILOG OPL / Topic 3: Example: a production planning problem

Practice
Familiarize yourself with the OPL IDE
In this practice, you'll get familiar with the OPL IDE using the gas production
problem. To start, launch the OPL IDE by clicking its icon on your desktop or
in the Windows start menu (Start > All Programs > IBM ILOG > OPL).

Steps:
1. Import the project for this problem by selecting File > Import >

Existing OPL 6.x projects from the main menu, navigating to the
<TrainingDir>\OPL63.labs\Gas\work\gas directory in theSelect
root directory field, and selecting the listed project. Click Finish.

2. Expand all the plus signs in the OPL Projects Navigator to see that the
project contains two files: gas.mod (the model file) and gas.dat (the
data file), as well as a default run configuration (labeled Default
(default)). Both the model and data files have been associated with
this run configuration.

3. Double-click themodel or data file names to look at the contents together
with your instructor.

Note that in the OPL IDE, keywords are highlighted in blue,
comments in green, and string data in purple.

4. Try using contextual help by first selecting Help > Dynamic Help
from the main menu to open the help window on the right side of the
OPL IDE, and then highlighting any keyword in the model file that
you'd like information on.

5. Run the project by right-clicking the default run configuration in the
OPL Projects Navigator, and selectingRun this from the context menu.
Examine the result and different output tabs together with your
instructor.

Debugging
The OPL IDE provides debugging facilities to trap errors such as syntax and runtime
errors.

Errors are listed in the Problems Output tab, and are also indicated with an icon in
the text editor.

Advanced debugging features, such as breakpoints in IBM ILOG Script blocks, are
available – for more information see the Appendix and the OPL online help.

© Copyright IBM Corporation 2009. All rights reserved. 25

Lesson 1: Introduction to Optimization with IBM ILOG OPL / Topic 3: Example: a production planning problem

Practice
Debugging an error message
In this practice, you'll see how to debug an error message for the gas model in
the OPL IDE.

Steps:
1. Introduce a syntax error in the gas.mod file by removing the semicolon

(;) from the end of one line.
2. Observe the message that appears in the Problems Output tab (near

the bottom of the screen) and the mark in the margin of the text editor.
3. Try to run the default run configuration (accept the option to save) and

see in theProblemsOutput tab that this is not possible before resolving
the error.

4. Fix the syntax error, save the model file, and run it.

Instructor note
Here, as a function of the students' knowledge level, you can, if you
wish, go into more detail about debugging. For example, you can
demonstrate breakpoints using a more complex model. The file
mulprod_main, supplied in the examples, contains a script with a
loop. Introduce a breakpoint at the command best = cur; (line 61)
and run the model to demonstrate this feature. Again, depending on
the level of your group, you might want to defer this demonstration
to Lesson 13, which deals with IBM ILOG OPL Script. If, on the other
hand, you think they don't need it, skip this demonstration altogether.

© Copyright IBM Corporation 2009. All rights reserved.26

Lesson 1: Introduction to Optimization with IBM ILOG OPL / Topic 3: Example: a production planning problem

Practice
Model and data independence
We've mentioned before that the model and data are usually independent
entities in the OPL IDE. In this practice, you'll see how you can use the
production model from the gas project, and combine it with different data to
create a new project for a jewelry production problem.

The data for jewelry production is as follows:

Instructor note
You should orient this practice to the knowledge level and job functions
of the audience. While the primary objective of the practice is to
demonstrate the use of different data files with a single model, this
demo will also introduce the students to the user interface in a general
way. Be prepared to show them where commands are found, and the
alternative ways of accessing them (menu bar, toolbar buttons,
keyboard shortcuts).

It will be obvious to an experienced user that simply adding
the jewelry.dat file and a new run configuration to the
gas.prj project would suffice for this example. Run
configurations will be dealt with in a later practice, so for the
moment, we create two separate projects. You should feel free
to explain, however, this shorter method if you feel it will help
at this time.

Declaration in OPLData Description

Products = { "rings",
"earrings" };

Products are:
• Rings
• Earrings

Components = { "Gold",
"Diamonds" };

Components are:
• Gold
• Diamonds

usageFactor = [[3, 1], [2,
2]];

Usage for components is:
• 3 units of gold and 1 diamond to

produce 1 ring
• 2 units of gold and 2 diamonds to

make 1 set of earrings

stock = [150, 180];Stock on hand is:
• 150 units of gold
• 180 diamonds

profit = [60, 40];Profit for each product is:
• ring = 60
• earrings = 40

Write a new OPL data file to use with the existing production model.

Steps:
1. Create a new project in the OPL IDE by selecting, from the menu bar,

File> New> OPL Project.When the New Project dialog box opens,
enter jewelryWork as a projectName.

© Copyright IBM Corporation 2009. All rights reserved. 27

Lesson 1: Introduction to Optimization with IBM ILOG OPL / Topic 3: Example: a production planning problem

2. Use the Browse button next to the Location field to navigate to
<TrainingDir>\OPL63.labs\Gas\Work andmake a new folder called
jewelryWork. You will have created the
<TrainingDir>\OPL63.labs\Gas\Work\jewelryWork directory.
Click the Finish button. The project opens in the IDE with a blank
model file.

3. In theProjectswindow, right-click jewelryWork.mod and select Delete
from the context menu. Instead of creating a model file from scratch,
you are going to use an existing model: the gas.mod model.

4. In the OPL Projects Navigator select the jewelryWork project. From
the menu bar, select File > Copy Files From Project. Browse to
<TrainingDir>\OPL63.labs\Gas\Work\gas through the From
Directory field, and select the gas.mod file only. You can then click
Finish. The gas.mod file is added to the current project

5. In the OPL Projects Navigator, drag the gas.mod file into
Configuration1

6. Use the same procedure to copy the jewelry.dat data file from
<TrainingDir>\OPL63.labs\Gas\solution\jewelrySolution
into the project and add it to Configuration1

7. Run the project. Do you get a valid result?
8. With your instructor, compare the result with the result from

<TrainingDir>\OPL63.labs\Gas\solution\jewelrySolution
and with the result of running
<TrainingDir>\OPL63.labs\Gas\work\gas

© Copyright IBM Corporation 2009. All rights reserved.28

Lesson 1: Introduction to Optimization with IBM ILOG OPL / Topic 3: Example: a production planning problem

Summary

Review
In this lesson, you learned how OPL and IBM ILOG optimization technology can help
you make business decisions.

IBM ILOG OPL is a component of the IBM ILOG Optimization Suite, a set of tools that
also includes IBM ILOG Optimization Decision Manager (ODM) and the IBM ILOG
optimization engines, IBM ILOG CPLEX and IBM ILOG CP Optimizer. IBM ILOG
Optimization Suite is used to develop models and applications based on Mathematical
Programming (MP) or Constraint Programming (CP).

OPL allows development of custom solutions to business optimization problems, using
a low-level declarative language. The OPL IDE is an intuitive interface that includes
features such as a text editor for model development, data and solution views, debugging
features, online help, and IBM ILOG Script (a scripting language for pre- and
postprocessing and flow control).

OPL facilitates model and data independence. OPLmodels can either use data declared
in OPL data files, or data from external sources such as databases or excel files.

An OPL project is a collection of OPL model files, data files, and setting files, that can
be grouped into various run configurations. An OPL project can usually be found in a
directory with the same name on your computer's file system. The contents of that
directory are files containing the project description, models, data, and settings.

OPLmodels can be integrated into applications developed with IBM ILOGOptimization
Decision Manager (ODM), allowing business users to perform what-if analysis, and
compare scenarios. OPL models can also be integrated into external applications using
the OPL APIs.

In this lesson, you've gained familiarity with the OPL IDE and seen how a simple project
looks. You've seen an example of how data, decision variables, objectives and constraints
are declared in an OPL model, and how data can be instantiated in an OPL data file.
You've also practiced some simple debugging, as well as creating a new project using
two separate model and data files.

© Copyright IBM Corporation 2009. All rights reserved. 29

Lesson 1: Introduction to Optimization with IBM ILOG OPL

Lesson 2: Working with the OPL Language

In the lesson introducing OPL, you looked at a simple production planning model in OPL,
and saw the model structure including the data declarations, decision variables, objective
and constraints. In the current topic, you will gain a deeper understanding of these model
elements, and be introduced to some of the other elements that can be present in an OPL
model.

OPL is a declarative language. This means that you do not need to write procedures when
constructing a model. Instead, you simply declare your data elements, decision variables,
objectives and constraints, then let OPL call a solver engine to solve the model for you.
You can optionally add some procedures for pre- and postprocessing, as well as flow control,

using IBM® ILOG® Script.

In this lesson, you will learn how to write a model in OPL using OPL syntax, together with
the available OPL data structures and operators, while basic IBM ILOGScript functionality
is covered in the next lesson.

At the end of this lesson you will be able to:

• Describe the structure of an OPL model
• Describe the data types, data structures, and types of variables available in OPL
• Describe some of the constraints available in OPL
• Understand the concept of sparsity
• Write a simple model using OPL syntax

Instructor note
This is, perhaps, the most fundamental lesson of the entire training
course. You will need 2.5 – 3 hours for it, including the practice. If your
students master this lesson, the rest of the course will be much easier
to explain.

© Copyright IBM Corporation 2009. All rights reserved. 31

Lesson 2: Working with the OPL Language

OPL model structure

Learning objective
Learn how an OPL model is
structured.

Key terms
• data
• decision variable
• objective
• constraints
• IBM ILOG Script

An OPL model is typically structured in the following sequence
(some of these are optional, as you'll learn in this topic):

• The choice of solver engine
• Data declarations
• Decision variables
• Objective function
• Constraints

An OPL model file can also contain IBM® ILOG® Script
statements:

• before the objective for preprocessing
• after the constraints for postprocessing
• before the objective or after the constraints for flow control

From OPL 5.0 onwards, it is illegal to insert any statements between the
objective function and the constraints.

This lesson focuses on the OPL language only, and does not cover IBM ILOG Script.

The choice of solver engine
The following two solver engines are available in OPL:

• CPLEX® for Mathematical Programming (MP) problems.
• CP Optimizer for Constraint Programming (CP) problems, specifically:

• Detailed scheduling problems
• Certain combinatorial problems not well-suited for MP

OPL uses CPLEX by default. To specify that CP Optimizer should be used, start your
model with the following text:

using CP;

You can also explicitly state that CPLEX should be used by starting the model with
using CPLEX;. If you use constraint-programming keywords in your model but do not
specify CP as the solver engine, OPLwill return syntax errors. Also, the types of decision
variables and constraints are dependent on the choice of solution engine, and it is
therefore important to make this choice before starting to construct your model.

If you're not that familiar with MP or CP, an expert in either field will be able to tell
you which engine to use based on your problem description.

Data
When declaring data, you need to decide:

• The name for the data item
• The data type:

• Integer (OPL keyword int)
• Real (OPL keyword float)
• String (OPL keyword string)

• The data structure, which can be a scalar, a range, a set, an array, or a tuple.

An example of a simple OPL data declaration is:

float unitProfit = ...;

© Copyright IBM Corporation 2009. All rights reserved.32

Lesson 2: Working with the OPL Language / Topic 1: OPL model structure

• float is the OPL keyword used for real (fractional) data or decision variables
• unitProfit is the name of the data item
• in this case, the data structure is a scalar – more complex data structures such

as sets, arrays and tuples are indicated by a special syntax, which you'll learn
about later.

• all data declarations end with ...;, unless the data is initialized in the same
line.

Data can be initialized in the model (a .mod file) or the data (a .dat file) files, or read
from spreadsheets and databases. Data can also be exported from OPL to an Excel
spreadsheet or a supported database. Spreadsheet or database read andwrite statements
are written in .dat files.

A data element may be instantiated directly as input data or it can be computed in the
model file. Computed data elements are sometimes referred to as variables but they
are different from decision variables (in OPL models) or script variables (in IBM
ILOG Script).

The term “data element,” is used to distinguish data clearly from decision
variables and script variables.

Decision variables
When declaring decision variables, you need to decide:

• The name of the variable
• The variable type:

• Integer (OPL keyword int)
• Real (OPL keyword float, for MP only)
• Boolean (OPL keyword boolean)
• Interval (OPL keyword interval, for CP only)
• Sequence (OPL keyword sequence, for CP only)

• The data structure, which can be a scalar, a range, a set, an array, or a tuple.
• Optionally, the domain, which is the set of possible values the variable can take.

The variable type interval is new starting with OPL 6.0 and is used to model

scheduling problems that are solved with IBM® ILOG® CP Optimizer. This
variable type represents an interval of time during which an activity occurs,
and is characterized by a start, an end, a size and an intensity.

An example of a simple OPL decision variable declaration is:

dvar float+ production in 0..maxCapacity;

• dvar is the OPL keyword used to declare decision variables
• the (optional) + sign is OPL syntax that indicates this variable can take only

non-negative values
• production is the name of the decision variable
• in 0..maxCapacity defines the domain of the variable to include only values

between 0 and the maximum capacity (maxCapacity being another data item)

Note that the + sign allows shortcut notation and that dvar float+ production;
is equivalent to dvar float production in 0..infinity;. This can also be used
with int, for example dvar int+ x; is equivalent to dvar int x in 0..maxint;
where maxint is an OPL keyword representing the largest possible positive integer
value.

Also note that dvar boolean x; declares a binary decision variable and is equivalent
to dvar int x in 0..1;

© Copyright IBM Corporation 2009. All rights reserved. 33

Lesson 2: Working with the OPL Language / Topic 1: OPL model structure

Decision variable expressions
OPL decision variable expressions can be used to write more complex expressions in a
compact way.

An example of a simple OPL decision expression is:

dexpr float+ profit = production*unitProfit;

• dexpr is the OPL keyword used to declare decision expressions
• profit is the name of this particular decision expression
• this expression defines profit to equal the production decision variable

multiplied by the unitProfit associated with each unit produced.

Using decision expressions modifies the number of variables, constraints, and nonzeros
at execution time and can impact both the solution time and the memory consumption.

Objective function
When defining your objective function, you need to decide whether it's a maximization
or minimization problem, as well as the expression you'd like to optimize.

An example of a simple OPL objective declaration is:

maximize profit;

• maximize is the OPL keyword used for maximization problems. minimize is
used for minimization problems.

• profit is the decision expression to be maximized, in this case. The objective
expression can be very complex or very simple, depending on your problem.

Alternatively, one could omit the profit decision expression and write this objective
as follows:

maximize production*unitProfit;

If you intend to use your OPL model as part of an ODM application, it is recommended
that the objective consists of a decision expression or the sum of decision expressions,
because decision expressions in the OPL objective correspond to goals in ODM.

Having an objective function is optional – you can choose to find a solution that
satisfies the constraints without optimizing a particular objective.

Constraints
Constraints in OPL are written in a block starting with subject to { and ending
with }.

An example of a simple OPL constraint block containing a single constraint is:

subject to {
productionConstraint: production <= capacity;
}

• productionConstraint is the name, or constraint label, of this constraint.
Labeling constraints is optional.

• this constraint states that the production quantity must be less than or equal
to the capacity

OPL considers only labeled constraints for relaxation when attempting to resolve
infeasibilities.

© Copyright IBM Corporation 2009. All rights reserved.34

Lesson 2: Working with the OPL Language / Topic 1: OPL model structure

Instead of writing constraints within subject to {...}, you can use constraints
{...}. These are equivalent.

OPL includes many keywords that you can use to define a wide variety of constraints
for both MP and CP models.

Expressing variable bounds as a constraint
If you want to specify upper and lower bounds on a decision variable (or an expression
containing a decision variable) where the bounds themselves involve decision variables
then these upper and lower bounds must be expressed separately as two OPL
declarations. For example, the following code is not allowed:

dvar int x in 0..5;
dvar int y;
dvar int z;
minimize x;
subject to {
z <= y <= x;
}

Instead, you must write:

dvar int x in 0..5;
dvar int y;
dvar int z;
minimize x;
subject to {
z <= y
y <= x
}

Variables x, y and z are decision variables whose value is not yet calculated, therefore,
upper and lower bounds must be specified separately.

However z<=y<=x is allowed in the case where z and x are not variables, but data
elements. Such expressions using non-variable bounds can have at most three operands.
For example, w<=z<=y<=x is not allowed.

Instructor note
This limitation on expressing bounds in constraints was introduced in OPL
5.0. The illegal example above would have been legal in OPL 4.x and earlier.
Students who have used older versions of OPL may need to have this pointed
out. This may be of particular interest to CP Scheduling users who are
upgrading from OPL 3.7.

© Copyright IBM Corporation 2009. All rights reserved. 35

Lesson 2: Working with the OPL Language / Topic 1: OPL model structure

OPL data files

Learning objective
Learn what the contents of an OPL
.dat file are, and how to write a
simple data initialization statement.

Key terms
• .dat file
• data initialization
• data read
• data write

What's in a data file?
Data (.dat) files facilitate separation of the model and the data,
thus allowing the use of several different data instances with the
same model. Data files may include:

• Data initialization
• Statements to connect to spreadsheets and/or databases
• Statements to initialize data by reading values from

spreadsheets and/or databases
• Statements to write solution values to spreadsheets and/or

databases

In this topic you'll learn how to write a simple data initialization.
More complex initialization (for example for arrays or sets) are covered together with
the discussion on these data structures, while communication with spreadsheets and
databases are covered in another lesson.

Some of the characteristics of data files are:

• Data initialization directly in a .dat file cannot contain computations or
expressions of any kind, only raw symbolic or numeric data.

• Data types are not required in the data file, because these have already been
defined in the model file. You simply use the name of the data item and assign
a value to it.

• It is possible to use IBM ILOG Script in a .dat file to define custom ways of
reading and formatting data.

• The data file and model file within the same project need not have the same
name. You can use several different data files with a model file within the same
project. You can also concatenate multiple data files in one project, or run
different data sets on the same model in the same project by using run
configurations.

Concatenated data files are processed in the order in which they are
declared in a project.

Basic data initialization
Consider the following example of a simple OPL data declaration:

float unitProfit = ...;

This data can either be initialized in the model file by replacing the declaration with
the following line:

float unitProfit = 2.5;

or you can keep the declaration as before in the model file and initialize the data item
in data file as follows:

unitProfit = 2.5;

Notice that the data type is not used when initializing data in the data file. It's generally
better to initialize data in the data file, as it keeps the model generic with respect to
data.

© Copyright IBM Corporation 2009. All rights reserved.36

Lesson 2: Working with the OPL Language / Topic 2: OPL data files

OPL data structures

Learning objective
Learn what the basic OPL data
structures are, and how to declare
them. Learn how to use indices.

Key terms
• range
• set
• array
• tuple
• index

OPL data structures
In this topic you'll learn about the basic use of the OPL data
structures:

• range
• set
• array
• tuple

Later in this lesson you'll learn how to combine these data
structures for more versatility.

Ranges
Integer ranges are fundamental in OPL, because they are often used in arrays and
decision variable declarations, as well as in aggregate operators, queries, and quantifiers.

An integer range is specified using the keyword range and giving its lower and upper
bounds, as in

range Rows = 1..10;

which declares a range named Rowswith bounds 1 and 10. The lower and upper bounds
can also be given by expressions, as in

int n = 8;
range Rows = n+1..2*n+1;

An integer range is typically used:

• as an array index in an array declaration

range R = 1..100;
int A[R]; // A is an array of 100 integers

• as an iteration range

range R = 1..100;
forall(i in R) {

//element of a loop
}

• as the domain of an integer decision variable

dvar int i in R;

You'll learn more about arrays and the forall statement later in this lesson.

You can also specify a range of type float. The declaration:

range float myFloatRange = 1.2..2.2;

specifies the subset of the real numbers in the interval [1.2,2.2].

Sets
OPL sets are non-indexed collections of elements without duplicates. OPL supports sets
of arbitrary types to model data in applications. If T is a type, then {T}, or alternatively
setof(T), denotes the type “set of T”. For example, the declarations

© Copyright IBM Corporation 2009. All rights reserved. 37

Lesson 2: Working with the OPL Language / Topic 3: OPL data structures

{int} myIntegerSet = ...;
setOf(int) myIntegerSet = ...;

both declare a set called myIntegerSet containing elements of type integer.

Sets may be ordered, sorted, or reversed. By default, sets are ordered, which means
that:

• Their elements are considered in the order in which they have been created.
• Functions and operations applied to ordered sets preserve the order.

A set is often used as an array index in an array declaration. For example, in the
following code snippet we first declare a set called Products, and then use that set as
an index for the decision variable array production.

{string} Products = {”product1”,”product2”,”product3”};
dvar float production[Products]; // production is a decision variable
array indexed over the set of Products

A word on using indices
Before elaborating on how to initialize sets, it's important to understand the use of
indices. You've already seen how a range or a set can be used as an array index.
Generally, indices are used to concisely write similar expressions that only differ in the
item(s) the expression is declared for. Instead of writing the expression for each item
separately, one can simply use an index and define the expression over that index.

For example, without using an index, one would have to define production variables for
three products as follows:

dvar float production_product1;
dvar float production_product2;
dvar float production product3;

If using the set Products as an index, this becomes:

dvar float production[Products];

You can also define a parameter to refer to each element of the set or range used as
index, for example:

p in Products

Here, p is a parameter and Products is the set of data from which p takes its values.
You can filter the index using a filtering condition:

p in Products : filtering condition

For example, you can declare an integer set of ProductNumbers to denote three products:

{int} ProductNumbers = {1, 2, 3};

Then, use that set to index two arrays of type float, namely capacity and
production.

float capacity[ProductNumbers] = ...;
dvar float production[ProductNumbers];

Next, declare a constraint that uses the parameter p to refer to each element of the set
ProductNumbers, so that you write the constraint only once, even though it's defined
for all products (note the use of the OPL keyword forall):

© Copyright IBM Corporation 2009. All rights reserved.38

Lesson 2: Working with the OPL Language / Topic 3: OPL data structures

subject to {
forall(p in ProductNumbers)
production[p] <= capacity[p];
}

Finally, you can filter the products for which this constraint will be applied by using
the filtering condition p <= 2:

forall(p in ProductNumbers : p <= 2)
production[p] <= capacity[p];

Several indices can be combined in a comma-separated list to produce more compact
statements. For instance,

int s = sum(i,j in 1..n: i < j) i*j;

is equivalent to

int s = sum(i in 1..n) sum(j in 1..n: i < j) i*j;

which is less readable.

OPL provides quantifiers and aggregators as tools that work with indexes to simplify
model declarations.

Quantifiers:
• The forall quantifier is used in both MP and CPmodels. It is used to generate

one constraint for each instance of the indexed entity. The declaration,

forall (p in ProductNumbers)
production[p] <= capacity[p];

creates constraints that enforce the production of each product to be less than
or equal to the production capacity for that product.

• The all quantifier is used in CP models to filter a set of objects to be used as
arguments for certain CP constructs. This is discussed in more detail in another
lesson.

Aggregators:
• Integer and float expressions can be constructed using aggregate operators for

computing summations (sum), products (prod), minima (min), andmaxima (max)
of a collection of related expressions. For example, the objective function

maximize sum (p in Products) profit[p] * production[p];

illustrates the use of the aggregate operator sum to calculate the summation of
the profit over all products.

• Here is an example of quantifier and aggregator in use together:

forall (p in products)
sales[p] == sum (l in locations) locSales[l][p];

Now that you've had an overview of how to use indices in OPL, let's return to the
discussion of sets.

Initializing sets
Sets can be initialized in the following ways:

• Internally in the model file:

© Copyright IBM Corporation 2009. All rights reserved. 39

Lesson 2: Working with the OPL Language / Topic 3: OPL data structures

{int} myIntegerSet = {1, 3, 5, 7};

• Externally in the data file:

myIntegerSet = {1, 3, 5, 7};

• In a generic way using another range or set, for example use IntegerSet to
create anotherIntegerSet with elements 1 and 3:

{int} anotherIntegerSet = {i | i in myIntegerSet : i <= 3};

In the latter statement, the notation “|” can be read as “such that”, as in “create each
element, i, of anotherIntegerSet such that i exists in myIntegerSet and on the
condition that i is less than or equal to 3”. The generic method of initializing sets is
very powerful with expressiveness similar to relational database queries.

Explicit values assigned to set elements are always given inside curly brackets.

Some other examples of set initialization are:

• Using the asSet keyword to convert a range to a set:

{int} mySet = asSet(1..10);

• Using the modulus (mod) operator to create a set of every third number between
1 and 10:

{int} mySet = {i | i in 1..10 : i mod 3 == 1};

This is equivalent to {int} mySet = {1, 4, 7, 10};.
• Using the union operator on two other sets to create a new set:

{int} mySet3 = mySet1 union mySet2;

Several other operators are available for set manipulation, for example subset, inter,
and diff. You can read more about these in the OPL documentation.

Memory usage considerations

Sets instantiated by ranges are represented explicitly (unlike ranges). As a
consequence, a declaration of the form {int} s = asSet(1..100000);
creates a set where all the values 1, 2, ..., 100000 are explicitly represented.

This uses more memory than a simple range declaration. For example, the
declaration

range s = 1..100000;

stores only the bounds (1 and 100000) explicitly.

In the discussions on ranges and sets, you saw some simple examples of arrays and
perhaps you already have some idea of the OPL syntax used to declare arrays. In the
next section, you'll learn more about OPL arrays.

Arrays
OPL arrays can be multidimensional. The array elements can be of the basic data types
or more complex data structures:

• int , float or string
• Sets
• Tuples

© Copyright IBM Corporation 2009. All rights reserved.40

Lesson 2: Working with the OPL Language / Topic 3: OPL data structures

This topic focusses on arrays of the basic data types, and you'll learn more about arrays
of sets or arrays of tuples in a later topic.

Initializing arrays
An array structure is indicated by the use of square brackets, [], around the array
index. Arrays can be initialized in the following ways:

• In the model file:

int myIntegerArray[1..4] = [1, 3, 5, 7];

• In the data file:

myIntegerArray = [1, 3, 5, 7];

• In a generic way (known as generic arrays), for example:

int anotherIntegerArray[i in 1..10] = [i+1];

This declares an array of 10 elements such that the value of a[i] is i+1.

• In an IBM ILOG Script execute block (recommended for complex cases only),
for example:

range R = 1..8;
int a[R];
execute {
for(var i in R) {
a[i] = i + 1;

}}

Note that the explicit values assigned to array elements are always given inside square
brackets. When initializing the array in the .dat file, the array type and the dimensions
are omitted.

Array indices
An array index can be:

• a range, for example

float unitProfit[1..4] = ...;

• a set, for example

float unitProfit[Products] = ...;

• defined by a generic expression (these are known as generic indexed arrays),
for example

int myArray[1..10] = [n-1 : n | n in 90..99];

The latter statement creates an array of 10 elements. The expression before the colon
(n-1) represents the value of the index, while the expression after the colon (n | n in
90..99) represents the value of the array element at that index. For example, when n
equals 90, the index will equal 89, and so forth.

The difference between a generic array and a generic indexed array is that the former
expresses only the array elements in a generic way, while the latter expresses both the
indices and the array elements in a generic way.

© Copyright IBM Corporation 2009. All rights reserved. 41

Lesson 2: Working with the OPL Language / Topic 3: OPL data structures

Multidimensional arrays
The following is an example of a two-dimensional array declaration and initialization:

int my2DArray[1..2][1..3] = [[5, 2], [4, 4], [3, 6]];

This statement declares an array in two-dimensions, namely a 2 x 3 array, and initializes
the values of each array element. The declaration and initialization can also be done
separately with the declaration in the model file:

int my2DArray[1..2][1..3] = ...;

and the initialization in the data file:

my2DArray = [[5, 2], [4, 4], [3, 6]];

You can combine different types of indices in multidimensional arrays, for example:

int numberOfWorkers[Days][1..3] = ...;

declares a two-dimensional array whose elements are of the form a[Monday][1]. This
can be used, for example, to indicate the number of workers on each day of the week
for each of three daily shifts.

Some examples of generic multidimensional arrays are:

int m[i in 1..10][j in 0..10] = 10*i +j;

This initializes element m[i][j] to 10*i + j and so on.

int m[dim1][dim2]=...;
int t[i in dim2][j in dim1] = m[j][i];

This transposes m.

Arrays of decision expressions
You can use arrays together with the keyword dexpr to create more compact, efficient
models. For example, the declaration

dexpr int surplus[i in Stock] = stock[i] — demand[i]

creates an array that is handled very efficiently: because the definition is kept as a
reusable object, it is not necessary to store every value of the expression for every index
value.

Tuples
OPL provides advanced data types called tuples. A tuple is analogous to a row in a
database table. For example, if your problem data consists of a demand for each product
in each time period, you may have a database table with three columns, e.g. product,
timePeriod, and demand. This data can be declared in tuple form as follows:

tuple productData{
string product;
int timePeriod;
float demand;
}

In addition to this tuple declaration, you would typically also declare a set that uses
this tuple as its type. An analogy to explain this is to think of a tuple referring to one
row in the data table and you therefore need a set of tuples to access the entire table:

{productData} ProductData = ...;

© Copyright IBM Corporation 2009. All rights reserved.42

Lesson 2: Working with the OPL Language / Topic 3: OPL data structures

Tuple elements can be of several types, including sets, arrays, and other tuples. This
topic focuses on tuples with basic types as elements, while you'll see in the next topic
how to combine tuples with some of the other data structures.

Tuple keys
As in database systems, tuple structures can contain one or more keys. Tuple keys
enable you to access data using a set of unique identifiers, for example:

tuple nurse {
key string name;
int seniority;
int qualification;
int payRate;
}

In this code, the nurse tuple is declared with the key name of type string.

Using keys has the following advantages:

• The key field (in this case name) is a unique identifier. In the example above,
in a set of tuples of type nurse, no two tuples can have the same name. If a
user inadvertently attempts to add two different tuples with the same name,
OPL will raise an error.

• Defining keys enables you to access elements of the tuple set by using only the
value of the key field.

The following code shows a tuple with multiple keys:

tuple shift {
key string departmentName;
key string day;
key int startTime;
key int endTime;
int minRequirement;
int maxRequirement;
}

A shift is uniquely identified by the department name, the date, and start and end
times, all defined as key fields. Both the above examples are taken from the nurse.prj
file supplied in the <OPLhome>\examples\opl directory distributed with the product.

Initializing tuples
Tuples are initialized by listing the values of the various fields, within the delimiters
"<" and ">". For example, if the following tuple has been declared:

tuple Point {
int x;
int y;

};

it can be initialized:

• In the model file:

Point p = <2,3>;

• In the data file:

p = <2,3>;

© Copyright IBM Corporation 2009. All rights reserved. 43

Lesson 2: Working with the OPL Language / Topic 3: OPL data structures

Tuple fields can be accessed by suffixing the tuple name with a dot and the field name,
for example:

int x = p.x;

Note that the field names are local to the scope of the tuple.

OPL data structure summary
The following chart summarizes the OPL data structures, showing examples of the
basic syntax. In a later topic you'll learn how to combine these data structures for more
versatility.

© Copyright IBM Corporation 2009. All rights reserved.44

Lesson 2: Working with the OPL Language / Topic 3: OPL data structures

A telephone production problem

Learning objective
Write a simple optimization model
using OPL.

Key term
OPL model

A telephone production problem
If you attended the “Learning MP for OPL” training course, you
may recall this problem. It is repeated here for those who did not
attend the earlier course.

The business problem:

A telephone company processes and sells two kinds of products:

• Desk phones
• Cellular phones

Each type of phone is assembled and painted by the company, which wants to produce
at least 100 units of each product and to maximize its quarterly profit.

Maximizing the quarterly profit becomes the objective function in the model.

In order to do this, the company has to calculate the optimal number of each type of
phone to produce.

The number of each type of phone to produce are the decision variables in the model.

The conditions the company must work with are as follows:

• A desk phone's processing time is:
12 min. on the assembly machine and•

• 30 min. on the painting machine.
• A cellular phone's processing time is:

• 24 min. on the assembly machine and
• 24 min. on the painting machine.

• The assembly machine is available for only 400 hours per quarter.
• The painting machine is available for only 490 hours per quarter.

These conditions will be used to formulate constraints.

We also know the profit returned from sales of each type of phone:

• Desk phones return a profit of $12 per unit.
• Cellular phones return a profit of $20 per unit.

These data elements will be used to formulate the objective function.

The following is a descriptive model of this problem:

© Copyright IBM Corporation 2009. All rights reserved. 45

Lesson 2: Working with the OPL Language / Topic 4: A telephone production problem

Instructor note
This is an opportunity to stress to students the importance of using a
descriptive model. In programming terms, this phase is the equivalent for
developers of writing pseudo-code.

© Copyright IBM Corporation 2009. All rights reserved.46

Lesson 2: Working with the OPL Language / Topic 4: A telephone production problem

Practice
Write the telephone production model in OPL
You are now going to create an OPL project to model and run the telephone
production problem. The process is as follows:

1. Create a new project and write the model
2. Create a new data file in the project and separate the data from the

model.
3. Add the model and data files to a run configuration.

Complete the Telephone production workshop. You can perform this lab
using the HTML workshop, or by following the instructions in the workbook.
The HTML workshop will give you direct access to OPL documentation pages
that can help you with the lab.

Telephone production
Problem description
This lab takes you through a basic linear programming problem that
demonstrates basics for any OPL model. It also shows how you separate data
from the model in the OPL IDE.

A telephone company processes and sells two kinds of products:

• Desk phones
• Cellular phones

Each type of phone is assembled and painted by the company, which wants to
produce at least 100 units of each product.

• A desk phone's processing time is:
12 min. on the assembly machine and•

• 30 min. on the painting machine.
• A cellular phone's processing time is:

24 min. on the assembly machine and•
• 24 min. on the painting machine.

• The assembly machine is available for only 400 hours.
• The painting machine is available for only 490 hours.
• Desk phones return a profit of $12 per unit.
• Cellular phones return a profit of $20 per unit.

The objective is to maximize profit.

Exercise folder
<trainingDir>\OPL63.Labs\Phones\work

This directory is empty when you start this lab. You are going to create
a project in it.

Write model

Objective
• Model with OPL

References
arrays
floats

© Copyright IBM Corporation 2009. All rights reserved. 47

Lesson 2: Working with the OPL Language / Topic 4: A telephone production problem

quantifier 'forall'
aggregate operator 'sum'

Actions
1. Create a new project. Name it phoneswork and save it to

<training_dir>\OPL63.Labs\Phones\work.
2. In the model file, phoneswork.mod, declare a set of strings for the

product name data elements.

{string} Products = {"desk", "cell"};

3. Declare arrays to specify the other static data elements.

All time units must be the same; minutes should be converted
into hours.

float Atime[Products] = [0.2, 0.4]; //assembly time

float Ptime[Products] = [0.5, 0.4]; //painting time

float Aavail = 400; //available time on assembly machine

float Pavail = 490; //available time on painting machine

float profit[Products] = [12, 20]; //profit realized
from each product

float minProd[Products] = [100, 100]; //minimum
production for each product

4. Declare an array of production decision variables. Use dvar to designate
a decision variable

dvar float+ production[Products];

5. Declare the expression to maximize

use sum and maximize

6. Declare the constraints

use forall and subject to {}

7. Save the project.

Separate data from model

Objective
• Manipulate data initialization

Actions
• Action 1: create and fill .dat
• Action 2: update .mod

References
executing a project
data initialization
labeling constraints

Action 1: create and fill .dat file

© Copyright IBM Corporation 2009. All rights reserved.48

Lesson 2: Working with the OPL Language / Topic 4: A telephone production problem

• Save phoneswork.mod under the name phones1.mod.

Right click on the phonesWork project and select refresh from
the context menu, or type F5

• Create a new run configuration. By default, it will be named
Configuration2.

• Add file phones1.mod to Configuration2 by dragging the file to the
configuration in the OPL Projects Navigator.

• Create new data file phones1.dat in the project.
• Add file phones1.dat to Configuration2.
• Instantiate all the data elements in phones1.dat.

Do not include type information from the model file

OPL provides the "…" escape sequence to separate a data declaration
from its instantiation. For example, float Pavail = 490; becomes
float Pavail = ...; . The data type is not given in the data file,
for example the data file will contain Pavail = 490;, as opposed to
float Pavail = 490;

It might become difficult to read, control, or maintain a data file if a
large number of values are listed. To allow better readability, OPL
provides a named instantiation syntax. It is available for arrays or
tuples indexed with sets:

• The "#" symbol is used to start and end named array
instantiations.

• The symbol ":" separates the name from the value.

Example: profit = #[desk:12 cell:20]#;

Action 2: update .mod file
• In the phones1.mod file, change the instantiation of data elements so

that instance values are taken from the phones1.dat file. Use the "..."
construct.

• Run Configuration2.

Note how run configurations can be used to allow different versions of
model and data to coexist in a single project.

Solutions

Actions
• Write model
• Action 1: create and fill .dat
• Action 2: update .mod

Write model
Solutions file:

<trainingDir>\OPL63.Labs\Phones\solution\phonesSolution

/***
* OPL Model file
* Author: IBM ILOG
* Creation date: 3/7/2006 1:48 PM
***/

© Copyright IBM Corporation 2009. All rights reserved. 49

Lesson 2: Working with the OPL Language / Topic 4: A telephone production problem

//declare a set of products
{string} Products = { "desk", "cell" };

//declare data
float Atime[Products] = [0.2, 0.4];
float Ptime[Products] = [0.5, 0.4];
float Aavail = 400;
float Pavail = 490;
float profit[Products] = [12, 20];
float minProd[Products] = [100, 100];

//declare an array of decision variables
dvar float+ production[Products];

//declare objective function and constraints
maximize

sum (p in Products) profit[p] * production[p];
subject to {

forall (p in Products)
production[p] >= minProd[p];
sum (p in Products) Atime[p] * production[p] <= Aavail;

sum (p in Products) Ptime[p] * production[p] <= Pavail;

}

Actions 1: create and fill .dat file

Products = { "desk" "cell" };
Atime = [0.2 0.4];
Ptime = [0.5 0.4];
Aavail = 400;
Pavail = 490;
minProd = [100 100];
profit = [12 20]

Actions 2: update .mod file

/***
* OPL Model file
* Author: IBM ILOG
* Creation date: 3/7/2006 1:48 PM
***/

// declare data
{string} Products = ...;
float Atime[Products] = ...;
float Ptime[Products] = ...;
float profit[Products] = ...;
float Min[Products] = ...;
float Aavail = ...;
float Pavail = ...;

// declare decision variables

© Copyright IBM Corporation 2009. All rights reserved.50

Lesson 2: Working with the OPL Language / Topic 4: A telephone production problem

dvar float+ production[Products];

// declare objective function and constraints
maximize

sum (p in Products) profit[p] * production[p];
subject to {

forall (p in Products)
production[p] >= minProd[p];

sum (p in Products) Atime[p] * production[p] <= Aavail;

sum (p in Products) Ptime[p] * production[p] <= Pavail;

}

Modification to .dat file for named instantiation:

profit = #[desk:12 cell:20]#;

You have now built and solved your first OPL model! In the next topic you'll
learn how to combine OPL data structures for increased versatility.

© Copyright IBM Corporation 2009. All rights reserved. 51

Lesson 2: Working with the OPL Language / Topic 4: A telephone production problem

Combining OPL data structures

Learning objective
Learn how to combine different data
structures. Understand especially
how to use sets of tuples.

Key term
data structures

In this topic, you'll learn how to combine the different data
structures available in OPL for more versatile use. Specifically,
you'll learn how to use:

• Sets inside tuples
• Arrays inside tuples
• Tuples inside tuples
• Sets of tuples
• Arrays of tuples
• Arrays of sets

You'll also learn about some useful data structure manipulations, namely:

• Converting an array to a tuple set
• Using sets to instantiate arrays

Sets inside tuples
Sets can be used as tuple elements, for example:

tuple Members {
int memberNumber;
{string} memberInterests;

};

This declares a tuple type Members containing a tuple element for the memberNumber,
as well as a tuple element for the set of the member's interests.

Arrays inside tuples
One-dimensional arrays can be used as tuple elements, for example:

tuple ProductData {
int productId;
float insideCost;
float outsideCost;
float consumption[Resources];

}

This code declares a tuple type ProductData consisting of 4 elements:

• productId of type int
• insideCost and outsideCost of type float
• consumption[Resources] - an array of type float

You can declare and initialize a tuple of this type as follows:

ProductData p = <1, 0.52, 0.17, [0.7, 0.9]>;

While arrays of int and float are permitted as tuple elements, you cannot
use them if you intend to instantiate your tuple by reading from a spreadsheet
or database.

Thus, it is considered a practice to avoid when the model will require data from
a spreadsheet or database, for example when the model is used as part of an
ODM application.

© Copyright IBM Corporation 2009. All rights reserved.52

Lesson 2: Working with the OPL Language / Topic 5: Combining OPL data structures

Tuples inside tuples
A tuple can have one or more tuples as elements. For example, consider a case where
you'd like to associate products with production plants. Then youmay have an additional
tuple type for the production plant data:

tuple PlantData {
int plantId;
float capacity;

}

and associate the products with the production plants in a tuple type called
ProductAtPlant:

tuple ProductAtPlant {
ProductData product;
PlantData plant;

}

If a tuple key element has another tuple as a member, and no elements of the subtuple
are declared as keys, OPL will assume that all members of the subtuple are keys. If
some members of the subtuple are explicitly declared as keys, only those members will
be treated as keys.

Using tuples is a powerful way to ensure that only the essential data is instantiated.
In the preceding example, the tuple type ProductAtPlant allows the model to only
consider particular product-plant combinations, as opposed to associating all products
with all plants, which may not be valid. Using tuples to create sparse data instances is
critical for large problemswherememory usemay become amajor issue affecting solution
time.

Some limitations apply to the contents of tuples:
• Multidimensional arrays are not allowed.
• Arrays of strings, arrays of tuples and arrays of tuple sets are not allowed.
• Sets of tuples (instances of IloTupleSet) are not allowed.

Sets of tuples
Once a tuple type T has been declared, you can declare sets of tuples of type T. Consider
again the ProductData tuple type defined earlier:

tuple ProductData {
int productId;
float insideCost;
float outsideCost;
float consumption[Resources];

}

Using this tuple type, you can declare and initialize a set of tuples as follows:

{ProductData} pDataSet = {<1, 0.52, 0.17, [0.7, 0.9]>, <2, 0.21,
0.44, [0.6, 0.3]>};

The set pDataSet contains two tuples of type ProductData. When initializing tuples
as in the examples above, each tuple instance included in the set is written inside angle
brackets (< >).

Arrays of tuples
You can declare and initialize an array of tuples of type ProductData as follows:

© Copyright IBM Corporation 2009. All rights reserved. 53

Lesson 2: Working with the OPL Language / Topic 5: Combining OPL data structures

ProductData pDataArray[i in 1..5] = <i, 2*i, 2.5*i, [0.7, 0.9]>;

This example declares an array of 5 tuples of type ProductData, where the values of
insideCost and outsideCost change, depending on the value of the productId
(which in this particular case corresponds to the array index).

Arrays of sets
OPL supports arrays of sets, for example:

{int} myIntArray[1..2] = [{1,2},{3,4}];

It is also possible to initialize an array of sets in a generic way. For example, the
declaration:

{int} a[i in 3..4] = {e | e in 1..10: e mod i == 0};

instantiates a[3] to {3,6,9} and a[4] to {4,8}.

Converting an array to a tuple set
It is possible to convert data represented by an array to a tuple set by using a generic
set initialization. For example, in the following code, the 2D Boolean array, edges,
describes the edges of a graph:

{string} Nodes ...;
int edges[Nodes][Nodes] = ...;

This array can be transformed into a set of edges, where each edge is represented by a
tuple, as follows:

tuple Edge {
Nodes o;
Nodes d;
}
{Edge} setEdges = {<o,d> | o,d in Nodes : edges[o][d]==1};

Using tuple sets is highly recommended, because tuple sets can be used to easily create
a sparse representation of the data. In this example, the number of elements of the
array edges equals the square of the number of nodes (that is, all possible edges for all
possible nodes), while the tuple set setEdges contains only those elements for which
an edge actually exists (edges[o][d] == 1). Sparsity is discussed in more detail later
in this lesson.

Using sets to instantiate arrays
Sometimes it is useful to use a set in order to instantiate an array in a generic way. The
following code extract shows how this can be done:

{string} Gasolines = ...;
{string} Oils = ...;
{gasType} GasData = ...;
{oilType} OilData = ...;
gasType Gas[Gasolines] = [g.name : g | g in GasData];
oilType Oil[Oils] = [o.name : o | o in OilData];

This code comes from one of the models included in the OPL distribution
(<OPLhome>\examples\opl\oil\oilDB.mod). The sets GasData and OilData are
temporary sets that are initialized externally by reading data from a database. These
sets are used later in the model to declare the one-dimensional gas and oil arrays.

© Copyright IBM Corporation 2009. All rights reserved.54

Lesson 2: Working with the OPL Language / Topic 5: Combining OPL data structures

In the first array declaration, the text to the left of the colon, g.name, indicates the
index to use for the array (indexed by the set of Gasolines), namely the name attribute
of each tuple in the set of GasData. The text to the right of the colon, g | g in
GasData, indicates the corresponding array element, namely the relevant tuple. In
other words, Gas[g.name] = g.

By analogy, Oil[o.name] = o in the second declaration.

Using sets to instantiate arrays is a powerful tool that can be used for creating arrays
from large tuple sets.

© Copyright IBM Corporation 2009. All rights reserved. 55

Lesson 2: Working with the OPL Language / Topic 5: Combining OPL data structures

General OPL syntax

Learning objective
Understand the general syntax for
declaring OPL model elements.

Key term
syntax

Throughout this lesson, we used simple examples to explain OPL
syntax. In this topic you'll see general syntax for declaring some
of the OPL elements, specifically:

Instructor note
While the general syntax may not be of interest to all
students, you may choose to discuss this in more detail if
students are interested. There are no slides on this topic,
as it doesn't completely cover OPL syntax and may be
confusing to some.

• Tuples
• Decision variables
• Objectives

While you do not need to use this type of general syntax, it may be of interest to you if
you have, for example, a computer science background.

Tuples

tuple <Tuple_type> {
<type> <Component_name>[<array_indexer(s)>];
...
}

Here, [] represent the grammar meta syntax meaning “optional” (a tuple component
can optionally be an array).

Decision variables

dvar <type> <name> [=<shared dvar>];
| dvar <type> <name> [<indexer>][[<indexer>]...];
| dvar <type> <name> [<index in indexer>][[<index in indexer>]...]
[=<shared dvar>];

Here, dvar and in are OPL keywords. The square brackets around <indexer> and
<index in indexer> represent array syntax, while when there are two sets of square
brackets, the inner set indicates array syntax, while the outer set indicates optional
syntax. The square brackets around =<shared dvar> mean optional. The “|” symbol
means “or” – in other words, the syntax for dvar shows three different ways of declaring
a dvar.

Objectives

{ maximize | minimize } <expression>;

Here, { and } indicate grammar meta syntax, i.e. an objective can start with either
maximize or minimize.

© Copyright IBM Corporation 2009. All rights reserved.56

Lesson 2: Working with the OPL Language / Topic 6: General OPL syntax

Sparsity and slicing

Learning objective
Learn about sparse data structures
using tuple sets, implicit and explicit
slicing, and performance monitoring.

Key terms
• sparsity
• slicing
• tuple set

Sparsity is defined as the fraction of zeros in a matrix, i.e. a
sparsematrix has a large number of zeros compared to non-zeros.

Large linear programs tend to be very sparse, with sparsity
increasing as the dimensions get larger.

Slicing is used to exploit sparsity in a model.

In slicing, you create pairs of values that identify cells of interest.
Empty or irrelevant cells are ignored. You then use these pairs
of values (and only these) to set up processing loops, data and/or
constraints.

An example of slicing, taken from computer programming, is array slicing, in which
certain elements from an array are extracted and repackaged as a different array,
possibly with a different number of indices (or dimensions) and different index ranges.
Two common examples are extracting a substring from a string of characters (e.g. "par"
from "sparsity"), and extracting a row (or a column) of a rectangular matrix to be used
as a vector.

Sparse data structures
A typical optimization model contains data structures that are in effect combinations
of other data structures, such a tuple that includes other tuples as elements, or a
multi-dimensional array that uses a different set to index each dimension. For example,
you may want to declare a set of Products and a set of Plants and then declare another
data structure to indicate which products can be manufactured at which plants.

Not all possible combinations are valid, however. For example, not all products can be
manufactured at all plants. Removing these invalid combinations from the matrix
eliminates the need to create, store and iterate unnecessary values.

The result is:

• Time is saved — only valid data is processed by the engine
• Memory is saved — unnecessary values are not stored and take up no memory

space.

Memory is especially critical in large models: if a model requires more physical memory
(RAM) than is available, the computer swaps some of its memory to the hard disk
(“virtual memory”), and the constant movement back and forth as different parts of
memory are swapped in and out dramatically increases running time. For maximum
performance, the model needs to be fully loaded into physical memory with enough
space left over for calculation.

Evenwhen virtualmemory is not necessary, compact data structures allow largermodels
to be solved with the same running time as less efficient ones.

The best way to create a sparse model is to design it from the ground up using data
structures and techniques that reduce redundant data. OPL provides severalmechanisms
that help you make efficient models with sparse data structures. The most important
are:

• Tuple sets
• Slicing

The essential tool for monitoring memory use and running time is the Profiler output
tab in the IDE.

© Copyright IBM Corporation 2009. All rights reserved. 57

Lesson 2: Working with the OPL Language / Topic 7: Sparsity and slicing

Use tuple sets to instantiate only valid combinations
The following code declares a tuple type workTask that contains pairs of strings
connecting workers to tasks:

tuple workTask {
string workerID;
string taskID;
};

A model for a large project might be dealing with thousands of workers and thousands
of tasks. It is clearly irrelevant to process combinations of every worker with every task.
A worker trained as a carpenter, for example, is most likely not qualified to do the job
of an electrician, so such a pairing has no meaning for our model. Therefore, we want
to create a subset of all the worker-task pairings, which includes only the valid ones.
We do this with the following declaration in the model file:

{workTask} WorkerTasks = ...;

With this declaration, we create a set named WorkerTasks composed of members of
the tuple workTask. The right hand side of the equation indicates that the data for this
set is to be instantiated in the data file. These values can be specified in the data file
itself, but they can also be called from an external source such as a spreadsheet or
database. Connecting to these will be discussed in a later lesson. Here are some sample
set member values:

WorkerTasks = {
<"GWashington" "Plumbing">
<"GWashington" "Carpentry">
<"NBonaparte" "Carpentry">
<"NBonaparte" "Painting">
<"WChurchill" "Plumbing">
<"WChurchill" "Painting">
};

Again, the WorkerTasks set only contains an element if it is possible to assign a worker
to a task. There is no <"GWashington", "Painting"> pair because the worker
GWashington is not qualified to do the painting task.

Create a sparse array by indexing on the tuple set
Consider a boolean decision variable x. This variable is limited to only those assignments
of workers to task that are meaningful, as it is indexed on the sparse set WorkerTasks:

dvar boolean x[WorkerTasks];

Compare this to:

dvar boolean x[workerID] [taskID];

This code instantiates the array x with all possible workers performing all possible
tasks. This is much less efficient.

© Copyright IBM Corporation 2009. All rights reserved.58

Lesson 2: Working with the OPL Language / Topic 7: Sparsity and slicing

The efficient model uses slicing
Consider the following constraints:

forall (t in Tasks)
assignTasks: sum (<w,t> in WorkerTasks) x[<w,t>] == 1
forall (w in Workers)
assignWorkers: sum (<w,t> in WorkerTasks) x[<w,t>] == 1

The first constraint (assignTasks) ensures that every task is covered: for each task,
it sums, indexed over the workers who are capable of performing the task. The second
constraint (assignWorkers) ensures that workers are assigned to exactly one task: for
each worker, it sums, indexed over the tasks that the worker is capable of performing.

These constraints, like the decision variable declaration, are written using slicing,
which streamlines iteration over sparse sets.

Instead of iterating over all the pairs of workers and tasks, this code sample only iterates
over the valid pairs specified in the sparse set WorkerTasks. Through slicing, the
assignTasks constraint finds the matching <w,t> pair for each t in Tasks, and the
assignWorkers constraint finds the matching <w,t> pair for each w in Workers.

To sum up, the decision variable declaration saves memory by only creating decision
variables (x) for valid pairs of workers and tasks, while the constraint declarations save
time and memory by only iterating over valid pairs of workers and tasks.

Explicit and implicit slicing

Consider a transportation problem where products must be shipped from one set of
cities to another set of cities. The model may include a constraint specifying that the

© Copyright IBM Corporation 2009. All rights reserved. 59

Lesson 2: Working with the OPL Language / Topic 7: Sparsity and slicing

total shipments for all products transported along a connectionmay not exceed a specified
limit:

forall(c in connections)
sum(<p,co> in routes: c == co) trans[<p,c>] <= limit;

This constraint states that the total products p shipped along each connection c is not
greater than limit. OPL must scan the entire set routes to select the tuples that
meet the filtering condition, c==co. In this example, the filtering expression c==co is
used to make slicing explicit.

The same constraint can be expressed with implicit slicing as follows:

forall(c in connections)
sum(<p,c> in routes) trans[<p,c>] <= limit;

In this constraint, the tuple <p,c> uses the previously defined parameter c. Since the
value of c is known, OPL uses it to index the set routes, avoiding a complete scan of
the set routes.

In this example, slicing is said to be implicit because the index c is used to declare
iteration in both the forall and sum loops. You can also use a constant as a tuple item,
for example <p,2>, for implicit slicing.

In general, there is no performance advantage in using implicit slicing over
explicit slicing. Therefore, you should use whichever renders your code more
readable for you and your collaborators.

Instructor note
In previous editions of this training course, there has been a lab that uses the
networking model from the Pasta Production workshop to demonstrate use
of sparse data in this spot. Due to reorganization of thematerial in this edition,
the networking lesson will not normally fit before this material. That means
that the lab for sparsity will not come until later on, a bit distant from the
theoretical material. This will be corrected in a future edition of this training.

© Copyright IBM Corporation 2009. All rights reserved.60

Lesson 2: Working with the OPL Language / Topic 7: Sparsity and slicing

A pasta production model

Learning objective
Practice using more advanced data
structures, such as tuples, to create
an optimization model for pasta
production.

Key term
tuple

The business problem
To meet the demands of its customers, a pasta company chooses
either to manufacture its products in its own factories (inside
production) or to contract them from other companies (outside
production). It does this as a function of demand and cost.

The inside production is subject to some resource constraints:
each product consumes a certain amount of each resource. In
contrast, outside production is only limited by contractual
agreement with the suppliers.

The problem is to determine how much of each product should be produced inside and
outside the company while minimizing the overall production cost, meeting the demand,
and satisfying the resource and contractual constraints.

Requirements:
• Manufacture products from available ingredients
• Meet the customer demand
• Produce yourself (inside) or obtain from a subsidiary (outside) at different costs
• Satisfy resource availability constraints (stock on hand) for the inside production
• Do not exceed the contractual limits on outside production
• Minimize the overall cost

Details of the problem
The Products, different types of pasta, are:

• kluski
• capellini
• fettucine

The Resources used to produce the Products are:

• flour (stock on hand = 120 units)
• eggs (stock on hand = 150 units)

The Consumption of Resources for each product (in units) is:

• For a package of kluski
0.5 flour•

• 0.2 eggs
• For a package of capellini

• 0.4 flour
• 0.4 eggs

• For a package of fettucine
• 0.3 flour
• 0.6 eggs

Customer Demand for each product is:

• 100 packages of kluski
• 200 packages of capellini
• 300 packages of fettucine

The Inside cost to make each product is:

• $ 0.60 per package of kluski
• $ 0.80 per package of capellini
• $ 0.30 per package of fettucine

© Copyright IBM Corporation 2009. All rights reserved. 61

Lesson 2: Working with the OPL Language / Topic 8: A pasta production model

The Outside cost to make each product is:

• $ 0.80 per package of kluski
• $ 0.90 per package of capellini
• $ 0.40 per package of fettucine

Finally, themaximum Outside production is contractually limited to be no more
than 200 units per product.

© Copyright IBM Corporation 2009. All rights reserved.62

Lesson 2: Working with the OPL Language / Topic 8: A pasta production model

Practice
Define a descriptivemodel of this problem that will enable you to write the OPL
model.

Tasks:
1. Define the data that you will declare
2. Choose the decision variables to use
3. Define the objective function
4. Define the constraints

Later in this lesson, you will reorganize the data for this problem using the
tuple data structure, but for now, just define the data elements you need to
declare in the model.

Instructor note
Work with the students as they develop this problem. Guide them to
use decision variable names that resemble or are identical to those
used in the productionSolutionproject files, since they will be
executing that workshop at the end of the lesson.

© Copyright IBM Corporation 2009. All rights reserved. 63

Lesson 2: Working with the OPL Language / Topic 8: A pasta production model

Practice
Model the pasta production problem in OPL
Go to the Pasta Production and Delivery workshop and complete the first
step,Write a basicmodel.You can perform this lab using theHTMLworkshop,
or by following the instructions in the workbook. The HTMLworkshop will give
you direct access to OPL documentation pages that can help you with the lab.

Write a basic model

Objectives
• Manipulate and initialize data
• Write constraints.

Action
• Action 1: finish production.mod

Finish the production.mod file
Import the project productionWork into the OPL Projects Navigator and look
at the .mod file.

• The consumption array is indexed on Products and Resources.
• The availability array is indexed on Resources.
• demand and cost arrays (inside and outside) are indexed on Products.
• The decision arrays (insideProduction and outsideProduction dvar

expressions) are indexed on Products.

You can easily see the correspondence between the arrays as defined in the model,
and the contents of the data file:

Products = { "kluski" "capellini" "fettucine" };
Resources = { "flour" "eggs" };

consumption = [[0.5, 0.2], [0.4, 0.4], [0.3, 0.6]];
availability = [120, 150];
demand = [100, 200, 300];
insideCost = [0.6, 0.8, 0.3];
outsideCost = [0.8, 0.9, 0.4];
maxOutsideProduction = 200;

• Complete the following steps to write the model:
Write the objective:
The sum, for each product, of the insideCost times the
insideProduction , plus the outsideCost times the
outsideProduction .

1.

2. Write the constraint for all resources:
The sum of the consumption times the insideProduction is
less than or equal to the availability of the Resource.

3. Write the constraint for all products:
The insideProduction plus the outsideProduction is
greater than or equal to the demand.

• Save and run your model.
• Compare your work to the solution found in

<trainingDir>\OPL63.labs\Pasta\Tuples\solution\productionSolution.

© Copyright IBM Corporation 2009. All rights reserved.64

Lesson 2: Working with the OPL Language / Topic 8: A pasta production model

Practice
Model the pasta production problem using tuples
Go to thePasta Production andDeliveryworkshop and complete the second
step,Write a model using tuples. You can perform this lab using the HTML
workshop, or by following the instructions in theworkbook. TheHTMLworkshop
will give you direct access to OPL documentation pages that can help you with
the lab.

Write a model using tuples

Objective
• Practice using the tuple data structure for the pasta production model

Actions
• Create a new model using tuple structures
• Create a tuple without an internal array

References
tuples
right-click context menu commands

From array to tuple
If you look at the original arrays declared in the previous step, the only one that
is not related to the products is availability. The availability limitations,
indexed on the resources, will remain as an array.

Convert the model to one that uses tuples

1. Create a new project, productwork and save it to the work directory.
The productwork.mod file is automatically created. Ask for the
automatic creation of a data file, product.dat in the same project.

2. In the model file, use a tuple to hold all the information about each
product. You will need to declare demand, inside and outside cost and
resource consumption inside the tuple.

3. Redefine the objective function and constraints to take advantage of the
tuple.

You need to provide access to individual members of the tuple
in your objective function.

4. Change the initialization in the data file: use the original data, but order
it to initialize the new tuples.

Use named initialization (#[) in the .dat file for clarity.

5. Run the program.
6. Compare your work to the solution found in

<trainingDir>\OPL63.labs\Pasta\Tuples\solution\productSolution.

Create a tuple without an internal array
In the solution you just completed, the tuple element consumption is an array.
If you later need to import data into this tuple element from a spreadsheet or
database, this structure cannot be used (OPL's spreadsheet and database
connections are explained in another lesson with a corresponding workshop). In
this step, you discover a way to avoid this problem.

© Copyright IBM Corporation 2009. All rights reserved. 65

Lesson 2: Working with the OPL Language / Topic 8: A pasta production model

Arrays inside tuples are permitted, but you can use them only if you're
not getting your data from a spreadsheet or database.

Steps to change the model:

1. Make a copy of the
<trainingDir>\OPL63.labs\Pasta\Tuples\work\productwork
project by selecting the project name and typing <Ctrl>C followed by
<Ctrl>V in the OPL Projects Navigator. When theCopy Project popup
window appears, change the project name to product2work.

2. Open the file product2work.mod for editing.
3. The array inside the tuple concerns the consumption of resources. The

first step, then, is to remove the array consumption from the tuple
ProductData.

4. Define a new tuple, named consumptionData specifying, for each kind
of pasta, how much of each resource is necessary.

To use this new structure and maintain the same solution, you need the
next three steps.

5. Create a set of this tuple, and name it consumption.
6. In the data file, remove the initialization of the consumption tuple

element (which you removed in the model file) and reorganize the same
data to initialize the new tuple set, also called consumption, that you
just created.

7. Adapt the resourceAvailability constraint so that it uses the new
data structures to express the same constraint as in the previous version
of the model.

8. Run your model.
9. Compare your work to the solution found in

<trainingDir>\OPL63.labs\Pasta\Tuples\solution\product2Work.

© Copyright IBM Corporation 2009. All rights reserved.66

Lesson 2: Working with the OPL Language / Topic 8: A pasta production model

Summary

Review
In this lesson, you learned how to write a model in OPL using OPL syntax, together
with the available OPL data structures and operators.

An OPL model typically contains:

• The choice of solver engine
• Data declarations
• Decision variables
• Objective function
• Constraints

AnOPLmodel can also contain IBM ILOGScript statements for pre- and postprocessing,
as well as flow control.

The basic data types available in OPL are:

• integer (OPL keyword int)
• real (OPL keyword float)
• string (OPL keyword string)

You learned what the data structures available in OPL are, as well as how to declare,
initialize, combine and manipulate them:

• range
• set
• array
• tuple

In addition, you learned what the types of variables available in OPL are:

• integer (OPL keyword int)
• real (OPL keyword float, for MP only)
• Boolean (OPL keyword boolean)
• interval (OPL keyword interval, for CP only)
• sequence (OPL keyword sequence, for CP only)

You learned the meaning of sparsity and how to use tuples to create sparse model
instances, and completed exercises that involved writing two models in OPL.

© Copyright IBM Corporation 2009. All rights reserved. 67

Lesson 2: Working with the OPL Language

Lesson 3: Working with IBM ILOG Script: basic
tasks

Instructor note
This lesson should last about 1 hour, including the practice. In the future

this lesson will include a demo to show how to use IBM® ILOG® Script
for flow control (a topic covered in detail in another lesson). While
including a demo is planned for the next training release, you can choose
to show such a demo at the end of this lesson if you have one available.

IBM ILOG Script is embedded in OPL to provide scripting functionality, including:

• Preprocessing data in the .mod file
• Postprocessing data in the .mod file
• Processing and formatting data in the .dat file
• Setting algorithmic parameters for both CPLEX® and CP Optimizer, including

specifying a search phase for CP Optimizer.
• Flow control, for example to implement decomposition schemes (where a model is

decomposed into a set of smaller more manageable models)

IBM ILOG Script can be added to any OPL model or data file.

At the end of this lesson you will be able to:

• Initialize an array in an IBM ILOG Script execute block
• Perform pre- or postprocessing using IBM® ILOG® Script execute blocks
• Prepare data using IBM ILOG Script prepare blocks

Using IBM ILOG Script to specify a search phase for CP Optimizer is covered in the lesson
on Solving Simple CP Problems, while flow control is covered in detail in the (optional)
lesson on Flow Control with IBM ILOG Script.

© Copyright IBM Corporation 2009. All rights reserved. 69

Lesson 3: Working with IBM ILOG Script: basic tasks

About IBM ILOG Script

Learning objective
Gain a general understanding of the

role of IBM® ILOG® Script relative
to the OPL modeling language

Key term
IBM ILOG Script

What is IBM ILOG Script?
A script is a sequence of commands. These commands can be of
various types: declarations, simple instructions, and compound
instructions.

IBM ILOG Script is an embedded JavaScriptTM implementation
to handle the non-modeling needs of OPL. It supports a variety
of methods to:

• Solve the model
• Access its data
• Change the value of its settings
• Manage preprocessing and postprocessing
• Manage flow control
• Display data

IBM ILOG Script uses the same high-level data structures as in OPL, embeds them in
an imperative language, and adds some novel constructs that address these non-modeling
processes.

Both variable and data declarations are supported in IBM ILOG Script. You will find
a complete reference for the IBM ILOG Script keywords in the OPL online help, in
Language Quick Reference > IBM ILOG Script Keywords.

© Copyright IBM Corporation 2009. All rights reserved.70

Lesson 3: Working with IBM ILOG Script: basic tasks / Topic 1: About IBM ILOG Script

IBM ILOG Script basics

Learning objective

Learn the basics of how an IBM®

ILOG® Scriptt is organized and the
general syntax used

Key terms
• execute block
• main block
• prepare block

IBM ILOG Script provides three types of instruction blocks:

• execute blocks are used in the .mod file for preprocessing
and postprocessing, and to set the CP search phase

• A main block is used in the .mod file for flow control (only
one main block is allowed per model file)

• prepare blocks are used in the .dat file to perform
additional operations related to data initialization

IBM ILOG Script is embedded in the OPL modeling language.
All declared model elements are available for scripting via their
name.

Script variables
Script variables are defined in main and execute blocks using the var keyword, and
are local to the blocks in which they are declared.

The use of the word” variable” here is identical to the usual meaning of the
word “variable” in a computer programming context. Note that this is different
from a decision variable (in OPLmodels) or a data element that represents data
in an OPL model.

© Copyright IBM Corporation 2009. All rights reserved. 71

Lesson 3: Working with IBM ILOG Script: basic tasks / Topic 2: IBM ILOG Script basics

Preprocessing and postprocessing

Learning objective

Understand how IBM® ILOG® Script
works together with OPL language
to process data before and after the
model is solved.

Key terms
• preprocessing
• postprocessing

Preprocessing and postprocessing
A block of statements for preprocessing or postprocessing is
marked by the keyword execute. The general form of an
execute block is as follows:

execute <block_name> {
<statement>;
<statement>;
...
<statement>;
}

where <statement> is any legal IBM ILOG Script instruction or declaration. An
execute block can have one or more <statement>s.

The <block_name> is optional. It simply puts a handle on the block so it is more easily
callable.

Any execute block placed before the objective or constraints declaration is part of
preprocessing; other blocks are part of postprocessing.

No two execute blocks can have the same <block_name> within the same
model.

Preprocessing
In OPL, the term preprocessing can refer to one of the following:

• Instructions that prepare your data for modeling and solving.
• The preprocessing done by the CPLEX® engine — i.e. a two-stage process

composed of:
• Presolving to reduce the size of a problem by making inferences about

the nature of any optimal solution to the problem
• Aggregating to eliminate variables and rows through substitution

IBM ILOG Script is used for the first operationmentioned above, deploying instructions
that manipulate or prepare your data before the optimization model is created. Here is
an example where all workers' salaries are adjusted before running the model:

execute {
for (var w in Workers) {

w.salary = w.salary * w.raise;
}

}

The script variable w, declared inside the execute block using the var command, is
local to the execute block and is therefore unknown to the OPL model and to other
execute blocks.

For decision variables and data, the context within an execute block corresponds to
the model declarations, in other words the set of Workers referred to here is the same
as the one declared in the model.

Changing algorithmic parameters
IBM ILOGScript execute blocks can be used to set CPLEX or CPOptimizer parameters,
such as parameters that control the presolve, solution display, choice of algorithm, etc.

© Copyright IBM Corporation 2009. All rights reserved.72

Lesson 3: Working with IBM ILOG Script: basic tasks / Topic 3: Preprocessing and postprocessing

An example of setting CPLEX parameters:
execute CPX_PARAM {
cplex.preind = 0;
cplex.simdisplay = 2;

}

This turns CPLEX presolve off and displays iteration information for each iteration of
the simplex optimizer.

You will find a complete list of CPLEX parameters in the OPL documentation at
Language > Parameters and settings in OPL > Mathematical programming
options > IBM ILOG CPLEX Parameters Reference Manual.

An example of setting CP Optimizer parameters:
execute CP_PARAM {
cp.param.TimeLimit = 13;
cp.param.LogVerbosity = "Quiet";
}

In the example above, IBM® ILOG® CP Optimizer will deliver the best solution it has
found after searching for 13 seconds, and will not output any information to the search
log.

You will find a complete list of CP Optimizer parameters that you can call in IBM ILOG
Script in the OPL documentation at Language > Language User’s Manual > IBM
ILOG Script for OPL > Using IBM ILOG Script in constraint programming.

You can also specify a search phase for CPOptimizer using an IBM ILOGScript execute
block. This is covered on the lesson on Solving Simple CP Problems.

Parameters for IBM ILOG CPLEX and CP Optimizer can also be set in the
settings (.ops) file.

For a complete list of parameters available in the settings file, refer to the
documentation at Language > Parameters and settings in OPL.

Postprocessing
Postprocessing is used to manipulate solutions and control output. One of the most
common postprocessing tasks is data display.

The following code fragment uses the writeln keyword inside an execute block to
display data. execute blocks can be named. In the example that follows, the execute
block is named STORES. Note that this script example uses the data objects Storesof
and Stores which have been declared in the model (outside the script).

{int} Storesof[w in Warehouses] = { s | s in Stores : Supply[s][w]
== 1 };
execute STORES{

writeln("Storesof=",Storesof);
}

Another common postprocessing function is to obtain the objective value of the current
solution, using the getObjValue()method. This value may then be processed further
in the execute block or be output to the Scripting Log.

© Copyright IBM Corporation 2009. All rights reserved. 73

Lesson 3: Working with IBM ILOG Script: basic tasks / Topic 3: Preprocessing and postprocessing

Data display
Data display is done with the write and writeln keywords. When used to display
data or results in pre or postprocessing, the writeln keyword must be within an
execute block:

execute {
writeln("hire list = ");
for (var h in hires)

writeln(h);
}

The writeln command is also useful for inserting a blank line, which must be written
as follows:

writeln()

The command writeln without parenthesis will not work.

writelnwill put all elements of a set or array on the same line unless the data
structure is being looped through in a for loop, as in the example above.

One could also use the problem solution to create and populate new data items that can
be displayed using an execute block. In the example below the new data set crew is
defined as the subset of an existing set of workers that should be hired according to
the model solution, where hire[c] is a Boolean decision variable indicating whether
a worker should be hired (1) or not (0).

{int} crew = {c | c in workers : hire[c] == 1}
execute {
for (var c in crew)
writeln(c);

}

© Copyright IBM Corporation 2009. All rights reserved.74

Lesson 3: Working with IBM ILOG Script: basic tasks / Topic 3: Preprocessing and postprocessing

Data initialization

Learning objective

Understand how IBM® ILOG® Script
can be used to initialize arrays

Key term
initialization

Array initialization
As previously noted, the execute block can be used as an
alternative method for initializing arrays. In the example below
script is used to initialize a string array called names and an
int array called salaries. The initialization assigns values to
the array elements by looping over the set of Workers, where
Workers is a set of tuples with name and salary fields, and
assigning the name and salary values to the respective arrays.

string names[Workers];
int salaries[Workers];
execute {
for(var w in Workers){
names[w] = w.name;
salaries[w] = w.salary;

}

This method is less efficient than a generically initialized array, and is recommended
primarily for complex cases or multiple initializations.

Guidelines for array initialization using IBM ILOG Script
• Loop through the set corresponding to the values you need to initialize your

data. InExample 1 below, data from the set of TableRoutes is used to initialize
the cost array. In this case, TableRoutes is a set of tuples.

• Assign a value to each array element based on the attributes of the set being
looped through. In the example below the cost attribute of each tuple in the
set of TableRoutes is used to populate the cost array.

• When assigning values to an array indexed by a tuple, use the find method of
the tuple set:

Example 1:
execute INITIALIZE {
for(var t in TableRoutes) {

cost[Routes.find(t.product,Connections.find(t.origin,t.destination))]
= t.cost;

}
}

Here is another example:

Example 2:
tuple tupleType {int a; int b; int c; };

{tupleType} tupleSet = {<1,2,3>};
tuple tupleIndexType {int a; int b;};

{tupleIndexType} tupleIndex = {<a,b> | <a,b,c> in tupleSet};

int arrayIdxByTup [tupleIndex];
execute OPTIONAL_NAME {

for (var x in tupleSet)
arrayIdxByTup[tupleIndex.find(x.a,x.b)] = x.c

}

© Copyright IBM Corporation 2009. All rights reserved. 75

Lesson 3: Working with IBM ILOG Script: basic tasks / Topic 4: Data initialization

It is worth emphasizing, again, that this method should be reserved for situations where
the initialization is very complicated. For example, it is also possible to initialize the
array in Example 2 using a generically indexed array as follows:

int arrayIdxByTup2 [tupleIndex] = [<a,b>:c | <a,b,c> in tupleSet];

This method is preferable to using the execute block.

© Copyright IBM Corporation 2009. All rights reserved.76

Lesson 3: Working with IBM ILOG Script: basic tasks / Topic 4: Data initialization

Processing values in the .dat file

Learning objective
Understand how to manipulate data
in the .dat file before the model is
solved.

Key term
prepare block

You can use certain IBM® ILOG® Script operations to process
values in the .dat file at initialization time. This is useful, for
example, when your source data is in one form and you need to
have it in another to use in the model. To do this, you use the
prepare keyword to create a block in which you define the
operation to be performed. The operation defined in the prepare
block is called in the initialization statement using the invoke
keyword.

The following code extracts show a simple example of how you do
this. The model file contains a declaration for a data element t that represents time,
expressed in hours:

float t[1..3]=...;

However, all the time data that is to be used to initialize this declaration is given in
minutes. Either you have to calculate the conversion yourself, or, you can write the
following IBM ILOG Script in the data file:

prepare {
function transformIntoHours(t) {

for(var a=0;a<t.length;a++) t[a]=t[a]/60;
return true;

}
}

Then, when you initialize t, you also call the conversion function:

t = [600,240,150] invoke transformIntoHours;

This declaration initializes t to values of 10, 4, and 2.5, i.e. the declared values converted
from minutes to hours.

You can combine this type of operation with data importation from an external
source such as a database.

Each .dat file can contain at most one prepare block.

© Copyright IBM Corporation 2009. All rights reserved. 77

Lesson 3: Working with IBM ILOG Script: basic tasks / Topic 5: Processing values in the .dat file

Flow control

Learning objective

Understand what an IBM® ILOG®

Script main block is used for.

Key term
main block

What is flow control?
Flow control enables you to control how models are instantiated
and solved, for example to:

• solve several models with different data in sequence or
iteratively

• run multiple “solves” on the same base model, modifying
data and/or constraints after each solve

• decompose amodel into smallermoremanageablemodels,
and solve these to arrive at a solution to the original model
(model decomposition)

Some examples where you may want to use IBM ILOG Script for flow control are:

• Implementing column generation (a mathematical programming algorithm)
• Decomposing a supply chain model into a planning model and a scheduling

model and solving these in sequence

Flow control can also be implemented using the available OPLAPIs, for example

for implementations in C++ or JavaTM.

The main block
Flow control statements are written within an IBM® ILOG® Script main block. An
example of a simple main block is:

main {
model.generate();
cplex.solve();
}

• model.generate() is used to generate the OPL model
• cplex.solve() calls the CPLEX solver engine to solve the model
• main blocks can be written either before the objective or after the constraint

block

Flow control is covered in detail in the optional lesson on Flow Control with IBM
ILOG Script.

Each .mod file can contain at most one main block.

© Copyright IBM Corporation 2009. All rights reserved.78

Lesson 3: Working with IBM ILOG Script: basic tasks / Topic 6: Flow control

Summary

Review
In this lesson, you learned the basic functions of IBM ILOG Script, an embedded
JavaScript implementation to handle the scripting needs of OPL. In this lesson, you
learnt how to use IBM ILOG Script in OPL to:

• Preprocess data in the .mod file
• Postprocess data in the .mod file
• Process and format data in the .dat file
• Set algorithmic parameters

You also learned that an IBM ILOG Script main block is used for flow control, for
example to implement decomposition schemes.

Next steps
Using IBM ILOG Script to specify a search phase for CP Optimizer is covered in the
lesson on Solving Simple CP Problems.

Flow control is covered in detail in the (optional) lesson on Flow Control with IBM
ILOG Script.

© Copyright IBM Corporation 2009. All rights reserved. 79

Lesson 3: Working with IBM ILOG Script: basic tasks

Lesson 4: Solving Simple LP Problems

Instructor note
This lesson should last about 1 hour 30minutes, including the practices.

In this lesson, you will learn more about the OPL functionality available for Linear
Programming (LP) problems, and useOPL tomodel and solve an LP problem. You'll practice
using OPL data structures, especially tuples and sets.

In the process, you will become more familiar with the different data structures available
in OPL, and especially the powerful capability of the tuple data structure that organizes
data in a clear and coherent manner for easy manipulation in your model.

The lesson takes you through the steps that will enable you to start with a problem
expressed in business terms, and arrive at a well-formed mathematical representation of
the problem.

This lesson includes:

• An overview of some of the OPL functionality available for LP problems
• Practice converting a problem given in business terms to an mathematical model
• A lab to give you practical experience writing and solving an LP model using OPL

At the end of this lesson you will be able to:

• Use some additional OPL functionality available for constructing LPmodels, beyond
what was covered in the preceding lessons

• Write an LP model in OPL

© Copyright IBM Corporation 2009. All rights reserved. 81

Lesson 4: Solving Simple LP Problems

LP modeling structures

Learning objective
By the end of this lesson, you will
have learned more about specific
modeling structures used in MP
models in OPL, and have practiced
writing an LP model.

Key terms
• operators
• ordered indices
• constraint labels

In this topic
In this topic, you'll learn about more of the OPL functionality
available for constructing Linear Programming (LP) models,
specifically:

• Numeric and symbolic operators
• Using ordered indices
• Logical constraints
• Labeling constraints

The functionality covered in this topic is also applicable to
Mathematical Programming (MP) problems, in general.

Operators
OPL provides a rich set of operators forMPmodels in an intuitive format. This workbook
provides a series of tables listing the operators available for linear programming.

Numeric operators:
DescriptionOperatorType of operator

The usual mathematical
operators

+,-,*,/Float

Represents the infinite
(IEEE 754)

infinity

The absolute value of fabs(f)

The smallest integer greater
than or equal to f

ceil(f)

The largest integer less
than or equal to f

floor(f)

The integer part of ftrunc(f)

The fractional part of ffrac(f)

The distance from f to
nearest integer

distToInt(f)

The nearest integer to fround(f)

The usual mathematical
operators

+,-,*,divInteger

The integer remainder of x
divided by y

x mod y or x % y

The absolute value of xabs(x)

The greatest integermaxint

Symbolic operators:

© Copyright IBM Corporation 2009. All rights reserved.82

Lesson 4: Solving Simple LP Problems / Topic 1: LP modeling structures

DescriptionOperatorType of operator

First (last) element in the
set list

first, lastSet

The n-th element in the setitem

Number of elements in the
set

card

Integer rank of an element
in the set (zero based)

ord

Next (previous) element in
the set list

next, prev

Circular versions of next
and prev

nextc, prevc

Intersectiona inter b

Uniona union b

Differencea diff b

Symmetrical difference (i.e.
all elements that exist in
(a+b) - (a union b))

a symdiff b

Equivalent to==String

Different from!=

Conjunction (logical "and")&&Boolean

Disjunction (logical "or")||

Equivalence==

Difference (exclusive "or")!=

Negation (logical "not")!

Instructor note
Refer students to the online help for additional keyword explanations.
Some of these operators are also available in CP Optimizer. They may be

available only for filtering in CPLEX® but permitted on decision variables in
CP Optimizer.

Ordered indices
To enforce indexing to take place according to the order of items in the set, use the
notation:

forall (ordered i, j in positions)

This is equivalent to the statement:

forall (i,j in positions : ord(S,i)<ord(S,j))

© Copyright IBM Corporation 2009. All rights reserved. 83

Lesson 4: Solving Simple LP Problems / Topic 1: LP modeling structures

Logical constraints in MP
In CPLEX models, a logical constraint combines linear constraints by means of logical
operators, such as logical-and, logical-or, negation (not), conditional statements (if ...
then ...) to express complex relations between linear constraints.

IBM® ILOG® CPLEX can also handle certain logical expressions appearing within a
linear constraint. One such logical expression is the minimum of a set of decision
variables. Another such logical expression is the absolute value of a variable.

In OPL, you can define logical constraints using any operator that can be extracted by
the optimization engine. In addition to the relationships described above for linear
constraints,

IBM ILOG CPLEX can extract the following logical operators in constraints:

• && (conjunction)
• | | (disjunction)
• ! (negation)
• != (difference)

All these constructs accept as their arguments other linear constraints or logical
constraints, so you can combine linear constraints with logical constraints in complicated
expressions in your application.

Constraint labels
The OPL IDE lets you attach a label to a constraint. This helps identify the constraint,
and it is also good practice for the following reasons:

• Constraint labels enable you to benefit from the expand feature in the IDE
Problem Browser to find which constraints are tight in a given application or to
find dual decision variable values in linear programs.

Refer to Getting Started with the OPL IDE > Getting Started
tutorial > Examining a solution to the model > Understanding
the Problem Browser in the documentation for details on how to do
this.

• When a solution is available, you can access the slack and dual values for labeled
constraints using IBM ILOG Script. IBM ILOG Script is discussed in another
lesson.

See also, the IBM ILOG Script Reference Manual in the
documentation.

• Only labeled constraints are considered by the relaxation and conflict search
process in infeasiblemodels - these are discussedmore fully later in this training.

Instructor note
Named constraints, used in versions of OPL before 5.0 can no longer be used.
Use constraint labels instead.

To label a constraint, just type the name you want, followed by a colon (:), before the
constraint you want to label.

minimize
sum(p in Products)
(InsideCost[p] * Inside[p] + OutsideCost[p] * Outside[p]);

© Copyright IBM Corporation 2009. All rights reserved.84

Lesson 4: Solving Simple LP Problems / Topic 1: LP modeling structures

subject to {
forall(r in Resources)
ctCapacity:
sum(p in Products)
Consumption[p][r] * Inside[p] <= Capacity[r];

forall(p in Products)
ctDemand:
Inside[p] + Outside[p] >= Demand[p];

}

In the example above, ctCapacity and ctDemand are the constraint labels.

© Copyright IBM Corporation 2009. All rights reserved. 85

Lesson 4: Solving Simple LP Problems / Topic 1: LP modeling structures

Supermarket display problem

Learning objective
Model a real-world linear
programming problem in OPL.

Key terms
• tuple
• array
• linear program

© Copyright IBM Corporation 2009. All rights reserved.86

Lesson 4: Solving Simple LP Problems / Topic 2: Supermarket display problem

Practice
Managing supermarket display space
You are now going to perform a lab that takes you through a basic linear
programming problem and shows how you can:

• Retrieve raw data from an external data source
• Pre-process the data before working on a decision model
• Post-process the data before returning a solution

In the process, you will practice using tuples, arrays and sets and practice
instantiating them.

The pre-processing and post-processing in this lab are done using IBM®

ILOG® Script execute blocks.

The business problem
A supermarket needs to optimize the display of available goods on storage
shelves in order to maximize sales and profit. The supermarket sells different
kind of products:

• Italian Food:
Pasta•

• Tomato Sauce
• Salami

• Asian Food:
Rice•

• Soya Sauce
• Chicken Wings

Some of these products have a sales interest apart from the ethnic food groupings
above. Chickenwings, for example, are not only interesting to customerswanting
to make Asian food. The store manager has to decide howmuch of each product
to put in normal, open shelving and how much to put grouped with related
products in special promotional groups as shown above.

In addition, there are constraints based on the floor plan of the supermarket
and the different types of shelving available for these products.

Attributes of products and shelving
Each type of product is characterized by the following attributes:

• The expected unit profit margin
• The unit volume
• Must be refrigerated or not
• The minimum available quantity to be sold
• The maximum quantity that may be ordered (and hence sold)

The products can be displayed in different storage shelves across the
supermarket. The shelves are limited in volume, and some are refrigerated,
others not.

The different shelf units have different values for promoting the sales of items,
as a function of the floor plan. These shelves have the following attributes:

• A volume capacity
• Is refrigerated? (Yes/No)
• A sales acceleration/efficiency factor (for example, higher for placement

at the end of an aisle)

The sales acceleration factor has the effect of clustering certain items
together on the “super promotion” shelves.

© Copyright IBM Corporation 2009. All rights reserved. 87

Lesson 4: Solving Simple LP Problems / Topic 2: Supermarket display problem

Go to the Supermarket Display workshop and perform the step,Model the
input data. You can perform this lab using theHTMLworkshop, or by following
the instructions in the workbook. The HTML workshop will give you direct
access to OPL documentation pages that can help you with the lab.

Model the input data

Objective
• Use different types of set instantiation to model the input data of this

problem

Actions
• Define the products and their attributes
• Define product supply
• Define the shelving and its attributes

References
sets
tuples
initializing sets
initializing tuples

Define the products and their attributes
When integrating the optimization engine into a legacy system, the input data
may already be available in a determined format the engine must comply with,
such as an ascii file, a csv file, an Excel spreadsheet, a data base, memory resident
objects, etc.

In this case, for simplicity, we simply use plain ascii text data in the .dat file
to instantiate the model.

Product attribute matrix

Needs
refrigeration?

Unit
volume

Profit
marginProduct name

No11.1Tomato Sauce

Yes11.5Salami

No15Rice

No15Soya Sauce

Yes11Chicken Wing

Model this structure with a tuple:

tuple Product
{
key string name; // Product name.
float margin; // Profit margin
float unitVolume; // Volume for one unit of product
int cold; // 1 if refrigeration required , 0 otherwise

};

Note that the “Needs refrigeration?” column (yes/no or true/false values)
of the matrix is represented as a binary as follows:

© Copyright IBM Corporation 2009. All rights reserved.88

Lesson 4: Solving Simple LP Problems / Topic 2: Supermarket display problem

1 if refrigeration is required•
• 0 if no refrigeration is required (for “dry” products)

Collect all the members of this tuple together into a set:

{Product} products = ...;

Define product supply

Product supply matrix

Maximum possible
order

Minimum units
availableProduct name

1000100Tomato Sauce

30050Salami

1000100Rice

1000100Soya Sauce

100040Chicken Wing

Model this structure with the following tuple:

tuple Supply
{
key string product;
int minimumStockValue; // minimim quantity to be ordered

for stock/sale
int maximumStockValue; // potential maximum extra ordered

quantity
}

Collect all the members of this tuple together into a set:

{Supply} supplies = ...;

Define the shelving and its attributes

Shelving attribute matrix

Refrigerated?
Sales

Accelerator
Factor

Maximum
CapacityName

Yes1.5100SuperPromoFridge

No0.51000StandardShelf

Yes1100PromoFridge

No11000PromoShelf

Yes0.5100StandardFridge

No1.51000SuperPromoShelf

Model this structure with the following tuple:

© Copyright IBM Corporation 2009. All rights reserved. 89

Lesson 4: Solving Simple LP Problems / Topic 2: Supermarket display problem

tuple Shelf
{
key string name; // shelf name
int volumeCapacity; //maximum capacity

float promotionAccelerator; // indicator between 0 and 1.5

int cold; // 1 for refrigerated, 0 otherwise
}

Collect all the members of this tuple together into a set:

{Shelf} shelves = ...;

What are the unknowns?
• How much of each product to display on each shelf?
• How much extra product (beyond stock on hand) should be ordered?

Modeling the decision variables
In this model, we could define a decision variable matrix in order to express all
possible product quantities which are displayed into all storage shelves. This
is, however, not a good idea; we know, for instance, that it is not possible to
display a refrigerated product on a non refrigerated shelf.

It is better to create an array of decision variables only for compatible
product-storageShelf pairs.

This means the array of decision variables must be indexed with such pairs.
You will represent the pairs with a tuple.

In theSupermarketDisplayworkshop, perform the step,Model the decision
variables.

Model the decision variables

Objective
• Use sparse sets to calculate values for decision variables during modeling

Actions
• Define compatibilities
• Declare the decision variables

References
union
expressions of decision variables

Define compatibilities
You need to define a decision variable to determine what quantity of which
product is displayed on which shelf. It will be indexed on pairs of product and
shelf. Since products are compatible with only one type of shelf, some
product/shelf pairs can be eliminated:

• Cold products can only be displayed on cold (refrigerated) shelves
• Dry products can only be displayed on dry (non-refrigerated) shelves
1. To define a sparse set of compatible pairs, declare a tuple:

tuple ProductShelfCompatibility
{
Product product;

© Copyright IBM Corporation 2009. All rights reserved.90

Lesson 4: Solving Simple LP Problems / Topic 2: Supermarket display problem

Shelf shelf;
}

2. Create two computed sets of instances of ProductShelfCompatibility:
• One containing only cold product/shelf pairs named

coldCompatibilities
• One containing only dry product/shelf pairs named

dryCompatibilities
3. Declare a third set, compatibilities, that is the aggregate of the two

sets you declared in the last step.

Use the union operator.

Next you will use these pairs as indexes for displayed product and stored product
decision variables. This is a simple way to create a sparse matrix under OPL

Declare the decision variables
1. Use the set compatibilities as an index over decision variables for

displayed product quantities over shelves. call it storedQuantities:

dvar float storedQuantities[compatibilities] in
0..maxint;

2. Define a decision expression called orderedQuantities that uses the
set compatibilities as an index over variables for product total
ordered quantities

dexpr float orderedQuantities[p in products] =
//complete this expression using array initialization

What is the objective?
Maximize sales by displaying the products in the right places and the right
quantities.

In the Supermarket Display workshop, perform the substepWrite the
objective functions of the stepWrite the objective function and
constraints.

Write the objective function
In the .mod file, write an objective function to maximize profit:

1. For each product/shelf compatibility pair, define the profit as a function
of:

• Displayed quantity for the shelf
• Product's profit margin
• The shelf's sales accelerator factor

Use a decision expression, using the keyword dexpr. Name it
profit

2. Maximize profit.

What are the constraints?
• At least the minimum stock on hand must be displayed
• The total quantity ordered for each product must not exceed the

maximum allowed order
• Total shelf capacity cannot be exceeded.

© Copyright IBM Corporation 2009. All rights reserved. 91

Lesson 4: Solving Simple LP Problems / Topic 2: Supermarket display problem

In the Supermarket Display workshop, perform the substepWrite the
constraints of the stepWrite the objective function and constraints.

Write the constraints
Two of the constraints are already completed for you.

1. The first already completed constraint specifies that for all products, the
sum of the ordered quantities shall be at least equal to the minimum
stock value (stock on hand):

forall(p in products, s in supplies: s.product ==
p.name){
MinStockCst: orderedQuantities[p] >=
s.minimumStockValue;
}

2. A constraint is completed requiring that for all products, the sum of the
ordered quantities shall not exceed the maximum ordered quantity:

forall(p in products, s in supplies: s.product ==
p.name){
MaxStockCst: orderedQuantities[p] <=
s.maximumStockValue;
}

3. Write a constraint requiring that for all shelves, the total quantity of all
the displayed products multiplied by the product unit volume shall not
exceed the total shelf volume capacity.

Visualizing the results
In order to display the results in a useful manner, you need to create structures
that can be manipulated after solving the model.

What do we want to see?
• The quantity of each product allocated to each shelf. To do this, declare

a tuple, StorageResult, that associates shelf, product displayed on
the shelf, and quantity of that product to be displayed on the shelf.

• How much extra of each product to order: declare a tuple,
PurchaseOrderResult, associating the product and the amount to be
ordered.

• The percentage of shelf space in use for each shelf: declare a tuple,
ShelfUsage, associating each shelf with a usage percentage.

Use input data and decision variable values to calculate sets of these tuples
that show results for all products and shelves.

This data could be exported to an external application such as a database or
spreadsheet, for further processing and analysis. Here, for simplicity, we write
the information to the Scripting log output tab using an IBM ILOG Script
execute block. This feature is discussed in detail in another lesson of this
training.

In theSupermarketDisplayworkshop, perform the step,Display the results.

Display the results

Objective
• Use sets to post-process data for display

Actions

© Copyright IBM Corporation 2009. All rights reserved.92

Lesson 4: Solving Simple LP Problems / Topic 2: Supermarket display problem

• Create output data structures
• Convert structures into formatted results for display
• Experiment with the values

Create output data structures
In the model, the output tuples are already declared for you:

• StorageResult
• PurchaseOrderResult
• ShelfUsage

The usagePercentagemember of this tuple is to be calculated
“on the fly” as part of the set of shelf usage ratios (see next
substep).

Examine these structures in the model.

Convert structures into formatted results for display
Complete the data structures for conversions into formatted results. Use generic
set instantiation for this, following the descriptive patterns suggested below:

• Ordered quantities for each product:

P = sum(P/all shelf compatibilities)
orderedQuantities(P)

• Quantity of displayed products on a given shelf:

Q = sum(all product/S compatibilities)
storedQuantities(product/S)

• Shelf usage ratio for a given shelf:

S= sum(all product/S compatibilities)
storedQuantities(product/S) / S.capacity

Compare your work with the solution in
<trainingDir>\OPL63.Labs\Mart\solution\martSolution

Experiment with the values
In principle, if shelves are not full, the model will change the number of products
to be ordered so that all shelf space is used 100%. However, there may be limits
of budget or product availability that make it so that the maximum permitted
order of some products would be exceeded.

Try reducing the value of maximumStockValue for some or all products, and
see what results you get when solving the model. Compare several different sets
of values to see how OPL deals with the changed data.

Examine the displayed results in the Scripting log output tab, and the values
of data elements and decision variables in the Problem browser.

© Copyright IBM Corporation 2009. All rights reserved. 93

Lesson 4: Solving Simple LP Problems / Topic 2: Supermarket display problem

Summary

Review
In this lesson, you learned about some OPL modeling tools used in MP models:

• Operators available in OPL
• Logical constraints in MP models
• Constraint labels

You have also used these data structures to solve a production outsourcing problem and
a supermarket product-shelf allocation problem.

© Copyright IBM Corporation 2009. All rights reserved.94

Lesson 4: Solving Simple LP Problems

Lesson 5: Solving Simple CP Problems

Instructor note
This lesson should take about 2 hours, including the practices.

Some optimization problems are solved very effectively using a technique calledConstraint

Programming (CP). IBM® ILOG® CP Optimizer is a constraint programming optimizer
for solving detailed scheduling problems as well as certain combinatorial optimization
problems that cannot be easily linearized and solved using traditional mathematical
programming methods. This powerful CP engine is easily accessible through OPL, where
the user can take full advantage of OPLs development, debugging and tuning features to
solve complex real-world CP problems.

A major benefit of IBM ILOG CP Optimizer is that it automatically generates advanced
algorithms based on themathematical formulation of a particular model. This allows users
to “model and run” complex problems, without having to write the complex searches
traditionally required for CP. However, it still allows the advanced user to specify a search
if desired. In addition, it provides easy-to-use representations for specialized constraints.
These simplified representations are particularly useful when tackling, for example,
complex scheduling problems.

This lesson introduces you to basic CP concepts, and shows you how to take advantage of
this technology using IBM ILOG CP Optimizer and OPL.

At the end of this lesson you will be able to:

• Understand what constraint programming is
• Model a simple CP problem using OPL
• Specify a CP search phase in OPL

IBM ILOG CP Optimizer is IBM's second-generation CP engine and is
distinguishable from IBM's first-generation CP engine called IBM ILOGCP.While
IBM ILOG CP is not embedded in OPL, and therefore not covered in this training,
it remains available for complex routing problems that are beyond the current
capabilities of IBM ILOG CP Optimizer.

© Copyright IBM Corporation 2009. All rights reserved. 95

Lesson 5: Solving Simple CP Problems

Introduction to CP

Learning objective
Understand the principles of
Constraint Programming and how
it is implemented in OPL and CP
Optimizer

Key terms
• Constraint Programming (CP)
• satisfiability
• combinatorial optimization
• constraint propagation
• domain reduction
• search strategy
• search phases

What is Constraint Programming?
Constraint programming is a discipline of computer science, closely
associated with artificial intelligence. Formally, it is based on
logic and symbolic reasoning. It is a technique that is very effective
in solving, for example:

• Detailed scheduling problems
• Routing problems
• Satisfiability problems
• Certain other combinatorial optimization problems not

well-suited for traditional Mathematical Programming
(MP) methods

Historically, the word “programming” as used in “Constraint
Programming” refers to a computer programming paradigm, as
opposed to referring to a problem or methodology as it does in the
case of “Mathematical Programming”. It is important not to

confuse CP as being another branch of MP, even though these two techniquesmay seem
to be tackled in a similar manner when using the OPL IDE. Specifically, in both cases
OPL allows the user to build a model using OPL modeling syntax, to solve the model

using a built-in IBM ILOG solver engine (CPLEX® for MP and CP Optimizer for CP),
and to utilize other OPL functionality such as scripting.

CP Optimizer and OPL
IBM ILOG CP Optimizer is intended for the following two categories of problems, with
the most important technical differences indicated below:

• Detailed scheduling problems
Decision variables are of type interval and describe an interval of time
during which, for example, a task occurs

•

• There is no discrete enumeration of time
• Certain combinatorial optimization problems not well-suited for MP

• These problems contain only discrete decision variables

IBM ILOG CP Optimizer as embedded in OPL has the following additional benefits:

• Automatically generated advanced algorithms based on the mathematical
formulation of a model

• Easy-to-use representations for specialized constraints used in scheduling and
other combinatorial problems

Scheduling with CP Optimizer
Scheduling can be seen as the process of optimally assigning start and end times to
intervals. Scheduling problems also require the management of minimal or maximal
capacity constraints for resources over time.

IBM ILOG CP Optimizer as embedded in OPL provides elements to concisely represent
complex scheduling problems, for example:

• Variables of type interval, with attributes of start, end, size and intensity
• Precedence constraints, for example endBeforeStart to indicate that the end

of one interval must occur before the start of another
• Cumulative expressions to define resource constraints, for example

cumulFunction, step and pulse.
• Other elements to model sequencing, synchronization, etc.

© Copyright IBM Corporation 2009. All rights reserved.96

Lesson 5: Solving Simple CP Problems / Topic 1: Introduction to CP

Note that a separate lesson on Scheduling in OPL with CP Optimizer provides a
thorough overview on this subject. The current lesson focuses on using CP Optimizer
to solve other types of combinatorial problems.

Combinatorial optimization with CP Optimizer
Certain combinatorial optimization problems cannot easily be linearized or solved using
traditional mathematical programming techniques and are instead well-suited for CP.
The elements of these problems are as follows:

• A set of discrete decision variables (integer or Boolean)
• A predefined domain for each variable designating its possible values
• A set of constraints defined according to the rules of CP
• Optionally, an objective function to be minimized or maximized

Models where no particular objective is being minimized or maximized, are
known as satisfiability or constraint satisfaction problems. Here the user
simply wants a feasible solution that satisfies all constraints over a set of
decision variables. CP is especially useful for such problems.

You will explore the use of CP Optimizer for combinatorial optimization, other than
scheduling, in more detail later in this lesson.

How does CP Optimizer work?
CP methodology, in general, has two phases:

1. Write amodel representation of a problem in a computer programming language
2. Describe a search strategy for solving the problem

A typical CP search uses the following techniques iteratively until a solution is found:

• Domain reduction: The process of eliminating possible values from a variable
domain by considering the constraints on that variable and related variables.

• Constraint propagation: The process of communicating the domain reduction of
a decision variable to all of the constraints on this variable. This can result in
more domain reductions.

CP Optimizer offers built-in search strategies based on your problem
formulation, and you therefore don't need to write your own search strategy.
However, it still allows you to specify a search if desired.

Constructive search
CPOptimizer uses a process called constructive search to construct a solution following
these steps:

1. Select a decision variable
2. Assign a value to the decision variable
3. Reduce the domains of the other variables using constraint propagation
4. If step 3 fails, backtrack to step 2 and assign a different value to the variable,

otherwise return to step 1

The process continues until all decision variables have a value, or it is established that
no solution exists.

The following diagram illustrates the constructive search process:

© Copyright IBM Corporation 2009. All rights reserved. 97

Lesson 5: Solving Simple CP Problems / Topic 1: Introduction to CP

The search space is the product of all domain sizes, measured by its logarithm, and
is a measure of how difficult a problem is for the CP Optimizer engine.

Search strategies
With CP Optimizer, the user does not need to describe a search strategy, because CP
Optimizer will automatically generate a search based on:

• the model structure
• constraint propagation

However, the user can optionally fine-tune the search strategies by:

• modifying search parameters
• specifying more detailed search phases

CP search phases
In general, CP Optimizer’s built in search works well without additional guidance.

However, a search phase can be used to tune a search strategy by specifying the criteria
for the order in which decision variables are chosen to be fixed and/or to which values
these variables should be fixed.

This strategy is then used to instantiate the decision variables of the phase.

Specifying a search phase can in some cases have a significant influence on the processing
time.

Search phases can be composed of a subset of the following:

• an array of integers to instantiate (or fix)
• a variable chooser that defines how the next variable to instantiate is chosen

© Copyright IBM Corporation 2009. All rights reserved.98

Lesson 5: Solving Simple CP Problems / Topic 1: Introduction to CP

• a value chooser that defines how values are chosen when variables are
instantiated

In the OPLmodel, search phases are written using IBM® ILOG® Script execute blocks
located after the decision variable declarations and before the objective function
definition.

A typical search phase definition, where x is a decision variable, is as follows:

execute {
var f = cp.factory;
var phase1 = f.searchPhase(x);
cp.setSearchPhases(phase1);
}

Note that cp in the code above gives the user access to an instance of the IloCP class
and its methods, and factory is a property of this class that accesses the CP search
modifier factory. Formore information, see the IBM ILOGScript ReferenceManual
available in the OPL Language manual.

You can also specify a sequence of search phases, for example:

execute {
var f = cp.factory;
var phase1 = f.searchPhase(x);
var phase2 = f.searchPhase(y);
cp.setSearchPhases(phase1, phase2);
}

This tells CP Optimizer to search first on the x decision variable and then on the y
decision variable.

The general syntax of a phase that specifies both a variable chooser and a value chooser
is as follows:

var phase1 = f.searchPhase(x,<variable chooser>, <value chooser>);

where <variable chooser> specifies how the next decision variable to fix in the
search is chosen, and

<value chooser> specifies how values are chosen for instantiating decision variables.

A variable chooser is a combination of selectors and evaluators. For instance,

f.selectSmallest(f.domainSize())

is a variable chooser that evaluates the domain size (the evaluator is f.domainSize())
of each variable and selects the one having the smallest size (the selector is
f.selectSmallest()).

A value chooser is defined according to the same template. For instance,

f.selectLargest(f.value())

selects the largest value of the domain to instantiate the variable chosen.

The search phase using these choosers is then

var phase3 = f.searchPhase(z, f.selectSmallest(f.domainSize()),
f.selectLargest(f.value()));

© Copyright IBM Corporation 2009. All rights reserved. 99

Lesson 5: Solving Simple CP Problems / Topic 1: Introduction to CP

Several predefined evaluators are available in the OPL documentation at Language
> Language User’s Manual > IBM ILOG Script for OPL > Using IBM ILOG
Script in constraint programming > Defining search phases.

© Copyright IBM Corporation 2009. All rights reserved.100

Lesson 5: Solving Simple CP Problems / Topic 1: Introduction to CP

CP models in OPL

Learning objective
Learn the basics of how to use CP
Optimizer and OPL to solve certain
combinatorial optimization
problems, other than scheduling
problems.

Key terms
• arithmetic constraints
• logical constraints
• compatibility constraints
• specialized constraints

CP models for combinatorial optimization
In this section, you explore how to use CP Optimizer and OPL to
model and solve certain combinatorial optimization problems
other than scheduling problems. These are problems that are not
well-suited for MP methods, but effectively solved using CP. The
focus here is mainly on the syntax and basic modeling constructs.

The information discussed here is generally valid for any CP
application in OPL. However, note that another lesson,
Scheduling in OPL with CP Optimizer provides a thorough
overview on using CPOptimizer andOPL for scheduling problems
and syntax specific to scheduling problems is not covered in this
lesson.

Invoking the CP Optimizer engine
The OPL keyword using at the beginning of a model file invokes the solution engine
to be used. To call IBM ILOGCPOptimizer as the optimization engine, use the command:

using CP;

as the first line of your .mod file.

The using keyword can also invoke the CPLEX optimizer. In OPL V6.3, the
CPLEX optimizer is used by default, and if no using command is present,
CPLEXwill be called. If a model file contains CP-specific constraints and using
CP is not present, OPL will produce error messages.

Arithmetic operations, expressions and constraints in OPL
A CPmodeler has access to a large number of arithmetic tools in OPL. These are shown
in the table below and can be grouped as:

• Operations
• Expressions
• Constraints

While many of these are also available in MP, some are limited to CP in constraints,
but can still be used outside constraint blocks with integer arrays for both CP and MP.
The tools that fall in the latter category are indicated with a * in the Explanation
column in the tables that follow.

© Copyright IBM Corporation 2009. All rights reserved. 101

Lesson 5: Solving Simple CP Problems / Topic 2: CP models in OPL

Explanation
Representation

in OPL
Operator

Type of
arithmetic tool

The usual arithmetic
operations

+additionOperations

-subtraction

*multiplication

Returns the integer
portion of a division,
for example, 16 div
5 = 3

divinteger division

Returns the full
floating-point result
of a division, for
example, 16 / 5 =
3.2

/floating-point
division

In the expression x
% y, returns the
integer remainder of
x divided by y.

For example, 48 %
10 = 8

% or modmodular arithmetic

© Copyright IBM Corporation 2009. All rights reserved.102

Lesson 5: Solving Simple CP Problems / Topic 2: CP models in OPL

Explanation
Representation

in OPL
Operator

Type of
arithmetic tool

Returns the
standard deviation
of the <int_array>.

*see note
below

standardDeviation
<int_array>

Standard deviationExpressions (to be
used in constraints)

Aggregate operator
that computes the
minima of a
collection of related
expressions

minminimum

Aggregate operator
that computes the
maxima of a
collection of related
expressions

maxmaximum

Counts how many of
the elements in the
array given as
<arg_1> are equal
to the value given as
<arg_2>.

*see note
below

count
(<arg_1>,<arg_2>)
where <arg_1> is
an integer array and

<arg_2> is an
integer value
(declared or
calculated).

count

Returns the absolute
value of f

abs(float f)absolute value

Returns the nth
element of
<int_array>.

*see note
below

element(<int_array>,n)
where n is an
integer decision

variable

element or index

The usual arithmetic
evaluations. These
are the same as are
used in the C and
C++ programming
languages.

==equal toArithmetic
constraints

!=not equal to

<strictly less than

>strictly greater than

<=less than or equal to

>=greater than or
equal to

*Note that in constraints, these functions are limited to CP. Outside constraint
blocks, they can be used with integer arrays both in CP and CPLEX.

© Copyright IBM Corporation 2009. All rights reserved. 103

Lesson 5: Solving Simple CP Problems / Topic 2: CP models in OPL

Logical constraints in CP
IBM ILOGCPOptimizer provides full native support for logical constraints (for example
and, or and not), and these logical operators are available in OPL.

ExplanationRepresentation inOPLLogical operator

Returns 1 (true) if both
<expression1> and
<expression2> are true,
and 0 (false) otherwise.

<expression1> and
<expression2>

logical-and (conjunction)

Returns 1 (true) if at least
one of <expression1> or
<expression2> are true,
and 0 (false) otherwise.

<expression1> or
<expression2>

logical-or (disjunction)

Returns 1 (true) if the
constraint is false, and 0
(false) otherwise.

!logical not (negation)

If <expression> is true,
include
<constraint(s)>,
otherwise, do nothing.

if (<expression>)
{<constraint(s)>}

logical if-then (implication)

If <expression> is true,
include
<constraint1(s)>,
otherwise, include
<constraint2(s)>.

if (<expression>)
{<constraint1(s)>}

else
{<constraint2(s)>}

logical if-then-else
(implication)

The and and or operators allow you to express constraints in a more compact form by
aggregating several constraints into a single expression, for example:

or(i in 1..5 : i mod 2 == 0) x[i] == 2;
and(i in 1..5 : i mod 2 == 1) x[i] == 1;

Compatibility Constraints
The following compatibility constraints are specific to CP, although they can also be
used with integer arrays outside constraint blocks when using either CP or CPLEX
models:

• allowedAssignments
• forbiddenAssignments

The purpose of these constraints is to define combinations of allowed or forbidden values
for multiple integer decision variables.

These constraints can apply to any number of decision variables (and therefore each
has a variable number of arguments). The set of allowed (or forbidden) combinations is
given by a tuple with the number of fields equal to the number of considered decision
variables. Each tuple defines an allowed (or forbidden) combination. Here is an example
of their use:

using CP;

tuple C {
int a;

© Copyright IBM Corporation 2009. All rights reserved.104

Lesson 5: Solving Simple CP Problems / Topic 2: CP models in OPL

int b;
};

{C} possibles = {<1,1>, <2,4>};
{C} forbidden = {<3,5>};

dvar int+ x;
dvar int+ y;

constraints {

allowedAssignments(possibles, x, y);

forbiddenAssignments(forbidden, x, y);
}

Specialized constraints
A specialized constraint is equivalent to a set of arithmetic or logical constraints.
They express complicated relations between decision variables that would otherwise
require a large number of arithmetic constraints. Specialized constraints enter into
such considerations as, for example:

• Counting values
• Maintaining load weights

In most cases, a specialized constraint achieves more domain reduction than the
equivalent set of basic constraints, and in all cases it performs domain reduction more
efficiently.

These constraints are described in the following table. All return Boolean values of 1 if
the constraint is true, 0 otherwise:

ExplanationSyntax example
Specialized
constraint

Constrains decision variables within a
dvar array to all take different values

allDifferent(dvar
int[])

allDifferent

Takes two arguments: a dvar array and
an integer value, x_int.Implies that
values assigned to any two dvars in the
array differ by at least x_int.

allMinDistance(dvar
int[],x_int)

allMinDistance

Returns a boolean value of 1 (true) if x
and y are inverse functions, i.e. in the
constraint inverse(x, y) for any
value i of the indexer of y it is true that
x[y[i]] = i
otherwise, the result is 0 (false).

inverse(dvar
int[x],dvar int[y])
where dvar int[x] and
dvar int[y] are two
one-dimensional arrays
of integer decision
variables that are
indexed by an integer.

inverse

© Copyright IBM Corporation 2009. All rights reserved. 105

Lesson 5: Solving Simple CP Problems / Topic 2: CP models in OPL

ExplanationSyntax example
Specialized
constraint

States that the values of the first array
of decision variables is less than or
equal to the values of the second array
of decision variables, in lexical order.
For example, the line lex (a,b)
means that the value of a is smaller, or
has lower order, in a lexical sense, than
the value of b.

lex(dvar int[
],dvar int[])

lex

Maintains the load of a set of containers
or bins, given a set of weighted items
and an assignment of items to
containers. See OPL Functions >
About the Language Quick
Reference > pack in the Language
Quick Reference manual of the user
documentation for a more complete
explanation with examples.

pack(dvar int[
],dvar int[
],int[])

pack

In constraints, these functions are limited to CP. Outside constraint blocks,
they can be used with integer arrays (not required to be dvar arrays) both in
CP and CPLEX models.

The all quantifier
The quantifier all enables you to collect variables dynamically in an array. It functions
similarly to the forall quantifier, but is used in a different part of the model.

When used together with one of the specialized constraints, it allows you to select part
of an array according to the constraint applied. For example, the declaration

lex(all(i in 1..3) c[i], all(i in 4..6) c[i]);

means that the group of numbers composed of the first three digits of c comes before
the group composed of the last 3 digits of c, in lexical (alphabetical) order.

The all quantifier preserves the order of the iteration when there is an index, and is
very useful in conjunction with specialized constraints that use the order of the array
of variables passed as arguments.

Comparison of all and forall
forall is a loop to create instances of constraints in a model.

all is a loop to create a set of objects that are used as arguments for certain CP
constructs.

The following code illustrates this use of all:

using CP;

dvar int a[1..3] in 1..10;
dvar int b[1..3] in 1..10;

dvar int c[1..6] in 1..10;

© Copyright IBM Corporation 2009. All rights reserved.106

Lesson 5: Solving Simple CP Problems / Topic 2: CP models in OPL

constraints
{
lex(a,b);

allDifferent(append(a,b));

lex(all(i in 1..3) c[i], all(i in 4..6) c[i]);
allDifferent(c);

}

The results, in the Solutions tab of the Output window, are as follows:

CP found a solution:
a = [1 5 3];
b = [2 4 6];
c = [1 6 5 2 3 4];

Instructor note
The Steel Mill workshop shows how to use IBM ILOG CP Optimizer for a
non-scheduling application. If the trainees are only interested in using IBM
ILOG CP Optimizer for scheduling, you can skip the Steel Mill workshop and
only do the workshops in the CP for Scheduling lesson. However, implementing
a search phase is not covered in the Scheduling labs so if you want students
to practice implementing a search phase, it's better to complete at least the
first two steps of the steelmill lab.

© Copyright IBM Corporation 2009. All rights reserved. 107

Lesson 5: Solving Simple CP Problems / Topic 2: CP models in OPL

Practice
The Steel mill problem
Go to theSteelmill inventorymatchingworkshop and perform all the steps.

You can perform this lab using the HTML workshop, or by following the
instructions in the workbook. The HTML workshop will give you direct access
to OPL documentation pages that can help you with the lab.

Steel mill inventory matching
Workshop overview
In this workshop, you will practice using IBM® ILOG CP Optimizer to solve a
steel mill inventory matching problem. We first present a description of the
problem the production manager faces. Then you'll get a chance to derive the
CP model from this description and model the problem using the OPL IDE.
You'll also get a chance to experiment with search phases and alternative
formulations to improve the solution speed.

Problem description
The steel mill has an inventory of steel slabs, of a finite number of different
capacities (sizes), that are used to manufacture different types of steel coil. During
production, some of the steel from the slabs is lost. The production manager has
to decide which steel slabs to match with which coil orders in order to minimize
the total loss. In optimization terms, the problem can be described as follows:

• Objective
Minimize the total loss•

• Decision variables
Which slab should be matched with which coil order•

• The capacity of each slab used
• Constraints

A coil order can be built from at most one slab, although each
slab can be used to fill several coil orders.

•

• Each type of steel coil requires a specific production process, with
each such process encoded by a color designated by a number
between 1 and 88. A slab can be used for at most two different
coil production processes or colors.

• Each steel coil order has an associated weight, and the total
weight of all coil orders matched with a slab must be less than
the capacity of that slab.

• The amount of loss from each slab equals the capacity of the slab
minus the total weight of all coil orders assigned to that slab.

• The total loss is the sum of losses from all slabs.
• An unlimited quantity of steel slabs of each capacity is available.

Problem data
There are 111 coil orders and 21 different slab sizes, namely 12, 14, 17, 18, 19,
20, 23, 24, 25, 26, 27, 28, 29, 30, 32, 35, 39, 42, 43, and 44. The table below gives
the weight and color data for 5 coil orders. The complete data set can be seen
in the data file, which can be found in the exercise folder referred to below.

ColorWeightCoil order

73301

74302

© Copyright IBM Corporation 2009. All rights reserved.108

Lesson 5: Solving Simple CP Problems / Topic 2: CP models in OPL

ColorWeightCoil order

75303

62110

42111

Even though an unlimited quantity of steel slabs is available, you can use an
upper bound of 111 on the total number of steel slabs because of the obvious
solution of using one slab per coil order.

Exercise folder
<trainingDir>\OPL63.labs\SteelMill\work

The solution to this exercise is available in
<trainingDir>\OPL63.labs\SteelMill\solution

Solve the problem using CP Optimizer and
the OPL IDE

Actions
• Declare the data
• Declare the decision variables
• Define the objective function
• Define the constraints
• Solve the problem

Reference
constraint programming

Declare the data
1. In the OPL IDE, import the project by selectingFile >Import >Existing

Projects into Workspace, and choosing the SteelMill_work project
from the exercise folder
<trainingDir>\OPL63.labs\Steelmill\work. Leave the Copy
projects into workspace box unchecked.

2. Expand the project to see the contents. For this step, you'll only work
with the following:

• Model file: steelmill_work.mod
• Settings file: steelmill_work.ops
• Data file: steelmill_work.dat
• Run configuration: naive model (default)

3. Open the model file, steelmill_work.mod, and see that the following
data has been declared:

• The number of coil orders: int nbOrders = ...;
• The weight of each coil order: int weight[1..nbOrders] =

...;

Now use similar syntax to declare the following:

• The integer number of steel slabs available: nbSlabs
• The integer number of colors: nbColors
• The integer number of distinct slab capacities: nbCap
• An integer array for the actual capacities associated with each

index in nbCap: capacities

© Copyright IBM Corporation 2009. All rights reserved. 109

Lesson 5: Solving Simple CP Problems / Topic 2: CP models in OPL

• An integer array for the colors associated with each coil order:
colors

4. The remaining completed items in the data declaration part of themodel
file are used later in the model, and are as follows:

• maxCap: This is the greatest available capacity and will be used
to define the domain of the decision variables for slab capacity.

• caps: This is the set of available capacities (with the same content
as the array capacities) and is used in a later substep to define
the capacity constraints for each slab.

5. Open the data file, steelmill_dat.dat, to see how the data is
instantiated.

Declare the decision variables
1. In the model file, steelmill_work.mod, tell OPL that you're using CP

by adding the line using CP; at the top.
2. In the section titled /* Decision variables */, the two decision

variables have already been declared as follows:
• dvar int where[1..nbOrders] in 1..nbSlabs: This

variable is used to determine which slab each coil order is
assigned to, and is therefore indexed over all orders with domain
of all slab numbers.

• dvar int capacity[1..nbSlabs] in 0..maxCap: This
variable is used to determine the capacity of each slab, and is
therefore indexed over all slab numbers, with domain of all values
between 0 and the maximum available capacity.

3. Declare an integer decision expression called load indexed over the slabs.
Assign the value of load to equal the sum of the weights of all coil orders
assigned to a slab.

First write the expression to sum the weights of all coil orders.
Next, use the where variable, together with the logical equals
(==), to write an expression that evaluates to 1 if an order is
assigned to a slab and 0 otherwise. Multiply this expression with
the weight to add only the weight of orders assigned to the slab.

4. Declare another integer decision expression called colorAssigned
indexed over the colors and the slabs. Complete the declaration with an
expression to assign the value of colorAssigned to be 1 if any coil
orders assigned to a given slab have a particular color and 0 otherwise.

First use the where variable and the logical equals (==) that
you used for the load expression to determine whether an order
is assigned to a slab (1) or not (0). Next, in the same expression,
use the logical OR statement (or) to create an “or” over all
assigned orders with the particular color. Be sure to check the
syntax for the logical OR statement in the online documentation
at Language Quick Reference > OPL keywords.

Define the objective function
1. In the section titled Objective function, write the objective to

minimize total loss. The total loss is defined as the sum, over all slabs,
of the slab capacity minus the slab load.

Define the constraints
1. In the section titled Constraints and within the subject to block,

you'll see a forall constraint declaration that uses the caps set to

© Copyright IBM Corporation 2009. All rights reserved.110

Lesson 5: Solving Simple CP Problems / Topic 2: CP models in OPL

restrict the domain of the capacity variable. Because the capacity
variable has a domain enumerated from a set, its domain cannot be
defined during data declaration as follows:

dvar int capacity[1..nbSlabs] in caps; // NOT ALLOWED

Instead, a continuous domain has to be defined at declaration, and the
domain then has to be restricted in the constraint block.

2. Add a constraint within this same forall block to state that the slab
load must be less than or equal to the slab capacity.

3. Add a constraint called colorCt for each slab that states that the number
of colors assigned to that slab must be less than or equal to 2.

Use the colorAssigned decision expression.

4. Your model is complete at this point. If you have any remaining errors,
check the solution or check with your instructor before attempting to solve
the model.

Solve the model
1. In theOPL Projects Navigator, expand theRun Configurations for

your project. right click naive model (default) and select Run this
from the context menu.

2. Select the Engine log output tab to see the solution progress.
3. Let the model run for about a minute and then click the red stop button

(you can see the solution time scrolling by periodically on the left side of
the log).

4. Scroll to the start of the log and notice that the first solution found (under
the Best column), is around 1000. Scroll to the end of the log and notice
that the best solution found after about a minute is around 30. In the
next step you'll get a chance to implement a search phase to improve
performance.

Implement a search phase

Actions
• Add a search phase
• Solve the model

Reference
what is a search phase?

Add a search phase
In this exercise you'll write a search phase to guide CPOptimizer in the selection
of decision variables during the solution search. For the steel mill problem, an
intuitive search strategy is to first assign orders to slabs (first search on the
where decision variable), and afterwards assign capacities to each slab (next
search on the capacity decision variable).

If you're confident that your model is correct, you can continue working with it.
Otherwise, you can continue with the searchPhase_work.mod file. These
instructions assume you're using the latter file, which contains the model up to
this point, together with some instructions on how to do implement the search
phase.

1. Scroll down to the section titled Search phase. You'll write the search
phase within the execute statement.

© Copyright IBM Corporation 2009. All rights reserved. 111

Lesson 5: Solving Simple CP Problems / Topic 2: CP models in OPL

2. Define the script variable f to access the CP search modifier factory.
3. Define a search phase, phase1, on the where variable using the

searchPhase method.
4. Define another search phase, phase2, on the capacity variable.
5. Use the setSearchPhase method to set the search to first use phase1,

and next phase2.
6. If you have any errors, check the solution or check with your instructor

before attempting to solve the model.

Solve the model
1. In theOPL Projects Navigator, expand theRun Configurations for

your project. right click search phase and select Run this from the
context menu.

2. Select the Engine log output tab to see the solution progress.
3. Let the model run for about a minute and then click the red stop button

(you can see the solution time scrolling by periodically on the left side of
the log).

4. Scroll to the start of the log and notice that the first solution found (under
the Best column), is around 20 – much better than the first best solution
of 1000 without the search phase. Scroll to the end of the log and notice
that the best solution found after about a minute is around 8, again an
improvement compared to the solution of 30 without a search phase. In
the next step you'll get a chance to try and improve performance by
changing the OPL model.

Improve the model

Actions
• Improve the model
• Solve the model

Improve the model
The key to understanding the model improvements in this exercise, is realizing
that once the load on a slab is known, its capacity becomes a trivial decision.
Specifically, if the load is known, the capacity of that slab will simply be the
smallest available capacity just bigger than the load on the slab. In this exercise,
you'll take advantage of this knowledge to improve the model by removing the
capacity decision variable.

1. In the same work project in the OPL IDE, open the
betterModel_work.mod file.

2. In the Data declaration section of the model file, notice that a new
line has been added:

int loss[c in 0..maxCap] = min(i in 1..nbCap :
capacities[i] >= c) capacities[i] - c;

This line takes advantage of the fact that the load (and loss) is an integer
and there are therefore a finite number of possible values the load on a
slab can take, namely all integer values between 0 and maxCap. For each
such value, the array above defines the loss to be the smallest capacity
just larger than the load (defined by using the min function), minus the
load. The array uses the index c and you'll see next how it can be used
with the load values instead.

3. In the Decision variables section, remove the capacity decision
variable. All the other variables remain the same.

© Copyright IBM Corporation 2009. All rights reserved.112

Lesson 5: Solving Simple CP Problems / Topic 2: CP models in OPL

4. Change your objective function to minimize the loss directly instead of
using the capacity and load decision variables.

Index the loss array with the load variable.

If you're familiar with MP, you'll notice here one of the major
differences between MP modeling and CP modeling: In CP a
decision variable can be used to index an array, as is shown here
where the load variable is used as an index for the loss array.

5. In the Constraints section, remove the constraints that use the
capacity decision variable, seeing that they are no longer required
when this variable doesn't exist.

6. Finally, in the Search phase section, remove phase2 seeing that you
no longer have the capacity variable.

7. If you have any errors, check the solution or check with your instructor
before attempting to solve the model.

Solve the model
1. In theOPL Projects Navigator, expand theRun Configurations for

your project. right click Better Model and select Run this from the
context mneu.

2. Select the Engine log output tab to see the solution progress.
3. See that IBM ILOGCPOptimizer finds the optimalmatch between orders

and slabs, resulting in zero loss, in about 0.1 seconds.

The steel mill problem is a benchmark problem used to
benchmark optimization engine performance, and it's worth
noting that IBM ILOG CP Optimizer is the first constraint
programming engine to be able to find an optimal solution to
this problem.

Use the pack constraint

Action
• Use the pack constraint

Reference
pack

Use the pack constraint
This part of the exercise is optional and shows you how to use one of IBM ILOG
CP Optimizer's more advanced constructs, namely the pack constraint. This
constraint is generally used to assign items into packs of finite capacity. In this
sense, the orders are the items, and the slabs are the packs of finite capacity to
which the items are assigned (see the OPL Help for further information on the
pack constraint).

1. In the same project you've been working in, open the
polished_work.mod file.

2. In the Data declaration section, see that a new property has been
declared, namely maxLoad. This is the sum of the weights of all coil
orders.

3. In the Decision variables section, see that load is no longer a
decision expression, but is now an integer decision variable with domain

© Copyright IBM Corporation 2009. All rights reserved. 113

Lesson 5: Solving Simple CP Problems / Topic 2: CP models in OPL

between 0 and maxLoad. The reason for this change is that the pack
constraint does not accept a decision expression as an argument and
instead requires a decision variable.

4. In the Constraints section, look at the definition of the pack constraint
and try to understand it by comparing it with the explanation in OPL
Help.

5. Run the model from the Polished Model Run Configuration and see
that it also finds the optimal solution of zero loss in around 0.1 seconds.

© Copyright IBM Corporation 2009. All rights reserved.114

Lesson 5: Solving Simple CP Problems / Topic 2: CP models in OPL

Summary

Review
Constraint programming is a discipline of computer science based on logic and symbolic
reasoning. It is very effective in solving, for example:

• detailed scheduling problems
• routing problems
• satisfiability problems
• certain other combinatorial optimization problems not well-suited for traditional

Mathematical Programming (MP) methods

Some of the benefits of IBM ILOG CP Optimizer are as follows:

• easily accessible through OPL, taking full advantage of OPLs development,
debugging and tuning features

• automatically generates advanced algorithms based on the mathematical
formulation of a particular model

• allows users to “model and run” complex problems, without having to write
the complex searches traditionally required for CP

• allows the advanced user to specify a search by using search phases
• easy-to-use representations for specialized constraints

CP methodology, in general, has two phases:

1. Write amodel representation of a problem in a computer programming language
2. Describe a search strategy for solving the problem

A typical CP search uses the following techniques iteratively until a solution is found:

• Domain reduction: The process of eliminating possible values from a variable
domain by considering the constraints on that variable and related variables.

• Constraint propagation: The process of communicating the domain reduction of
a decision variable to all of the constraints on this variable. This can result in
more domain reductions.

The command using CP tells OPL to use IBM ILOG CP Optimizer, and gives the user
access to four types of constraints:

• Arithmetic
• Logical
• Compatibility
• Specialized

IBM ILOG CP Optimizer is IBM's second-generation CP engine and is distinguishable
from IBM's first-generation CP engine called IBM ILOG CP. IBM ILOG CP remains
available for complex routing problems that are beyond the current capabilities of IBM
ILOG CP Optimizer.

© Copyright IBM Corporation 2009. All rights reserved. 115

Lesson 5: Solving Simple CP Problems

Lesson 6: Infeasibility and Unboundedness -
When the Problem Can't be Solved

What if there's no solution?
Sometimes, the combination of constraints and bounds in a problem is such that there is
no feasible solution. For example, in a staffing problem, you have 3 employees, A, B and
C. Your constraints include:

• A doesn't get along with B so they can't work together
• B doesn't get along with C so they can't work together
• The job requires two skills. A and C both have one of those skills, and B has the

other.

This lesson shows you how to detect and resolve this type of situation in LP problems,

using two CPLEX® techniques available in OPL:

• Conflict refinement
• Minimal relaxation

This lesson includes a review of the two methods, and practice with simple examples.

Instructor note
This lesson should last about 1 hour, including the practices.

© Copyright IBM Corporation 2009. All rights reserved. 117

Lesson 6: Infeasibility and Unboundedness - When the Problem Can't be Solved

Solving the infeasible model

Learning objective
Learn how to use OPL to find a
minimal relaxation of an infeasible
model

Key terms
• infeasibility
• unboundedness
• conflict
• minimal relaxation

Conflict refinement and relaxation
Infeasibility in an LP model can be caused by:

• The existence of at least two constraints in conflict – i.e.
all possible solutions to one are excluded from being a
solution to the other

• Unbounded constraints or an unbounded model that
render the search for an optimal solution impossible

OPL provides two techniques in the CPLEX® optimizer engine to
help you resolve such problems:

• Conflict refinement finds constraints that are in conflict.
• Relaxation suggests minimal changes in constraints that

will render the model feasible, by relaxing one or more of
the bounds defined in the constraints.

Conflicts
A conflict is a set of mutually contradictory constraints and/or bounds within a model.
In other words, it is impossible for all the constraints to be true. A conflict is said to be
aminimal conflict if it becomes feasible when any one constraint or bound is removed
from the set.

This minimal conflict usually concerns a subset of the constraints in the full model,
thus making it easier to analyze the source of infeasibilities. OPL's conflict refinement
technology finds a minimal conflict for you.

In OPL, when a conflict occurs, it is displayed in the Conflicts tab. The information in
this tab expresses the necessary change to make the model feasible: you must remove
or modify at least one of the conflicting constraints.

Removal of a conflicting constraint makes the model feasible with respect to
this conflict only. There may be other conflicts in the model. If this is the case,
you may need to detect and refine those other conflicts as well to render your
model feasible.

Minimal relaxation
A relaxation is a modified model where some of the restrictions on decision variables
and/or constraints have been relaxed. For example:

• An integer decision variable could become a continuous decision variable
• A decision variable could have its bounds relaxed from [0,100] to [0,200]
• The righthand side of a range constraint, such as 2x + y <= 10 could be relaxed

to 2x + y <= 12.

The OPL relaxation search process uses the CPLEX method feasOpt. This method
looks for a way to make the instance of the problem more flexible so that the it becomes
feasible while keeping modifications to a minimum. In other words, the "Suggested
Relaxation" message in theRelaxations output tab is the sufficientminimal change
to make the model feasible.

By default, in OPL, if a model is infeasible, a feasible (not optimal) solution is found by
minimizing the sum of all required relaxations. This is said to be aminimal relaxation.
Other options can be set in the settings file to define how these minimal changes are
measured as well as to enable an optimal solution to be subsequently found.

© Copyright IBM Corporation 2009. All rights reserved.118

Lesson 6: Infeasibility and Unboundedness - When the Problem Can't be Solved / Topic 1: Solving the infeasible model

It is also possible to prohibit decision variable relaxation in the settings file.
You will explore how to do this in the practice at the end of this lesson.

Limits on infeasibility analysis
• All variables are considered for infeasibility analysis by default.
• Only labeled constraints are candidates for infeasibility analysis (conflict

refiner/feasOpt).
• Only ranged constraints are relaxable. Logical constraints are not.

• Infeasibility analysis applies only to models solved by the CPLEX engine.
There is no support for conflicts and relaxations for models solved by the CP
Optimizer engine.

© Copyright IBM Corporation 2009. All rights reserved. 119

Lesson 6: Infeasibility and Unboundedness - When the Problem Can't be Solved / Topic 1: Solving the infeasible model

Practice
Solving the infeasible model
Go to the Pasta Production and Delivery workshop and perform the first
action, Study the conflicts and suggested relaxations, of the Solve the
infeasible model step.

You can perform this lab using the HTML workshop, or by following the
instructions in the workbook. The HTML workshop will give you direct access
to OPL documentation pages that can help you with the lab.

Study the conflicts and suggested relaxations
In this step of the workshop, you will be using the same model as the one you
worked on in the previous step. For now, however, we have deliberately made
this model infeasible by changing the value for the upper limit on outsourced
production, the value of maxOutsideProduction, from 200 to 50 in the data
file.

Procedure:
1. Import the project

<trainingDir>\OPL63.labs\Pasta\Tuples\solution\product2Work
to the OPL Projects Navigator.

2. Run the model and observe the results in these Output window tabs:
• Engine Log
• Conflicts
• Relaxations
• Solutions

The Engine Log tells you Implied bounds make row
'resourceAvailability ("flour")' infeasible - that is, there is no
solution without relaxing at least one constraint.

The Conflicts tab tells you that there are conflicts between the
resourceAvailability and demandFulfillment constraints.

The Relaxations tab suggests relaxations to the model in
resourceAvailability.

© Copyright IBM Corporation 2009. All rights reserved.120

Lesson 6: Infeasibility and Unboundedness - When the Problem Can't be Solved / Topic 1: Solving the infeasible model

The proposed relaxation suggests that the supply of eggs be increased from 150
to 220. It also has calculated that if this is done, it will be necessary to increase
the flour supply from 120 to 160.

Finally, the Solutions tab calculates a ”feasible relaxed sum of infeasibilities”
i.e. a feasible, but not necessarily optimal, solution by minimizing the sum of
all required relaxations given in theRelaxations tab. In this case, all the outside
production is kept to the imposed limit of 50, and the internal capacity is
increased to make up the difference in production internally.

Before continuing to the next exercise, wait for the rest of the class and your
instructor to discuss these results.

Which method to apply?
The practice problem presents 2 options for removing the infeasibility:

• Either relax the constraint, e.g. change availability to 160 for flour, and
220 for eggs or

• Remove the conflict by removing either the resourceAvailability or
demandFulfillment constraint.

Which solution offers the best choice? To answer, it is important to know and understand
your model:

• OPL reports the constraints involved in a conflict. You then need to determine
which constraint is in error. The fact that a conflict exists for one constraint
may, in fact, be the result of an error in modeling another constraint.

• Study what is reported in the Conflicts and Relaxations output tabs,
remembering what each constraint and decision variable represents, and apply
the solution that makes sense from a practical point of view.

© Copyright IBM Corporation 2009. All rights reserved. 121

Lesson 6: Infeasibility and Unboundedness - When the Problem Can't be Solved / Topic 1: Solving the infeasible model

Practice
In thePasta Production andDeliveryworkshop, perform the second action,
Choose a method, of the Solve the infeasible model step.

You can perform this lab using the HTML workshop, or by following the
instructions in the workbook. The HTML workshop will give you direct access
to OPL documentation pages that can help you with the lab.

Instructor note
Commenting out the resourceAvailability constraint produces a
feasible solution in which no outside production takes place, as
availability is no longer considered. While the solution is feasible, it
is not correct from a real-world perspective, as there will not be enough
resources to satisfy the production requirements. Discuss these results
with the students.

Make the students aware that the relaxed solution suggested by OPL
will not necessarily correspond to the solution obtained after applying
the suggested relaxation to the original model. This is because when
OPL attempts to find a relaxed solution, it uses a modified objective
function defined by feasOpt in order to minimize the constraint
violations required for a feasible solution, regardless of the original
objective. After the user then “fixes” the infeasibilities by applying the
suggested relaxation, themodel goes back to using the original objective
and therefore may find a different solution.

Choose a method
Look at the suggested option(s) for solving the problem you have just run in the
Conflicts and Relaxations output tabs.

1. Record the data from the Solutions tab for later reference.
2. Try commenting out the resourceAvailability constraint and run

the problem again. Is the conflict resolved? Is the result meaningful?
3. Restore the resourceAvailability constraint and modify the data

file as suggested by the Relaxations output tab - i.e. set

availability = [160, 220];

4. Run the problem again.
5. Compare the result in the Solutions tab to the earlier results you

recorded. These solutions are equivalent. Can you think of circumstances
in which they would be different?

© Copyright IBM Corporation 2009. All rights reserved.122

Lesson 6: Infeasibility and Unboundedness - When the Problem Can't be Solved / Topic 1: Solving the infeasible model

Practice
Modify the feasOpt parameters
You can also modify what OPL takes into account when looking for a relaxation:

• Labeled constraints only
• All decision variables and all labeled constraints

Go to the Pasta Production and Delivery workshop and perform the third
action,Modify the feasOpt parameters, of the Solve the infeasible model
step.

Modify the relaxation level
Procedure:

1. In the settings file, select Language> General.
2. In the Relaxation Level item, change the option in the drop-down list.
3. Solve the model again, and look at the information displayed in the

output tabs.

Instructor note
TheMPStaffing Problemworkshop includes a lab step,Constraint
relaxation, which can be added to the above lab, only after performing
the first step of that lab, which requires database reading. If you wish
to use this exercise, schedule it after the database lesson, either by
moving the database lesson earlier or this lesson later.

© Copyright IBM Corporation 2009. All rights reserved. 123

Lesson 6: Infeasibility and Unboundedness - When the Problem Can't be Solved / Topic 1: Solving the infeasible model

Summary

Review
In this lesson, you learned about the twomethods provided in OPL to handle infeasibility:

• Conflict refinement seeks to identify theminimal number of constraints involved
in a conflict. If removing one constraint or bound will make the model feasible,
the conflict is said to be a minimal conflict.

• A relaxation is a modified model where some restriction on decision variables
and/or constraints have been relaxed. The method feasOpt looks for a way to
make the model and its data more flexible so that the problem becomes feasible
while keeping modifications to a minimum.

• You can change how feasOpt defines a minimal relaxation in the settings file.

© Copyright IBM Corporation 2009. All rights reserved.124

Lesson 6: Infeasibility and Unboundedness - When the Problem Can't be Solved

Lesson 7: Data Consistency

Data consistency is concerned with the accuracy and validity of data elements and
inconsistency arises frequently as users are free to add, delete and modify data. If the
model data is inconsistent the optimization solver will produce an incorrect solution or no
solution. OPL offers these ways to check for data consistency in your projects:

• The with keyword (data membership consistency)
• The assert keyword (rules for maintaining data consistency)

The keyword key, dealt with earlier in this training in the context of tuples, also
provides data consistency.

Instructor note
This lesson should last about 30 minutes.

© Copyright IBM Corporation 2009. All rights reserved. 125

Lesson 7: Data Consistency

Data membership consistency

Learning objective
Improve the efficiency of OPL
models

Key term
with (OPL keyword)

The “with” keyword
The keyword with enables you to indicate that a given element
of a tuple must be contained in a given set. If you use it, OPL
checks the consistency of the tuple set at run time when
initializing the set. The syntax is:

{tupletype} tupleset with cell1 in set1, cell2 in
set2 = ...;

For example, you have a set of arcs between nodes. Nodes are defined by a tuple set of
tuples consisting of an origin node and a destination node. The with syntax enables
you to ensure that the origin and destination nodes belong to a specific set of nodes.

The following code:

{int} nodes = {1, 5, 7}
tuple arc {

int origin;
int destination;

}
{arc} arcs2 with origin in nodes, destination in nodes =

{<1,4>, <5,7>}
execute {

writeln(arcs2);
};

will raise an error when the set arcs2 is initialized.

This is because the with syntax will detect that the statement

(int) nodes = (1, 5, 7);

is not consistent with the statement

with origin in nodes, destination in nodes = {<1,4>, <5,7>}

Changing the last statement as follows:

with origin in nodes, destination in nodes = {<1,5>, <5,7>}

will make the model function properly.

© Copyright IBM Corporation 2009. All rights reserved.126

Lesson 7: Data Consistency / Topic 1: Data membership consistency

Verifying data consistency

Learning objective
Improve the efficiency of OPL
models

Key term
assert (OPL keyword)

Assertions
OPL provides assertions to verify the consistency of the model
data. This functionality enables you to avoid wrong results due
to incorrect input data. In their simplest form, assertions are
simply Boolean expressions that must be true; otherwise, they
raise an execution error. Example:

int demand[Customers] = ...;
int supply[Suppliers] = ...;

assert sum(s in Suppliers) supply[s] == sum(c in
Customers) demand[c];

This code makes sure that the total supply available from Suppliers meets the total
demand of the Customers. If this assertion is found not to be true, an error is raised.

Using the “assert” keyword
Multiple combinations (of suppliers and customers, or of other decision variables) can
be verified using assert in combination with the forall aggregator:

int demand[Customers] [Products] = ...;
int supply[Suppliers] [Products] = ...;
assert

forall(p in Products)
sum(s in Suppliers) supply[s][p] == sum(c in Customers)
demand[c][p];

This code verifies that the total supply meets the total demand for each product. The
use of assertions makes early detection of data input errors possible, and avoids tedious
inspection of the model data and results.

© Copyright IBM Corporation 2009. All rights reserved. 127

Lesson 7: Data Consistency / Topic 2: Verifying data consistency

Summary

Review
In this lesson, you learned how to maintain the accuracy and validity of data elements
in OPL models:

• Use the keyword with to indicate that a given element of a tuple must be
contained in a given set. If you use it, OPL checks the consistency of the tuple
set at run time when initializing the set.

• Use the keyword assert to ensure that the data used by the model meets the
necessary conditions. If the assertion fails, an error is raised.

© Copyright IBM Corporation 2009. All rights reserved.128

Lesson 7: Data Consistency

Lesson 8: Linking to Spreadsheets and Databases
with OPL

Instructor note
This lesson should last about 1 hour and 30 minutes including the
practice.

To help you make better business decisions, OPL is able to interact with existing tools
that you may already have in place, such as spreadsheets and relational databases. Thus
you can use and update your existing data automatically by telling OPL to communicate
with your spreadsheet or database. This is especially important for large databases, for
example a Human Resources employee information database.

In this lesson you will learn how to use OPL to read from, manage and update spreadsheets
and databases. With these operations, OPL can:

• use information in an external application to initialize data in a model
• write the results of an optimization to new or existing locations in the external

application
• delete database records or fields that are rendered obsolete by the optimization

operation

This lesson contains references to IBM® ILOG® Script. You should be familiar
with IBM ILOG Script for OPL before working with that part of this lesson.

Instructor note
The following OPL keywords are no longer valid:

• DBconnection
• DBread
• DBupdate
• DBexecute

You need to use the following modified syntax (with upper case letters)
instead:

• DBConnection
• DBRead
• DBUpdate
• DBExecute

© Copyright IBM Corporation 2009. All rights reserved. 129

Lesson 8: Linking to Spreadsheets and Databases with OPL

Exchanging data with a spreadsheet

Learning objective
Learn to use OPL to read from and
write to a spreadsheet

Key terms
• SheetConnection
• SheetRead
• SheetWrite

To exchange data with a spreadsheet, you need to:

1. Establish a connection between the OPL application and
the spreadsheet using SheetConnection

• SheetConnection takes a handle – OPLwill use
this as the “pipeline.”

2. Read data from the spreadsheet using SheetRead.
• You can read from one or more sheets in an Excel

file.
• You can define a range of cells to read.
• You can use an Excel named range.

3. Write data to the spreadsheet using SheetWrite.
• You can write to one or more sheets in an Excel

file.
• You can define a range of cells to write to.
• You can use an Excel named range.

Connecting to a spreadsheet
Before an OPL model can read from and/or write to a spreadsheet, it must connect to
the spreadsheet using the SheetConnection instruction.

This is not done in the .mod file but in the .dat file.

Steps:

1. Write your model in the .mod file exactly as you would any model in a project
with independent data.

2. To initialize the data, use links to the spreadsheet in the .dat file.

Syntax:

SheetConnection <handle> ("filename.xls");

Example:

SheetConnection connex ("mySheet.xls");

Establishes a connection connex to a spreadsheet named mySheet.xls in read/write
mode.

Relative and absolute paths are both supported. Relative paths are resolved using the
current directory of the .dat file.

Reading from a spreadsheet
Once themodel is connected to the spreadsheet, data can be read into these data elements
using the SheetRead command:

• One-dimensional arrays
• Two-dimensional arrays or sets

Steps:

1. In the .mod file, declare the array or set, <dataElement>, that you want to
fill with data from the spreadsheet;

2. In the .dat file, call the data to be read using the syntax: <dataElement>
from SheetRead (<handle>, “<SheetName>!<startCell>:<endCell>”;

<SheetName> is optional. If no <SheetName> is given, and the Excel workbook
has more than one sheet, the currently active sheet is read.

© Copyright IBM Corporation 2009. All rights reserved.130

Lesson 8: Linking to Spreadsheets and Databases with OPL / Topic 1: Exchanging data with a spreadsheet

Example:

Streets from SheetRead (connex,”addresses!A1:C13”)

Reads the range of cells from A1 to C13 into a data element named Streets from the
sheet named addresses that is located in the spreadsheet that uses the connex
connection.

where:
• <dataElement> is the array or set, declared in the model file, that you want

to fill
• <SheetName> is the name of the sheet inside the Excel file that you want to

read from.
• <startCell> is the first cell, in the spreadsheet called by the connection

<handle>, of the range that you want to use to fill <dataElement>.
• <endCell> is the last cell, in the spreadsheet called by the connection

<handle>, of the range that you want to use to fill <dataElement>.

Example for arrays:
/* in .mod file */
string city[0..2] = …;
/* in .dat file */
city from SheetRead(connex,"C2:E2");

/* in .mod file */
float cost[0..2][0..2] = …;

/* in .dat file */
cost from SheetRead(connex,"C3:E5");

Example for sets:
/* in .mod file */
{string} Cities = …;

/* in .dat file */
Cities from SheetRead(connex,”addresses!C2:E2");

If any data change is made to a spreadsheet, the spreadsheet must be saved in
order to allow the OPL model to take new values into account.

Writing to a spreadsheet
You can write into spreadsheets using the SheetWrite command. As with SheetRead,
you write the SheetWrite command in the .dat file.

Steps:

1. Youmust already have an array or set declared in the .mod file and instantiated,
from which you will write to the spreadsheet. This is represented here by the
token <dataElement>.

2. Try to figure out the syntax for SheetWrite and give an example of how it
might be used.

Instructor note
Solution:

In the .dat file, write the data to a range in the spreadsheet, using the syntax:
<dataElement> to SheetWrite (<handle>,
“<SheetName>!<startCell>:<endCell>”;

© Copyright IBM Corporation 2009. All rights reserved. 131

Lesson 8: Linking to Spreadsheets and Databases with OPL / Topic 1: Exchanging data with a spreadsheet

where:
• <dataElement> is the array or set, declared in the model file, that
you want to fill

• <SheetName> is the name of the sheet inside the Excel file that you
want to read from.

• <startCell> is the first cell, in the spreadsheet called by the
connection <handle>, of the range that you want to use to fill
<dataElement>.

• <endCell> is the last cell, in the spreadsheet called by the connection
<handle>, of the range that you want to use to fill <dataElement>.

Example:
/* in .mod file */
float cost[0..2][0..2] = ...;

/* in .dat file */
cost to SheetWrite(connex,”widgets!G3:I5");

Using Excel named ranges
You can use an Excel named range instead of an absolute range of cells to define the
area of the spreadsheet you want to read from or write to.

Steps:

1. Define a named range, <rangeName> in your spreadsheet.
2. In the .dat file, use a SheetRead or SheetWrite statement with the following

syntax modification:

<dataElement> from SheetRead (<handle>, “<rangeName>”;

3. Write an example for both SheetRead and SheetWrite using named ranges.

Instructor note
Here are a couple, based on the previous examples:
Cities from SheetRead(connex,“majorUrbans”);
cost to SheetWrite(connex,”widgetCost");

where majorUrbans and widgetCost are named ranges in an Excel
spreadsheet.

How to define a named range in Excel:
In an .xls file:

1. Highlight the range values (i.e., cells within the rows and columns to be included
in the range).

2. From the main menu, select Insert >Name >Define.
3. Enter the desired name for the range.
4. Click OK.
5. Save the .xls file.

© Copyright IBM Corporation 2009. All rights reserved.132

Lesson 8: Linking to Spreadsheets and Databases with OPL / Topic 1: Exchanging data with a spreadsheet

Practice
Can you think of how using named ranges can simplify certain repeated
operations in a spreadsheet, especially where the location of a named range of
cells might change?

Instructor note
Take, for example, the following SheetRead call:

SheetRead (manufacturing,"Sheet1!A1:A5").

In this example, manufacturing is the connection handle, and the
range is "Sheet1!A1:A5". You could replace this absolute range with
a named range, for example, “Product”.

The named range is the better option, since you only need to update
the Excel worksheet to maintain data integrity.

For example, if you delete the cells from Sheet1!A1:E5 and paste
them onto Sheet2, Excel updates your named range (Product). You
don't need tomodify the OPLmodel because Excel find the cells defined
as the range, “Product”, wherever they may be found in the
spreadsheet:
SheetRead (manufacturing,"Product")

© Copyright IBM Corporation 2009. All rights reserved. 133

Lesson 8: Linking to Spreadsheets and Databases with OPL / Topic 1: Exchanging data with a spreadsheet

Practice
Using SheetWrite when the range is only known at runtime

Suppose you are optimizing a transportationmodel, in which you will only know
the number of shipments you will send out after solving the model. Let's also
assume that you need to write the shipment solve results to a spreadsheet.

The model includes a tuple describing each shipment by points of origin and
destination, and the total volume contained in the shipment:

tuple shipment {
key string origin;
key string destination;
int totalVolume;

}
{shipment} Shipments = ...;

As is often the case, the shipments are instantiated via a tuple set, in this case
called Shipments.

You need to write the shipment information (members of the tuple shipment)
to three columns (A-C) of a worksheet named ScheduledTrips in an Excel file
named InputData.xls. Each row represents one shipment, the columns
represent the shipment data (origin, destination, volume).

How can you specify the range?

Think about postprocessing.

Instructor note
You solve this using IBM ILOG Script to generate the Excel range,
and then passing the result to the SheetWrite command. The solution
is shown, step by step, in a series of slides that are in your slide deck,
but are not reproduced in the workbook.

Students should take notes on this as you go through it, but first, try
to elicit ideas from them as to how it could be done. If someone seems
to have a pretty clear idea of how to go about it, let that person lead
the group through the process, and just provide coaching when
necessary.

Another possible way to do this is to treat the spreadsheet as an ODBC
data source. Connect using the ODBC database syntax, and then
update with a DBUpdate instruction to write the data.

© Copyright IBM Corporation 2009. All rights reserved.134

Lesson 8: Linking to Spreadsheets and Databases with OPL / Topic 1: Exchanging data with a spreadsheet

Connecting to a database

Learning objective
How to connect an OPL model to
an RDBMS

Key term
DBConnection

As with spreadsheets, it is possible to connect an OPL model to

a database. IBM® ILOG® OPL interfaces with:

• DB2
• MS SQL
• ODBC
• Oracle 9 and later
• OLE DB

Connection syntax

DBConnection <DBclient> <ConnectionSting>

The OPL keyword DBConnection establishes a named connection to a database. It
requires two arguments:

• The name of the database client you want to use
• The connection string

The first argument is one of the supported databases. The connection string passed as
second argument must respect a format that depends on the target RDBMS. The
following table lists database names (first argument) and connection strings (second
argument):

Connection stringDatabase client name

username/password/database (The client
configuration will find the server.)

DB2

userName/password/database/dbServerMS SQL

dataSourceName/userName/passwordODBC

userName/password@dbInstanceOracle 9 and later

<user>/<password>/<database
name>/<server name>

OLE DB

Instructor note
You can explainmore about certain databases if students need it. For example,
there are some special requirements for Oracle, and if the student has MS
Access installed, there is the special connection string described next that will
supply additional functionality. Refer to the documentation.

For example, the instruction

DBConnection DBconnex ("ODBC","DBPEOPLE/user/password");

establishes a connection named DBconnex to an ODBC data source whose name is
"DBPEOPLE". The connection DBconnex should be viewed as a handle on the database.

The user and password are optional. To connect to a database without user and
password, terminate the database name with two slashes to indicate that user
and password are empty:
DBConnection DBconnex ("ODBC","DBPEOPLE//");

© Copyright IBM Corporation 2009. All rights reserved. 135

Lesson 8: Linking to Spreadsheets and Databases with OPL / Topic 2: Connecting to a database

Special case for Microsoft Access
Microsoft® Access uses ODBC. A connection string for Access is provided to facilitate
the use of this common database tool:

DBConnection db(“access” ,”afile.mdb”);

where afile.mdb is the name of an Access database file to which you want to connect.

OPL supports both Microsoft Access 2003 and Microsoft Office Access 2007
through the Office 2007 drivers. If you do not have the Office 2007 drivers
installed, you will receive an error message such as

[Microsoft][ODBC Microsoft Access Driver] Cannot open database
'(unknown)'.

You need to install the Office 2007 drivers on your machine even if you are
using Access 2003 databases. You can download these drivers from theMicrosoft
website:
http://www.microsoft.com/downloads/details.aspx?FamilyID=7554F536-8C28-4598-9B72-EF94E038C891&displaylang=en

It is possible to connect to several databases within the same model. Once connected,
available database operations are:

• DBRead
• DBExecute
• DBUpdate

DBConnection and DBRead are executed during preprocessing. DBExecute and
DBUpdate are executed during postprocessing.

Preprocessing and postprocessing are notions in IBM ILOG Script, which
is dealt with in another lesson. Preprocessing permits you to work on data

before the optimizationmodel is created by using IBM ILOGScript/JavaScriptTM

syntax encapsulated in execute blocks. Postprocessing allows you to use script
commands to manipulate solutions, also using an execute block.

© Copyright IBM Corporation 2009. All rights reserved.136

Lesson 8: Linking to Spreadsheets and Databases with OPL / Topic 2: Connecting to a database

http://www.microsoft.com/downloads/details.aspx?FamilyID=7554F536-8C28-4598-9B72-EF94E038C891&displaylang=en

Reading from a database

Learning objective
Learn how to read data from an
RDBMS into an OPL model using
standard database queries and the
OPL database connection

Key term
DBRead

In OPL, data can be read into sets using DBRead.The resulting
set must be a set of integers, of floats, of strings, or a set of tuples
whose elements are integers, floats, or strings.

Syntax

<entity> from DBRead (<Id>, ”Query”);

where:

• <entity> represents the OPL name for the data to be
filled from the database

• <Id> represents the name of the database
• Query represents a valid query syntax for the database

<Id>.

OPL does not parse the query; it simply sends the string to the database system
that has full responsibility for handling it.

Example – method using temporary set
In earlier versions of OPL, arrays could not be filled directly from a database and a
temporary set was required to facilitate this operation. Some types of arrays can now
be filled directly from a database using a feature called table loading. The original
method is useful if you need to generate more complex arrays, such as arrays of sets or
multidimensional arrays, or if you'd like to use the same set to populate several different
sets or arrays.

The examples that follow show the original method using a temporary set, and the new
table loading method for reading directly from the database.

Consider the following extract from the model file,
<OPLhome>\examples\opl\oilDB.prj:

{string} Gasolines = ...;
{string} Oils = ...;

tuple gasType {
string name;
float demand;
float price;
float octane;
float lead;

}

tuple oilType {
string name;
float capacity;
float price;
float octane;
float lead;

}
{gasType} GasData = ...;
{oilType} OilData = ...;

coupled with, in the data file:

© Copyright IBM Corporation 2009. All rights reserved. 137

Lesson 8: Linking to Spreadsheets and Databases with OPL / Topic 3: Reading from a database

GasData from DBRead(db,"SELECT * FROM GasData");
OilData from DBRead(db,"SELECT * FROM OilData");

In this code, GasData and OilData are temporary sets that are initialized from the
tables GasData and OilData in the db database. The DBRead instruction inserts a
tuple into each set (GasData, OilData) for each row of the associated table. These
sets are used later in the model to fill the one-dimensional Gas and Oil arrays, using
the following code:

gasType Gas[Gasolines] = [g.name : g | g in GasData];
oilType Oil[Oils] = [o.name : o | o in OilData];

In the code above, the text to the left of the colon, g.name, indicates the index to use
for the array (in this case the content of the set Gasolines), and the text to the right
of the colon, g | g in GasData, indicates the corresponding array element. Note that
the sets of strings, Gasolines and Oils, are filled at the same time as the array.

The columns of the SQL query result are mapped to the fields of the OPL tuples by
position. For instance, in the above query that reads data from the GasData table
below, the column name in the database table is mapped to the field name in the tuple,
and so on. Note that the names of the database column and tuple field in general do not
need to be the same, although it makes following the code easier.

Example – method using table loading
One-dimensional arrays of simple data types (such as float, int or string) can be filled
directly from the database, without going through the temporary sets (GasData and
OilData in this example). Using this table loading feature, the model file looks like
this:

{string} Gasolines = ...;
{string} Oils = ...;

tuple gasType {
string name;
float demand;
float price;
float octane;
float lead;

}

tuple oilType {
string name;
float capacity;
float price;
float octane;
float lead;

}

gasType Gas[Gasolines] = ...;
oilType Oil[Oils] = ...;

© Copyright IBM Corporation 2009. All rights reserved.138

Lesson 8: Linking to Spreadsheets and Databases with OPL / Topic 3: Reading from a database

You can see that the tuple sets are no longer needed, and the one-dimensional arrays
Gas and Oil are initialized directly from the data file. The new data file code is as
follows:

Gasolines,Gas from DBRead(db,"SELECT
name,name,demand,price,octane,lead FROM GasData");
Oils,Oil from DBRead(db,"SELECT name,name,capacity,price,octane,lead
FROM OilData");

The table loading form of DBRead is used to initialize the arrays directly. This is not
only easier to write, it executes more efficiently.

SQL queries
Every valid SQL query is valid in OPL, including parameterized queries.

For example, declare a tuple type:

tuple People {
string name;
string email;
int age;

}

Declare an int parameter:

int age = 30;

Read tuples where AGE is smaller than 30:

{people} Persons = …;
Persons from DBRead (DB,"select NAME ,EMAIL,AGE from PEOPLE where
AGE<=?")(age);

The query contains a placeholder whose value is given by an expression in between the
parentheses.

It is possible to use several placeholders. For example, with the same tuple declared
above, declare two parameters:

int age = 30;
string dept = "marketing";

Read tuples matching two conditions:

{people} Persons = …;
Persons from DBRead (DB,"select NAME ,EMAIL,AGE from PEOPLE where
AGE<=? and DEPT=?")(age,dept);

This selects only those persons not older than 30 in the marketing department.

© Copyright IBM Corporation 2009. All rights reserved. 139

Lesson 8: Linking to Spreadsheets and Databases with OPL / Topic 3: Reading from a database

Writing to a database

Learning objective
Learn to write, update and delete
data in an RDBMS using
optimization results.

Key terms
• DBExecute
• DBUpdate

Two types of write operation are available:

• A direct write to a database updates it with values
specified in the write command. It is similar to a database
read.

• Publishing results to a database is similar to data
initialization with parameters.
All database publishing requests are carried out during
postprocessing, if a solution is available. Such requests
are processed in the order declared in the .dat file(s). If
your RDMBS supports transactions, every single
publishing request is sent within its own transaction.

You perform a direct write using the DBExecute statement.

The publishing process has two steps:

1. Use the DBExecute statement in the data file to create the table that will hold
the results of the model solution in the database so that the database can be
updated.

2. After a DBExecute instruction in a data file, the instruction DBUpdate calls
the results to be published andmodifies the data in the database using the result
information.

DBExecute
DBExecute can be used to perform any database administration command, for example,
writing data directly or creating a table. The syntax of DBExecute is:

DBExecute (<connection_name>, <command_string>)

where <connection_name> is the name given to the database connection when
dbConnection was issued, and <command_string> identifies the action (e.g. SQL
command) to be performed and its values.

Example – table creation:
DBExecute(db, "create table PERSONS(NAME string,EMAIL string,AGE
integer, DEPT string)");'

This code creates a table in the database db, with the heading PERSONS. The table
has 4 columns, 3 headed NAME, EMAIL and DEPT, which are to be filled with string
values, and one column headed AGE, which is to be filled with integer values.

Example - direct write:
DBExecute(db, "insert into PERSONS values (Mary, mary@company.com,
34, Engineering)");

This code inserts a record in the table PERSONS with the following values:

• NAME = Mary
• EMAIL = mary@company.com
• AGE = 34
• DEPT = Engineering

DBExecute can be used in this fashion to perform any legal operation for the RDBMS
to which you are connected (deleting a record, for example).

© Copyright IBM Corporation 2009. All rights reserved.140

Lesson 8: Linking to Spreadsheets and Databases with OPL / Topic 4: Writing to a database

DBUpdate
The DBUpdate instruction is used to iteratively publish a set of results to the database.
When it is invoked, the OPL result publisher will iterate on the items in the set result
and bind the component values to the SQL statement parameters in the declared order.
The element types supported for database publishing are the same as for reading. The
syntax is as follows:

<data_instance> to DBUpdate (<connection_name> <command_string>)

where <command_string> represents the update action (an SQL statement, for example)
and <data_instance> represents the OPL results (e.g. data or decision variable values)
to which the action applies.

For example, after the DBExecute example that creates the PERSONS table shown
above, you can specify, in the data file:

people to DBUpdate(db,"insert into PERSONS(NAME,EMAIL,AGE,DEPT)
values(?,?,?,?)");

This code, preceded by the DBExecute operation creating the table, inserts new records
that fill the PERSONS table in the db database with information from a set, people,
defined in the .mod file.

In the case of result publishing, DBExecute is not used to provide the values
to fill, it simply performs the administrative operation (in this case, creating
the table). The operation must be one which is legal for the type of RDBMS to
which you are connected.

You can also use the DBUpdate instruction to update or delete existing database
elements, using the appropriate SQL command. The following example deletes records,
identified by the NAME column, and contained in the set namesToDelete:

{string} namesToDelete = ...;
namesToDelete to DBUpdate(DB,"delete from PERSONS where NAME = ?")

© Copyright IBM Corporation 2009. All rights reserved. 141

Lesson 8: Linking to Spreadsheets and Databases with OPL / Topic 4: Writing to a database

Practice
Go to the Staffing Problem workshop:

1. Read thoroughly the introductory material, especially the Problem
description, which is not repeated in this workbook.

2. Perform the step, Steps to the database solution. Note that the
instructions are repeated below.

Supply side data elements: Concept of skillGroup
Each worker belongs to a single skillGroup that represents a subset of all
the skills of all the workers. In human resources terms, this would be the set
of competencies for which a worker is qualified. An individual worker can share
his/her available time performing any of the associated skillGroup's skills,
but cannot work in any skill outside the skillGroup.

Now perform the Declare and instantiate worker and skillGroup pairs
and worker's availability substep of the Steps to the database solution.
step.

You can perform this lab using the HTML workshop, or by following the
instructions in the workbook. The HTML workshop will give you direct access
to OPL documentation pages that can help you with the lab.

Declare and instantiate worker and skillGroup pairs and worker's
availability
Each worker belongs to a single skillGroup and can share his available time
across his skillGroup's skills.

In the model file:
1. Look at the declaration (already done) of the tuple called

WorkerSkillGroupPair that it contains the information for the
skillGroupName and the workerName . Keys are used here for data
integrity. Note that if no keys are declared, OPL's default setting is to
assume that all tuple elements are keys.

2. Declare a set workerSkillGroupPairs of type
WorkerSkillGroupPair.

What you are doing here is creating a set,
workerSkillGroupPairs, which has as itsmembers, instances
of the tuple WorkerSkillGroupPair. The tuple name is usually
declared in the singular (WorkerSkillGroupPair), and the
tuple set that collects it usually has the same name as the tuple
data type but in the plural form (workerSkillGroupPairs).
Also, note that usually, the data name starts with lower case
while the data type starts with upper case (e.g. tuple Pair
{...}; and {Pair} pairs = ...;).

3. Declare an array workerAvailability of type float indexed over
workerSkillGroupPairs

This array is a sparse array because it is indexed over the skill
group name combination,WorkerSkillGroupPairs as opposed
to being indexed individually over skillGroupName and
workerName.

In the data file:
1. Populate workerSkillGroupPairs and workeravailability from

the database using table loading. Use the following query:

© Copyright IBM Corporation 2009. All rights reserved.142

Lesson 8: Linking to Spreadsheets and Databases with OPL / Topic 4: Writing to a database

select sa.name,sg.skill_group_name, sa.availability from
skill_groups sg, skill_availability sa where
sg.skill_group_id = sa.skill_group_id;

Note that the index of the availability array and the elements of
the array are created simultaneously from the database thanks
to table loading.

2. Use workerSkillGroupPairs to populate other data structures
3. Create the set of namesOfWorkers

Data: the demand side
Demand is skill dependent. You therefore have to design several different
structures tomanipulate different aspects of the relationship between aworker
and its associated skill set.

Now perform the rest of the substeps in the Steps to the database solution.
step.

Declare and instantiate the skills list and the demand for each
skill
In the model file:

1. Declare the skills using a set structure
2. Declare an array of the skill's demand indexed by each skill name

In the data file:
• Populate the skill set and the demand array from the database using

table loading. Use the following query:
select sa.name, s.skill_name from skill_availability
sa, skills s, skill_group_skills sgs where
sa.skill_group_id = sgs.skill_group_id and sgs.skill_id
= s.skill_id;

Data: get relation of skills to workers
Each worker provides several skills, which are included in the pool of skills of
his skill group

In the model file:
1. The model file already contains the declaration of a tuple

WorkerSkillPair that contains a worker and one of the worker's
associated skills.

2. Declare a set workerSkillPairs of type WorkerSkillPair that is
read from the data base.

What you are doing here is creating a set, workerSkillPairs,
which has as its members, instances of WorkerSkillPair.

3. Use the set workerSkillPairs to create an array workerSkillsList,
indexed over namesOfWorkers, that lists the skills belonging to each
worker.

Here, you are creating a two-dimensional array where one
dimension is the name of each worker and the other dimension
contains every instance of the set workerSkillPairs that
contains the list of skills of each worker.

4. Use the set workerSkillPairs to create an array skillsWorkerList,
indexed over skills, that lists the workers capable of each skill.

© Copyright IBM Corporation 2009. All rights reserved. 143

Lesson 8: Linking to Spreadsheets and Databases with OPL / Topic 4: Writing to a database

Here, you are doing the same thing, but this time listing each
skill, then referencing all workers who have that associated skill.

Note that using a tuple structure for workerSkills contributes to the sparsity
of the model, because only the relevant worker/skill combinations are listed, as
opposed to all possible combinations of workers and skills.

In the data file:
1. Populate workerSkillPairs from the database by using the following

query:

select sa.name, s.skill_name from skill_availability
sa, skills s, skill_group_skills sgs where
sa.skill_group_id = sgs.skill_group_id and sgs.skill_id
= s.skill_id;

Define decision variables and objective
1. Define a Boolean decision variable hireWorker[namesOfWorkers] to

indicate whether each worker is hired or not.
2. Define a float decision variable

workerSkillTime[workerSkillPairs] to indicate how much time
each worker spends on each skill.

3. Define the objective to minimize the number of workers hired.

Define constraints
1. Define a constraint ctAvailability that ensures that each individual

worker's availability limit is met as follows:

forall (w in namesOfWorkers)
ctAvailability : sum(s in

workerSkillsList[w]) workerSkillTime[<w,s>] <=
workerAvailability[<w>,<workerSkillGroup[w]>] *
hireWorker[w];

2. Define a constraint ctMeetDemand to ensure that the amount of time
spent by all workers with a particular skill is at least as great as the
demand for that skill.

Post-processing for result output
1. Create a list, hiredWorkers, of the names of the workers to be hired.
2. Note the use of an execute script block to write the list to the Scripting

log output tab. .
3. Use DBExecute and DBUpdate statements to first clear the table of new

hires and then populate it with the solution to your model.

Solution
1. Check the solution of both the .mod and the .dat files in the

<trainingDir>\OPL63.Labs\Staffing\Database_model\Solution
directory.

2. Run yourmodel andmake any necessary changes if it doesn't correspond
to the solution.

3. Make a note of the solution.

© Copyright IBM Corporation 2009. All rights reserved.144

Lesson 8: Linking to Spreadsheets and Databases with OPL / Topic 4: Writing to a database

Summary

Review
In this lesson, you learned how OPL can use data stored in a spreadsheet or RDBMS:

• OPL can instantiate data by reading it from a spreadsheet or RDBMS.
• OPL can write the results of an optimization to a spreadsheet or RDBMS.
• OPL can use any legal SQL query to retrieve data from an RDBMS.

© Copyright IBM Corporation 2009. All rights reserved. 145

Lesson 8: Linking to Spreadsheets and Databases with OPL

Lesson 9: Scheduling in OPL with CP Optimizer

OPL provides specialized keywords and syntax for modeling scheduling and allocation
problems.

Instructor note
This lesson should last about 2 hours, including the practices.

This lesson introduces the concepts involved in describing a scheduling problem and the
OPL keywords that facilitate modeling such a problem.

© Copyright IBM Corporation 2009. All rights reserved. 147

Lesson 9: Scheduling in OPL with CP Optimizer

Introduction to scheduling

Learning objective
At the end of this lesson, you will be
able to write a simple scheduling
model in OPL. In this section, you
gain an overview of how scheduling
is implemented in OPL.

Key term
scheduling

OPL gives you access to IBM® ILOG® CP Optimizer features
specially adapted to solving detailed scheduling problems over
fine grained time. There are, for example, keywords particularly
designed to represent such aspects as tasks and temporal
constraints.

OPL offers you a workbench of modeling features in the IBM
ILOG CP Optimizer engine that intuitively and naturally tackle
the issues inherent in detailed scheduling problems from
manufacturing, construction, driver scheduling, and more.

In a detailed scheduling problem, the most basic activity is
assigning start and end times to intervals. IBM ILOG's

implementation is especially useful for fine-grained scheduling.

Scheduling problems also require the management of minimal or maximal capacity
constraints for resources over time, and of alternative modes to perform a task.

What is a detailed scheduling problem?
Detailed scheduling can be seen as the process of assigning start and end times to
intervals, and deciding which alternative will be used if an activity can be performed
in different modes. Scheduling problems also require the management of minimal or
maximal capacity constraints for resources over time.

A typical scheduling problem is defined by:

• A set of time intervals -- definitions of activities, operations, or tasks to be
completed, that might be optional or mandatory

• A set of temporal constraints – definitions of possible relationships between the
start and end times of the intervals

• A set of specialized constraints – definitions of the complex relationships on a
set of intervals due to the state and finite capacity of resources

• A cost function – for instance, the time required to perform a set of tasks, non
execution cost of some optional tasks, or the penalty costs of delivering some
tasks past a due date

Scheduling models in OPL
A scheduling model has the same format as other models in OPL:

• Data structure declarations
• Decision variable declarations
• Objective function
• Constraint declarations

OPL provides specialized variables, constraints and keywords designed for modeling
scheduling problems.

© Copyright IBM Corporation 2009. All rights reserved.148

Lesson 9: Scheduling in OPL with CP Optimizer / Topic 1: Introduction to scheduling

A simple scheduling problem

Learning objective
Understand the scheduling
framework as it is declared in OPL

Key terms
• interval decision variable
• intensity (calendar) function

The example that follows, a simple house building problem,
declares a series of tasks (dvar interval) of fixed time duration
(size) that need to be scheduled (assigned start and end times).

These tasks have precedence constraints. This means that one
task must be completed before another can start. For example,
in the example code, the carpentry taskmust be complete before
the roofing task can start.

using CP;
dvar interval masonry size 35;
dvar interval carpentry size 15;
dvar interval plumbing size 40;
dvar interval ceiling size 15;
dvar interval roofing size 5;
dvar interval painting size 10;
dvar interval windows size 5;
dvar interval facade size 10;
dvar interval garden size 5;
dvar interval moving size 5;

subject to {
endBeforeStart(masonry, carpentry);
endBeforeStart(masonry, plumbing);
endBeforeStart(masonry, ceiling);
endBeforeStart(carpentry, roofing);
endBeforeStart(ceiling, painting);
endBeforeStart(roofing, windows);
endBeforeStart(roofing, facade);
endBeforeStart(plumbing, facade);
endBeforeStart(roofing, garden);
endBeforeStart(plumbing, garden);
endBeforeStart(windows, moving);
endBeforeStart(facade, moving);
endBeforeStart(garden, moving);
endBeforeStart(painting, moving);
}

In OPL, the unit of time represented by an interval decision variable is not
defined. As a result, the size of the masonry task in this problem could be 35
hours or 35 weeks or 35 months.

Intervals – the tasks to schedule
In OPL, tasks, such as the activities involved in house building problem, are modeled
as intervals, represented by the decision variable type interval. An interval has the
following attributes:

• A start
• An end
• A size
• Can be optional
• An intensity (calendar function)

© Copyright IBM Corporation 2009. All rights reserved. 149

Lesson 9: Scheduling in OPL with CP Optimizer / Topic 2: A simple scheduling problem

The time elapsed between the start and the end is the length of an interval.

The size of an interval is the time required to perform the task without interruptions.

An interval decision variable allows these attributes to vary in the model, subject to
constraints.

Syntax:
dvar interval <taskName> <switches>

where <switches> represents one or more different modifying conditions to be applied
to the interval.

Some of the switches available include:

• Setting a time window for the interval, for example:
dvar interval masonry in 0..20;

• Providing different length to the interval from its size. A task may have a fixed
size, but processing may be suspended during a break, so that the length is
greater than the size.

For example, the windows in the house example may take five days (size) to
install, but if work stops over a two-day weekend, the length of the windows
interval decision variable would be 7. The declaration would then be:

dvar interval windows size 5 in 0..7;

• Optionality: interval decision variables can be declared as optional. An optional
interval may or may not be present in the solution.
If landscaping were an unnecessary part of the house building, the interval
decision variable garden would be declared as optional:

dvar interval garden optional;

The declaration

dvar interval garden optional in 20..32 size 5;

declares that the task garden, if present, requires 5 time units to execute, and must
start after time unit 20 and end before time unit 32.

Stated in everyday language, this declaration says that construction of a garden is not
mandatory for building the house, but if it is to be done, (and assuming that the time
units are days), the task requires five days to perform, and the five days of garden
construction must happen between day 20 and day 32 in the house construction time
line.

You will find the complete syntax for interval declarations in the Language Quick
Reference manual of the documentation.

Functions on intervals
A number of functions are available with intervals. These are normally used in decision
expressions (using the keyword, dexpr) to access an aspect of the interval. Some of
these include:

• endOf – integer expression used to access the end time of an interval
• startOf – integer expression used to access the start time of an interval
• lengthOf – integer expression used to access the length of an interval
• sizeOf – integer expression used to access the size of an interval

© Copyright IBM Corporation 2009. All rights reserved.150

Lesson 9: Scheduling in OPL with CP Optimizer / Topic 2: A simple scheduling problem

• presenceOf – integer expression returning 1 if an optional interval is present,
and 0 otherwise

All the functions related to scheduling can be found in the OPL Functions section of
the Language Quick Reference manual of the documentation.

Intensity (calendar functions)
A calendar (or intensity function) can be associated with an interval decision variable.
Intensity is a function that applies a measure of usage or utility over an interval length.
For example, it can be used to specify the availability of a person or physical resource
(such as a machine) during the interval.

Syntax:
dvar interval <taskName> intensity F;

where F is a stepwise function with integer values

• The intensity is 100% by default, and can not exceed this value (granularity of
100).

• If a task cannot be processed at all during a certain time window, such as a
break or holiday, then the intensity for that time period is set to 0.

• When a task is processed part-time (this can be due to worker time off, interaction
with other tasks, etc.) the intensity is expressed as a positive percentage.

Consider a task, for example, decoration, that is performed during an interval one
week in length. In this interval a worker works five full days, one half day, and has one
day off; the intensity function would be 100% for five days, 50% for one day, and zero
for the last day.

You declare the intensity values using a linear stepwise function, via the OPL keyword
stepFunction.

Interval size, length, and intensity are always related by the following:

size multiplied by granularity is equal to the integral of the intensity over the length
of the interval.

Intensity can not exceed 100%, so interval size can never exceed the interval length.

Therefore, in the proceeding example, the interval length is seven days and size equals
5.5 work days, and would be declared as follows:

stepFunction F = stepwise(0—>1; 100–>5; 50–>6; 0–>7);
dvar interval decoration size 5..5 in 1..7 intensity F;

© Copyright IBM Corporation 2009. All rights reserved. 151

Lesson 9: Scheduling in OPL with CP Optimizer / Topic 2: A simple scheduling problem

Scheduling constraints

Learning objective
Understand how to use specialized
constraints for scheduling

Key terms
• precedence constraint
• cumulative constraint
• cumulative function expression
• sequence decision variable
• no overlap constraint
• span constraint
• synchronize constraint

Precedence constraints
Precedence constraints are common scheduling constraints
used to restrict the relative position of interval variables in a
solution. These constraints are used to specify when one interval
variable must start or end with respect to the start or end time
of another interval. A delay, fixed or variable, can be included.

For example a precedence constraint can model the fact that an
activity amust end before activity b starts (optionally with some
minimum delay z).

List of precedence constraints in OPL:
• endBeforeStart
• startBeforeEnd
• endAtStart
• endAtEnd
• startAtStart
• startAtEnd

Example syntax:

startBeforeEnd (a,b[,z]);

Where the end of a given time interval a (modified by an optional time value z) is less
than or equal to the start of a given time interval b:

s(a) + z ≤ s(b)

Thus, if the ceiling had to dry for two days before the painting could begin, you would
write:

endBeforeStart(ceiling, painting, 2);

The meanings of these constraints are intuitive, and you can find complete syntax and
explanations for all of them atOPL, themodeling language > Constraints > Types
of constraints > Constraints available in constraint programming in the
Language Reference Manual.

Cumulative constraints
In some cases, theremay be a restriction on the number of intervals that can be processed
at a given time, perhaps because there are limited resources available. Additionally,
there may be some types of reservoirs in the problem description (cash flow or a tank
that gets filled and emptied).

These types of constraints on resource usage over time can be modeled with constraints
on cumulative function expressions. A cumulative function expression is a step
function that can be incremented or decremented in relation to a fixed time or an interval.
A cumulative function expression is represented by the OPL keyword cumulFunction.

Syntax:
cumulFunction <functionName> = <elementary_function_expression>;

where <elementary_function_expression> is a cumulative function expression
that can legally modify a cumulFunction. These expressions include:

• step

© Copyright IBM Corporation 2009. All rights reserved.152

Lesson 9: Scheduling in OPL with CP Optimizer / Topic 3: Scheduling constraints

• pulse
• stepAtStart
• stepAtEnd

A cumulative function expression can be constrained to model limited resource capacity
by constraining that the function be less than the capacity:

workersUsage <= NbWorkers;

The value of a cumulative function expression is constrained to be nonnegative
at all times.

Example of a pulse function
pulse – represents the contribution to the cumulative function of an individual interval
variable or fixed interval of time. Pulse covers the usage of a cumulative or renewable
resource when an activity increases the resource usage function at its start and decreases
usage when it releases the resource at its end time.

cumulFunction f = pulse(u, v, h);
cumulFunction f = pulse(a, h);
cumulFunction f = pulse(a, hmin, hmax);

where the pulse function interval is represented by a or by the start point u and end
point v. The height of the function is represented by h, or bounded by hmin and hmax

To illustrate, consider a cumulative resource usage function that measures how much
of a resource is being used

• There are two intervals, A and B, bound in time
• Each interval increases the cumulative function expression by one unit over its

duration

For each interval, this modification to the cumulative resource usage function can be
made by incrementing the cumulative function with the elementary function, created
with the interval and the given amount.

cumulFunction f = pulse(A, 1);
cumulFunction ff = pulse(B, 1);

Given this, the function would take the profile shown in the following graph:

© Copyright IBM Corporation 2009. All rights reserved. 153

Lesson 9: Scheduling in OPL with CP Optimizer / Topic 3: Scheduling constraints

Example of step functions
step – represents the contribution to the cumulative function starting at a point in
time:

cumulFunction f = step(u, h);

where the time u is the start of production or consumption and h represents the height
of the function.

As another example, consider a function measuring a consumable resource, similar to
a budget resource:

• The level of the resource is zero, until time 2 when the value is increased to 4.
This is modeled by modifying the cumulative function with the elementary
cumulative function step at time 2:

cumulFunction f = step(2, 4);

• There are two intervals, A and B, fixed in time. Interval A decreases the level
of the resource by 3 at the start of the interval, modeled by applying
stepAtStart, created with Interval A and the value 3, to the cumulative
function:

cumulFunction ff = stepAtStart(A, -3);

• Interval B increases the level of the resource by 2 at the end of the interval,
modeled by applying stepAtEnd, created with Interval B and the value 2, to
the cumulative function for the interval:

cumulFunction fff = stepAtEnd(B, 2);

Given this, the function would take the profile shown in the following graph:

© Copyright IBM Corporation 2009. All rights reserved.154

Lesson 9: Scheduling in OPL with CP Optimizer / Topic 3: Scheduling constraints

Other cumulative function expressions
• stepAtStart – represents the contribution to the cumulative function beginning

at the start of an interval:

cumulFunction f = stepAtStart(a, h);
cumulFunction f = stepAtStart(a, hmin, hmax);

where the start of interval a is the start of production or consumption. The
height of the function is represented by h, or bounded by hmin and hmax.

• stepAtEnd – represents the contribution to the cumulative function starting
at the end of an interval:

cumulFunction f = stepAtEnd(a, h);
cumulFunction f = stepAtEnd(a, hmin, hmax);

where the end of interval a is the start of production or consumption. The height
of the function is represented by h, or bounded by hmin and hmax.

Sequence decision variable and no overlap constraints
A scheduling model can contain tasks that must not overlap, for example, tasks that
are to be performed by a given worker cannot occur simultaneously.

To model this, you use two constructs:

• The sequence decision variable
• The noOverlap scheduling constraint

Unlike precedence constraints, there is no restriction on relative position of the tasks.
In addition, there may be transition times between tasks.

© Copyright IBM Corporation 2009. All rights reserved. 155

Lesson 9: Scheduling in OPL with CP Optimizer / Topic 3: Scheduling constraints

The Sequence decision variable
Sequences are represented by the decision variable type sequence.

Syntax:

dvar sequence <sequenceName> in <intervalName> [types T];

where T represents a non-negative integer.

A sequence variable represents a total order over a set of interval variables. If a sequence
seq is defined over a set of interval variables { a1, a2, a3, a4 }, a value for this
sequence at a solution can be: (a1, a4, a2, a3). A non-negative integer (the type)
can be associated with each interval variable in the sequence. This integer is used by
some constraints to group the set of intervals according to the type value.

Absent interval variables are not considered in the ordering.

Example:

dvar sequence workers[w in WorkerNames] in
all(h in Houses, t in TaskNames: Worker[t]==w) itvs[h][t] types
all(h in Houses, t in TaskNames: Worker[t]==w) h;

The sequence can contain a subset of the interval variables or be empty. In a solution,
the sequence will represent a total order over all the intervals in the set that are present
in the solution.

The assigned order of interval variables in the sequence does not necessarily determine
their relative positions in time in the schedule. To control the relative positions in time
of a sequence, you use the constraints:

• before
• first
• last
• prev
• noOverlap

Complete syntax and explanations for these constraints are at OPL, the modeling
language > Constraints > Types of constraints > Constraints available in
constraint programming in the Language Reference Manual.

You are now going to look at the noOverlap constraint.

No overlap constraints
To constrain the intervals in a sequence such that they:

• Are ordered in time corresponding to the order in the sequence
• Do not overlap
• Respect transition times

OPL provides the constraint noOverlap.

Syntax:

noOverlap (<sequenceName> [,M]);

where <sequenceName> is a previously declared sequence decision variable, and M is
an optional transition matrix (in the form of a tuple set) that can be used to maintain

© Copyright IBM Corporation 2009. All rights reserved.156

Lesson 9: Scheduling in OPL with CP Optimizer / Topic 3: Scheduling constraints

a minimal distance between the end of one interval and the start of the next interval
in the sequence.

In the following example:

• A set of n activities A[i] of integer type T[i] is to be sequenced on a machine.
• There is a sequence dependent setup time, abs(ti-tj) to switch from activity

type ti to activity type tj.
• There should be no activity overlap.

{int} Types = { T[i] | i in 1..n };
tuple triplet { int id1; int id2; int value; };
{triplet} M = { <i,j,ftoi(abs(i-j))> | i in Types, j in Types };

dvar interval A[i in 1..n] size d[i];
dvar sequence p in A types T;

subject to {
noOverlap(p, M);

};

An additional interesting use of noOverlap is to shortcut the creation of the interval
sequence variable for simple cases where the sequence is not useful:

noOverlap(A);

is equivalent to:

dvar sequence p in A;
noOverlap(p);

where A is an interval decision variable (or a set of intervals) and p is a sequence decision
variable.

Alternative and span constraints
The two keywords alternative and span provide important ways to control the
execution and synchronization of different tasks.

An alternative constraint between an interval decision variable a and a set of interval
decision variables B states that interval a is executed if and only if exactly one of the
members of B is executed. In that case, the two tasks are synchronized.

That is, interval a starts together with the first present interval from set B and ends
together with it. No other members of set B are executed, and interval a is absent if and
only if all intervals in the set B are absent, as shown in the following diagram:

© Copyright IBM Corporation 2009. All rights reserved. 157

Lesson 9: Scheduling in OPL with CP Optimizer / Topic 3: Scheduling constraints

A span constraint between an interval decision variable a and a set of interval decision
variables B states that interval a spans over all intervals present in the set. That is:
interval a starts together with the first present interval from set B and ends together
with the last one. Interval a is absent if and only if all intervals in the set B are absent,
as shown in the following diagram:

© Copyright IBM Corporation 2009. All rights reserved.158

Lesson 9: Scheduling in OPL with CP Optimizer / Topic 3: Scheduling constraints

In both of these constraints, the array B must be a one-dimensional array; for
greater complexity, use the keyword all.

Examples:
alternative(tasks[h] [t], all(s in Skills: s.task==t) wtasks[h]
[s]);

span(house[i], all(t in tasks : t.house == i) tasks[t]);

Synchronize constraint
A synchronization constraint (keyword synchronize) between an interval decision
variable a and a set of interval decision variables B makes all present intervals in the
set B start and end at the same times as interval a, if it is present.

The array B must be a one-dimensional array; for greater complexity, use the
keyword all.

Example:
synchronize(task[i], all(o in opers : o.task == i) tiopers[o]);

© Copyright IBM Corporation 2009. All rights reserved. 159

Lesson 9: Scheduling in OPL with CP Optimizer / Topic 3: Scheduling constraints

Putting everything together - a staff scheduling problem

Learning objective
Use OPL scheduling keywords and
syntax to model a simple staff
scheduling problem

Key terms
• alternative resource
• resource pool
• surrogate constraint

The business problem
You are now going to use OPL to create a model representing a
staff scheduling problem. This is a classic type of task-based
scheduling problem to model.

A telephone company must schedule customer requests for
installation of different types of telephone lines:

• First (or principal) line
• Second (or additional) line
• ISDN (digital) line

Each request has a requested due date; a due date can be missed,
but the objective is to minimize the number of days late.

These three request types each have a list of tasks that must be completed in order to
complete the request. There are precedence constraints associated with some of the
tasks. Each task has a fixed duration and also may require certain fixed quantities of
specific types of resources.

The resource types are

• Operator
• Technician
• CherryPicker (a type of crane)
• ISDNPacketMonitor
• ISDNTechnician.

The tasks types, along with their durations and resource requirements are outlined in
the following table:

ResourcesDurationTask type

Operator1MakeAppointment

Technician1FlipSwitch

Technician x 23InteriorSiteCall

• Technician
• ISDNTechnician
• ISDNPacketMonitor

3ISDNInteriorSiteCall

• Technician x 2
• CherryPicker

2ExteriorSiteCall

Technician1TestLine

Each request type has a set of task types that must be executed. Some of the tasks must
be executed before other tasks can start:

Preceding tasksTask typeRequest type

FlipSwitchFirstLineInstall

FlipSwitchTestLine

© Copyright IBM Corporation 2009. All rights reserved.160

Lesson 9: Scheduling in OPL with CP Optimizer / Topic 4: Putting everything together - a staff scheduling problem

Preceding tasksTask typeRequest type

MakeAppointmentSecondLineInstall

MakeAppointmentInteriorSiteCall

InteriorSiteCallTestLine

MakeAppointmentISDNInstall

MakeAppointmentISDNInteriorSiteCall
ExteriorSiteCall

InteriorSiteCall,
ExteriorSiteCall

TestLine

The data
The following resources are available:

ID/NameResource

"Patrick"Operator

"JohnTec"Technician

"PierreT"Technician

"VIN43CP"CherryPicker

"VIN44CP"CherryPicker

"EQ12ISD"ISDNPacketMonitor

"RogerTe"ISDNTechnician

The requests that need to be scheduled are:

Due dateRequest TypeRequest Number

22FirstLineInstall0

22SecondLineInstall1

1FirstLineInstall2

21ISDNInstall3

21SecondLineInstall4

22ISDNInstall5

© Copyright IBM Corporation 2009. All rights reserved. 161

Lesson 9: Scheduling in OPL with CP Optimizer / Topic 4: Putting everything together - a staff scheduling problem

Model the staff scheduling problem

You are now going to perform a series of steps in the Staff Scheduling workshop based on
this problem.

What is the objective?
In business terms, we might say the objective is “to improve on-time performance.” However,
this is a qualitative statement that is difficult to model. In order to find a modeling
representation (i.e. quantifiable) of the idea, we need to turn things around; instead of
maximizing something abstract, we find a number that needs to be kept to a minimum. Thus,
our objective becomes:

To minimize the total number of late days (days beyond the due date when requests are
actually finished).

What are the unknowns?
The unknowns are:

• When each task will start
• Which resource will be assigned to each task

Before you begin to work with the lab files, here is an overview of what you are going to do.
Each task will be decomposed step by step to demonstrate the process.

How to model this situation:
1. The task type FlipSwitch requires a Technician, and there are two Technicians.

For each task of this type, you create three interval decision variables. Two of these
intervals are optional, meaning they may or may not appear in the solution.

2. To constrain such that when an optional interval is present, it is scheduled at exactly
the same time as the task interval, use a synchronize constraint.

3. To ensure that the appropriate number of worker intervals are used, write a constraint
that requires that the sum of that the sum of present worker intervals is equal to the
number of resources required.

Details of the intervals for FlipSwitch
• One optional represents JohnTec being assigned to the task
• The other optional represents PierreT being assigned to the task.
• The third interval represents the task itself, and is used in other constraints.

In general, if there are multiple resources with identical properties, it is best to model
them as a resource pool. However, one can imagine that in this example new
constraints related to workers' days-off could be added, so here each worker is treated
as an individual resource.

Resource pools are explained in the section on surrogate constraints.

Modeling the precedence constraints
To model that some tasks in a request must occur before other tasks in the same request,
you use the precedence constraint endBeforeStart.

While the data for this problem does not require there to be any delay between tasks, you
can add a delay to the model to allow for the possibility of a delay.

In the Staff Scheduling workshop, perform theDeclare task interval and precedences
step.

Now you will begin the hands-on part of this exercise, and build the staff scheduling model
step by step.

© Copyright IBM Corporation 2009. All rights reserved.162

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: Model the staff scheduling problem

You can perform this lab using the HTML workshop, or by following the instructions in the
workbook. The HTMLworkshop will give you direct access to OPL documentation pages that
can help you with the lab.

Declare task interval and precedences

Objective
• Start building a scheduling model using some basic CP Optimizer constructs.

Actions
• Examine data and model files
• Define the tasks and precedences
• Solve the model and examine the output

References
interval
endBeforeStart

Examine data and model files
1. Import the sched_staffWork project into the OPL Projects navigator (Leave theCopy

projects into workspace box unchecked) and open the step1.mod and data.dat
files.

The .mod file represents a part of what the finished model will look like. Most of the
model is already done.

Note that there is no objective function. At this point, you have what is called
a satisfiability problem. Running it will determine values that satisfy the
constraints, without the solution necessarily being optimal.

2. Examine closely how the data declarations for the model are formulated.
3. Note especially, the declaration of the set demands. This creates a set whose members

come from the tuple Demand, which is a tuple of tuples (RequestDat and TaskDat).
This set is made sparse by filtering it such that only task/request pairs that are found
in the tuple set recipes are included. Effectively, it creates a sparse set of required
tasks to be performed in a request and operations (the same tasks associated with a
given resource). Only valid combinations are in the set.

This is a good example of the power of tuple sets to create sparse sets of complex
data.

4. The file sched_staff.dat instantiates the data as outlined in the problem definition.
it instantiates

• ResourceTypes
• RequestTypes
• TaskTypes
• resources
• requests
• tasks
• recipes
• dependencies
• requirements

Discuss howmodel and data files are related with your instructor and fellow students.

Define the tasks and precedences

© Copyright IBM Corporation 2009. All rights reserved. 163

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: Model the staff scheduling problem

You are now ready to start declaring decision variables and constraints. At this point, we will
define only the tasks, and the precedence rules that control them.

1. Declare an interval decision value to represent the time required to do each
request/operation pair in the set demands. Name the decision variable titasks:

dvar interval titasks[d in demands] size d.task.ptime;

2. An important aspect of the modeling is expressing the precedence constraints on the
tasks (demands). These constraints can be expressed using the constraint
endBeforeStart.

The step1.mod file already contains the preparatory declarations:

forall(d1, d2 in demands, dep in dependencies :
d1.request == d2.request &&
dep.taskb == d1.task.type &&
dep.taska == d2.task.type)

Examine these declarations with your instructor to understand clearly what theymean.

3. Write the endBeforeStart constraint.
4. Compare with the solution in

<trainingDir>\OPL63.labs\Scheduling\Staff\solution\sched_staffSolution\step1.mod.

Solve the model and examine the output
1. Solve the model by right clicking the Step1 run configuration and selecting Run this

from the context menu.
2. Look at the results in the Solutions output tab. Can you determine what the displayed

values represent?
3. Look at the Engine log and Statistics output tabs, and note that this model is, for

the moment, noted as a “Satisfiability problem.”
4. Close Step1.mod.

Modeling the objective
To model the objective you need to determine the end time of each request. The request itself
can be seen as an interval with a variable length. The request interval must cover, or span,
all the intervals associated with the tasks that comprise the request.

You create the objective by finding the difference between the end time and the due date and
minimizing it.

Now perform the next step of the Staff Schedulingworkshop,Compute the end of a task
and define the objective and the first substep of the Define the resource constraints
step: Review the needs.

Compute the end of a task and define the objective

Actions
• Compute the time needed for each request
• Transform the business objective into the objective function
• Solve the model and examine the output

References
span
all
maxl

© Copyright IBM Corporation 2009. All rights reserved.164

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: Model the staff scheduling problem

Compute the time needed for each request
1. Open Step2.mod for editing.
2. The requests are modeled as interval decision variables. Write the following declaration

in the model:

dvar interval tirequests[requests];

3. Write a span constraint to link this decision variable to the appropriate titasks
instances .

Use the all quantifier to associate the required tasks for each request with
the appropriate duration.

4. Check your solution against
<trainingDir>\OPL63.labs\Scheduling\Staff\solution\sched_staffSolution\Step2.mod.

Transform the business objective into the objective function
The business objective requires the model to minimize the total number of late days (days
beyond the due date when requests are actually finished). To do this in the model, you need
to write an objective function that minimizes the time for each request that exceeds the due
date.

1. Calculate the number of late days for each request:
The data element requests is the set of data that instantiates the tuple
RequestDat. The duedate is included in this information.

•

• The interval tirequests represents the time needed to perform each request.
• Subtract the duedate from the date on which tirequests ends.

Use the endof function to determine the end time of tirequests.

2. Include a test that discards any negative results (requests that finish early) from the
objective function.

Use the maxl function to select the greater of:
• the difference between due date and finish date
• 0

3. Minimize the sum of all the non-negative subtractions, as calculated for each request.

Check the solution in
<trainingDir>\OPL63.labs\Scheduling\Staff\solution\sched_staffSolution\Step2.mod.

Solve the model and examine the output
1. Solve the model by right clicking the Step2 run configuration and selecting Run this

from the context menu.
2. Look at the Engine log and Statistics output tabs, and note that the model is now

reported as a “Minimization problem,” after the addition of the objective function.
Scroll down a little further and notice the number of fails reported.

3. Look at the results in the Solutions output tab. You will notice that an objective is
now reported, in addition to the values of titasks and tirequests.

Review the needs
So far, you have defined the following constraints as identified in the business problem, as
outlined in the workbook:

• For each demand task, there are exactly the required number of task-resource
operation intervals present.

© Copyright IBM Corporation 2009. All rights reserved. 165

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: Model the staff scheduling problem

• Each task precedence is enforced.
• Each request interval decision variable spans the associated demand interval decision

variables.

You now need to meet the following needs, not yet dealt with in the model:

• Each task-resource operation interval that is present is synchronized with the
associated task's demand interval.

• There is no overlap in time amongst the present operation intervals associated with
a given resource.

• At any given time, the number of overlapping task-resource operation intervals for
a specific resource type do not exceed the number of available resources for that type.

Modeling the alternative resources
The task type FlipSwitch requires a technician. There are two technicians, i.e. there are
two alternative resources, available to do the same task. You want to be able to optimize
how each of these is used relative to the objective.

To create the alternative resources, you declare optional intervals for each possible
task/resource pair.

To constrain a resource so that it cannot be used by more than one task at a given time, you
need to ensure that there is no overlap in time amongst the intervals associated with a given
resource.

How to model this situation:
1. Create a sequence decision variable from those intervals
2. Place a noOverlap constraint on the sequence decision variable.

Now perform the rest of the Define the resource constraints step.

Assign workers to tasks
It is now time to deal with the question of who does what. We know from the data that there
is more than one resource, in some cases, capable of doing a given task. How do we decide who
is the best one to send on a particular job?

The key idea in representing a scheduling problem with alternative resources is:

• Model each possible task-resource combination with an optional interval decision
variable.

• Link these with an interval decision variable that represents the entire task itself (using
a synchronize constraint).

1. Open Step3.mod for editing.
2. You will see that a new data declaration has been added:

tuple Operation {
Demand dmd;
ResourceDat resource;

};
{Operation} opers = {<d, r >| d in demands, m in requirements, r
in resources : d.task.type == m.task && r.type == m.resource};

The members of the tuple set opers are the set of tasks assigned to a resource.

3. There is also a new decision variable associated with this tuple set that calculates the
time required for each operation:

dvar interval tiopers[opers] optional;

© Copyright IBM Corporation 2009. All rights reserved.166

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: Model the staff scheduling problem

Note that this variable is optional. If one of the optional interval variables is present
in a solution, this indicates that the resource associated with it is assigned to the
associated task.

Remember that in this model a task is called a demand, and a task-resource
pair is called an operation.

4. Declare a sequence decision variable named workers, associated with each resource.

Use all to connect each resource used in an operation to its related
tiopers duration:

dvar sequence workers[r in resources] in all(o in opers :
o.resource == r) tiopers[o];

5. Constrain this decision variable using a noOverlap constraint to indicate the order
in which a resource performs its operations.

“Just enough” constraint
Another constraint states that for each demand task, there are exactly the required number of
task-resource operation intervals present (“just enough” to do the job – not more or less). The
presence of an optional interval can be determined using the presenceOf constraint:

forall(d in demands, rc in requirements : rc.task == d.task.type) {
sum (o in opers : o.dmd == d && o.resource.type == rc.resource)
presenceOf(tiopers[o]) == rc.quantity;

• Write this into the model file.

Check your work and solve the model
1. Compare your results with the contents of

<trainingDir>\OPL63.labs\Scheduling\Staff\solution\sched_staffSolution\Step3.mod

Do not yet copy the synchronization constraint into yourwork copy. First you
are going to solve the model and observe the results.

2. Solve the model by right clicking the Step3 run configuration and selecting Run this
from the context menu.

3. Look at the Engine log and Statistics output tabs, and note that the number of
variables and constraints treated in the model has increased slightly.

4. The results in the Solutions output tab show values for four decision values now, as
well as the solution.

Synchronize simultaneous operations and observe the effects
1. Declare a constraint that synchronizes each task-resource operation interval that is

present with the associated task's demand interval:

forall (r in requests, d in demands : d.request == r)
synchronize(titasks[d], all(o in opers : o.dmd == d)

tiopers[o]);

2. Solve the model by right clicking the Step3 run configuration and selecting Run this
from the context menu.

3. Look at the Engine log and Statistics output tabs. The number of variables and
constraints treated in the model has increased significantly, as has the number of fails.

4. Look at the results in the Solutions output tab, and note, especially how values for
workers have changed from the previous solve.

5. Close Step3.mod.

© Copyright IBM Corporation 2009. All rights reserved. 167

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: Model the staff scheduling problem

Surrogate constraints
While these constraints completely describe the model, at times it is beneficial to introduce
additional constraints that improve the search. Along with treating the resources individually,
you can also treat the set of resources of a given type as a resource pool. A resource pool
can be modeled using a cumulative function expression.

Each resource type has one cumulFunction associated with it. Between the start and end
of a task, the cumulFunction for any required resource is increased by the number of
instances of the resource that the task requires, using the pulse function.

A constraint that the cumulFunction never exceeds the number of resources of the given
type is added to the model.

These surrogate constraints on the cumulFunction expressions are crucial as they
enforce a stronger constraint when the whole set of resources of the tasks is not
chosen.

Complete the Staff Scheduling workshop by performing the Add a surrogate constraint
to accelerate search step.
You can perform this lab using the HTML workshop, or by following the instructions in the
workbook. The HTMLworkshop will give you direct access to OPL documentation pages that
can help you with the lab.

Add a surrogate constraint to accelerate search

Actions
• Declare the cumulative function
• Constrain the cumulative function
• Solve the model and examine the results

Reference
cumulFunction

Declare the cumulative function
1. Open Step4.mod for editing.
2. To model the surrogate constraint on resource usage, a cumulative function expression

is created for each resource type. Each cumulFunction is modified by a pulse function
for each demand. The amount of the pulse changes the level of the cumulFunction
by the number of resources of the given type required by the demand:

cumulFunction cumuls[r in ResourceTypes] =
sum (rc in requirements, d in demands : rc.resource == r &&

d.task.type == rc.task) pulse(titasks[d], rc.quantity);

Constrain the cumulative function
1. You will see that a new intermediate data declaration exists:

int levels[rt in ResourceTypes] = sum (r in resources : r.type ==
rt) 1;

This is used to test for the presence of a given resource in a resource type.

2. Write a constraint that requires, when a resource is present in a resource type, that the
value of the cumulFunction must not exceed the value of levels.

3. Compare your results with the contents of
<trainingDir>\OPL63.labs\Scheduling\Staff\solution\sched_staffSolution\Step4.mod

© Copyright IBM Corporation 2009. All rights reserved.168

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: Model the staff scheduling problem

Solve the model and examine the results
• Solve the model by right clicking the Step4 run configuration and selecting Run this

from the context menu.
• If you look at the Engine log and Statistics output tabs, you will note a dramatic

improvement in the number of fails, thanks to the surrogate constraint.

© Copyright IBM Corporation 2009. All rights reserved. 169

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: Model the staff scheduling problem

A house building calendar problem

You are now going to consider a problem of scheduling the tasks involved in buildingmultiple
houses in such a manner that minimizes the overall completion date of the houses.

The business problem
There are five houses to be built. As usual, some tasks must take place before other tasks,
and each task has a predefined size.

There are two workers, each of whom must perform a given subset of the necessary tasks.

A worker can be assigned to only one task at a time.

Each worker has a calendar detailing the days on which he does not work, such as weekends
and holidays, with the following constraints:

• On a worker’s day off, he does no work on his tasks.
• A worker's tasks may not be scheduled to start or end on a day off.
• Tasks that are in process by the worker are suspended during his days off.

House Construction Tasks

Preceding tasksWorkerSizeTask

Joe35Masonry

masonryJoe15Carpentry

masonryJim40Plumbing

masonryJim15Ceiling

carpentryJoe5Roofing

ceilingJim10Painting

roofingJim5Windows

roofing
plumbing

Joe10Facade

roofing
plumbing

Joe5Garden

windows
facade

garden

painting

Jim5Moving

What is the objective?
In business terms, the objective is to minimize the total number of days required to build five
houses.

What are the unknowns?
The unknowns are when each task will start. The actual length of a task depends on its
position in time and on the calendar of the associated worker.

What are the constraints?
The constraints specify that:

© Copyright IBM Corporation 2009. All rights reserved.170

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: A house building calendar problem

• A particular task may not begin until one or more given tasks have been completed
• A worker can be assigned to only one task at a time
• Tasks that are in process are suspended during the associated worker’s days off
• A task cannot start or end during the associated worker’s days off.

Modeling the workers' calendars
A stepFunction is used to model the availability (intensity) of a worker with respect to
his days off. This function has a range of [0..100], where the value 0 represents that the
worker is not available and the value 100 represents that the worker is available for a full
work period with regard to his calendar.

While not part of this model, any value in 0..100 can be used as the intensity. For
instance, the function could take the value 50 for a time window in which a resource
works at half-capacity.

For each worker, a sorted tuple set is created. At each point in time where the worker’s
availability changes, a tuple is created. The tuple has two elements; the first element is an
integer value that represents the worker’s availability (0 for on a break, 100 for fully available
to work, 50 for a half-day), and the other element represents the date at which the availability
changes to this value. This tuple set, sorted by date, is then used to create a stepFunction
to represent the worker’s intensity over time. The value of the function after the final step
is set to 100.

Go to the House Building Calendar workshop, and perform the step, Define a calendar
for each worker.

Define a calendar for each worker
1. Import the sched_calendarWork project into the OPL Projects Navigator (Leave the

Copy projects into workspace box unchecked) and open the calendar.mod and
calendar.dat files for editing.

2. Examine the first data declarations and their instantiations in the .dat file:
• The first two declarations, NbHouses and range Houses establish simple

declarations of how many houses to build, and a range that is constrained
between 1 and that total number.

• The next two declarations instantiate sets of strings that represent, respectively,
the names of the workers and the names of the tasks to perform.

• The declaration int Duration [t in TaskNames] = ...; instantiates
an array named Duration indexed over each TaskNames instance.

• The declaration string Worker [t in TaskNames] = ...; instantiates
an array named Worker indexed over each TaskNames instance.

• The tuple set Precedences instantiates task pairings in the tuple Precedence,
where each tuple instance indicates the temporal relationship between two
tasks: the task in beforemust be completed before the task in after can begin.

• The tuple Break indicates the start date, s, and end date, e of a given break
period. A list of breaks for each worker is instantiated as the array Breaks.
Each instance of this array is included in a set named Break.

3. Declare a tuple named Step with two elements:
• An integer value, v, that represents the worker’s availability at a givenmoment

(0 for on a break, 100 for fully available to work, 50 for a half-day)
• An integer value, x, that represents the date at which the availability changes

to this value. Make this element the key for the tuple.

tuple Step {
int v;
key int x;
};

© Copyright IBM Corporation 2009. All rights reserved. 171

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: A house building calendar problem

4. Create a sorted tuple set such that at each point in time where the worker’s availability
changes, an instance of the tuple set is created. Sort the tuple set by date, and use a
stepfuncion named calendar to create the intensity values to be assigned to each
WorkerName

Use a stepwise function

:

sorted {Step} Steps[w in WorkerNames] =
{ <100, b.s >| b in Breaks[w] } union
{ <0, b.e >| b in Breaks[w] };
stepFunction Calendar[w in WorkerNames] =
stepwise (s in Steps[w]) { s.v - >s.x; 100 };

When two consecutive steps of the function have the same value, these steps
aremerged so that the function is always representedwith theminimal number
of steps.

Modeling the unknowns
You need to know the dates when each task will start. If you have that information, the end
dates are known, since the size of the task is known and the breaks that will determine the
length of the task are also known.

Write an expression that calculates the start date of each task for each house, using this
information.

Associate the step function Calendarwith an interval variable using the keyword intensity
to take the worker's availability dates into account.

This has been done for you already in the workshop.

Continue with the Declare the decision variable step.

Declare the decision variable
1. Continue looking at the model file – the following interval decision variable is

declared:

dvar interval itvs[h in Houses, t in TaskNames]
size Duration[t]
intensity Calendar[Worker[t]];

2. Can you see how the Calendar function is associated with the decision variable in
order to ensure that the worker's availability is taken into account?

3. Discuss this with your instructor and fellow students.

Modeling the objective
The objective of this problem is to minimize the total number of days required to build five
houses. To model this, you minimize the overall completion date – i.e. the span of time from
the start date of the first house to the completion date of the house that is completed last.

Return to the House Building Calendar workshop, and perform the step, Define the
objective function.

Define the objective function

Action
• Transform the business objective into the objective function

© Copyright IBM Corporation 2009. All rights reserved.172

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: A house building calendar problem

Transform the business objective into the objective function
The business objective requires the model to minimize the total number of days required to
build five houses. To do this in themodel, you need to write an objective function that minimizes
the maximum time needed to build each house and arrive at a minimum final completion date
for the overall five-house project.

1. Determine the maximum completion date for each individual house project using the
expression endOf on the last task in building each house (the moving task) and

2. Minimize the maximum of these expressions.

Check the solution in
<trainingDir>\OPL63.labs\Scheduling\Calendar\solution\sched_calendarSolution\calendar.mod.

Modeling the precedence constraints
The precedence constraints in this problem are simple endBeforeStart constraints with
no delay.

forall(p in Precedences)
endBeforeStart(itvs[h][p.before], itvs[h][p.after]);

Practice this in theWrite the precedence constraint substep of the step, Define
constraints in the House Building Calendar workshop.

Write the precedence constraint
The precedence constraints in this problem are simple endBeforeStart constraints with no
delay.

1. Write a single constraint that can be applied via the tuple set Precedences to each
instance of the interval decision variable itvs.

Use filtering on (p in Precedences) to separate out start dates and end
dates. Use arrays of the form [p.before] and [p.after].

2. Check your work against the file
<trainingDir>\OPL63.labs\Scheduling\Calendar\solution\sched_calendarSolution\calendar.mod.

Modeling the noOverlap constraint
To add the constraints that a worker can perform only one task at a time, the interval variables
associated with that worker are constained to not overlap in the solution using the specialized
constraint noOverlap:

forall(w in WorkerNames)
noOverlap(all(h in Houses, t in TaskNames: Worker[t]==w) itvs[h][t]);

Go to the House Building Calendar workshop, and perform the substep, Define
constraints >Write the noOverlap constraint.

Write the noOverlap constraint
1. Write a constraint that says the interval variables associated with a worker are

constrained to not overlap in the solution.
2. Check your work against the file

<trainingDir>\OPL63.labs\Scheduling\Calendar\solution\sched_calendarSolution\calendar.mod.

You may be surprised by the form of the noOverlap constraint in the solution. This
form is a shortcut that avoids the need to explicitly define the interval sequence variable
when no additional constraints are required on the sequence variable.

© Copyright IBM Corporation 2009. All rights reserved. 173

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: A house building calendar problem

Modeling forbidden start/end periods
When an intensity function is set on an interval variable, the tasks which overlap weekends
and/or holidays will be automatically prolonged. An option could be available to start or end
a task on a weekend day, but in this problem, a worker’s tasks cannot start or end during
the worker’s days off.

A forbidden start or end is represented in IBM ILOG OPL by the constraints forbidStart
and forbidEnd, which respectively constrain an interval variable to not end and not overlap
where the associated step function has a zero value.

Go to the House Building Calendar workshop, and perform the substep, Define
constraints >Write the forbidden start/end period constraint .

Write the forbidden start/end period constraint
1. Write a constraint, using forbidStart and forbidEnd, that forbids a task to start

or end on the associated worker's days off (i.e. when intensity = 0).
2. Check your work against the file

<trainingDir>\OPL63.labs\Scheduling\Calendar\solution\sched_calendarSolution\calendar.mod.

© Copyright IBM Corporation 2009. All rights reserved.174

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: A house building calendar problem

Matters of State: Understanding State Functions

Learning objective
At the end of this topic, you will
have learned to use state functions
and constraints in a CP Scheduling
model

Key terms
• state function
• state constraint

In some cases, there may be a restriction on what types of tasks
can be processed simultaneously. For instance, in the house
building problem, a "clean task" like painting cannot occur at the
same time as a "dirty" task like sanding the floors.

Moreover, some transition may be necessary between intervals
with different states, such as needing to wait for the paint to dry
before floor sanding can take place.

This type of situation is called a state function. A state function
represents the changes in state over time, and can be used to
define constraints.

OPL provides the keyword stateFunction to model this.

Syntax:

stateFunction <functionName> [with M];

where <functionName> is a label given to the function, and M is an optional transition
matrix that needs to be defined as a set of integer triplets (just as for the noOverlap
constraint). Thus this matrix is a tuple set.

For example, for an oven with three possible temperature levels identified by indexes
0, 1 and 2 we could have:

• [start=0, end=100): state=0
• [start=150, end=250): state=1
• [start=250, end=300): state=1
• [start=320, end=420): state=2
• [start=460, end=560): state=0,

In ordinary terms, this represents a set of non-overlapping intervals, each beginning
at time start and ending at time end, over which the function maintains a particular
non-negative integer value indicated by state (in this example, oven temperature).

In between those intervals, the state of the function is not defined (for example, between
time 100 and time 150), typically because of an ongoing transition between two states
(such as the time needed to change oven temperature from state 0 to state 1).

To model the oven example:

tuple triplet {
int start;
int end;
int state;
};
{ triplet } Transition = ...;
//...
stateFunction ovenTemperature with Transition;

© Copyright IBM Corporation 2009. All rights reserved. 175

Lesson 9: Scheduling in OPL with CP Optimizer / Topic 5: Matters of State: Understanding State Functions

State constraints
You can use constraints to restrict the evolution of a state function. These constraints
can specify:

• That the state of the function must be defined and should remain equal to a
given state everywhere over a given fixed or variable interval (alwaysEqual).

• That the state of the function must be defined and should remain constant (no
matter its value) everywhere over a given fixed or variable interval
(alwaysConstant).

• That intervals requiring the state of the function to be defined cannot overlap
a given fixed or variable interval (alwaysNoState).

• That everywhere over a given fixed or variable interval, the state of the function,
if defined, must remain within a given range of states [vmin, vmax]
(alwaysIn).

Additionally,alwaysEqual and alwaysConstant can be combinedwith synchronization
constraints to specify that the given fixed or variable interval should have its start
and/or end point synchronized with the start and/or end point of the interval of the state
function that maintains the required state (notions of start and end alignment).

Example:
int MaxItemsInOven = ...;
int NbItems = ...;
range Items = 1..NbItems;
int DurationMin[Items] = ...;
int DurationMax[Items] = ...;
int Temperature[Items] = ...;
tuple triplet { int start; int end; int state; };
{ triplet } Transition = ...;

dvar interval treat[i in Items] size DurationMin[i]..DurationMax[i];

stateFunction ovenTemperature with Transition;
cumulFunction itemsInOven = sum(i in Items) pulse(treat[i], 1);

constraints {
itemsInOven <= MaxItemsInOven;
forall(i in Items)

alwaysEqual(ovenTemperature, treat[i], Temperature[i], 1, 1);
}

dvar interval maintenance ...;

constraints {
// ...
alwaysIn(ovenTemperature, maintenance, 0, 4);
}

This example models the oven problem described above (with more possible values for
state), and adds the notion of synchronization. Certain items can be processed at the
same time in the oven as they require the same temperature. There are limits, however,
on the number of items that can be in the oven at one time, and on item size.

Finally, the last constraint models a required maintenance period where oven
temperature cannot go beyond level 4.

© Copyright IBM Corporation 2009. All rights reserved.176

Lesson 9: Scheduling in OPL with CP Optimizer / Topic 5: Matters of State: Understanding State Functions

A wood cutting problem

You are now going to perform a lab that uses state constraints. The problem involves a process:
cutting different kinds of logs into wood chips.

The business problem
A wood factory machine cuts stands (processed portions of log) into chips. Each stand has
these characteristics:

• length
• diameter
• species of wood

The following restrictions apply:

• The machine can cut a limited number of stands at a time with some restriction on
the sum of the diameters that it can accept.

• The truck fleet can handle a limited number of stands at a given time.
• Stands processed simultaneously must all be of the same species.
• Each stand has a fixed delivery date and a processing status of one of:

standard•
• rush

Any delay on a rush stand will cost a penalty.

The wood cutting company needs to minimize costs per unit time, and reduce penalty costs
resulting from late deliveries of rush stands to a minimum.

What are the unknowns?
The unknowns are the completion date of the cutting of the stands. An interval variable is
associated with each of the stands. The size of an interval variable is the product of the length
of the stand and the time it takes to cut one unit of the stand's species.

What are the constraints?
The constraints are:

• At a given time, the machine can cut:
A limited number of stands•

• A limited sum of stand diameters
• Only one species.

• The trucks can carry a limited number of stands.

What is the objective?
In business terms, the objective is to minimize the combined total of cutting costs (expressed
as a function of time spent on the machine) and the cost for any penalties due to late delivery
of rushed orders.

In mathematical terms, this objective translates to minimizing the sum of:

• the product of the maximum cutting time per stand and the cost per time unit
• the product of the length of rushed stands that are late and the cost per unit of length

for being late

Go to theWood Cutting workshop and perform the steps in order.

You can perform this lab using the HTML workshop, or by following the instructions in the
workbook. The HTMLworkshop will give you direct access to OPL documentation pages that
can help you with the lab.

Examine the completed parts of the model

© Copyright IBM Corporation 2009. All rights reserved. 177

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: A wood cutting problem

Actions
• Import the project
• Modeling the processing of the stands
• Modeling the quantity constraint
• Modeling the diameter constraint
• Modeling the fleet constraint

Import the project
1. Import the

<trainingDir>\OPL63.labs\Scheduling\Wood\work\sched_woodWork project
into the OPL Projects Navigator. Leave the Copy projects into workspace box
unchecked.

2. Open the sched_wood.mod file for editing and examine it.

Modeling the processing of the stands
An interval variable is associated with each of the stands. The size of an interval variable is
the product of the length of the stand and the time it takes to cut one unit of the stand's species:

dvar interval a[s in stands] size (s.len * cutTime[s.species]);

Modeling the quantity constraint
The number of stands being processed at a time can be modeled by a cumulative expression
function. Between the start and end of the interval representing the processing of the stand,
the cumul function is increased by 1 using the pulse function. A constraint that the cumul
function never exceeds the stand capacity of the machine is added to the model:

cumulFunction standsBeingProcessed = sum (s in stands) pulse(a[s], 1);

standsBeingProcessed <= maxStandsTogether;

Modeling the diameter constraint
The total diameter of the stands being processed at a time can be modeled by a cumulative
function. Between the start and end of the interval representing the processing of the stand,
the cumul function is increased by the diameter using the pulse function. A constraint that
the cumul function never exceeds the diameter capacity of the machine is added to the model:

cumulFunction diameterBeingProcessed = sum (s in stands) pulse(a[s],
s.diameter);

diameterBeingProcessed <= maxDiameter;

Modeling the fleet constraint
The constraint on the number of trucks being used can be placed on the cumul function for
the number of stands being processed:

cumulFunction trucksBeingUsed = standsBeingProcessed;

trucksBeingUsed <= nbTrucks;

Define the one species constraint

Actions

© Copyright IBM Corporation 2009. All rights reserved.178

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: A wood cutting problem

• Declare the state function
• Write an alwaysEqual constraint

Reference
alwaysEqual

Declare the state function
In this model, the wood cutting company can profit from processing multiple stands at the
same time in the same batch, provided that certain constraints are met. One of these is that
the cuttingmachine can only process one species of wood at a time. To express this in the model,
you are first going to declare a state function called species.

• Do this now in the model file.

Write an alwaysEqual constraint
1. Write a constraint that says that the value species in each member of the tuple set

stands is equal when being processed by the cutting machine.

Use the ord keyword to order the species together, and the scheduling constraint
alwaysEqual to constrain the state function species.

2. Check your work against the file
<trainingDir>\OPL63.labs\Scheduling\Wood\solution\sched_woodSolution\sched_wood.mod.

Examine the objective function

Action
• Transform the business objective into the objective function

Transform the business objective into the objective function
The objective requires the model to minimize the sum of two calculations.

The first is the product of the maximum cutting time per stand and the cost per time unit.

• In the model, the maximum cutting time per stand is defined by a decision expression
using the dexpr OPL keyword:

dexpr int makespan =
max (s in stands) endOf(a[s]);

• The first part of the objective function calculates the product of makespan and the cost
per time unit:

minimize makespan * (costPerDay / nbPeriodsPerDay)

The second quantity to be minimized is the product of the length of rushed stands that are late
and the cost per unit of length for being late.

• To calculate the length (in feet, in this case) of stands identified as “rush” orders that
are to be delivered late, we use another decision expression, named lateFeet:

dexpr float lateFeet =
sum (s in stands : s.rush == 1) s.len * (endOf(a[s])

>s.dueDate);

• We can now complete the objective function by adding the calculation of cost of late
rushed footage. The entire objective function is:

© Copyright IBM Corporation 2009. All rights reserved. 179

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: A wood cutting problem

minimize makespan * (costPerDay / nbPeriodsPerDay)
+ costPerLateFoot * lateFeet;

Spend some time examining the solution in
<trainingDir>\OPL63.labs\Scheduling\Wood\solution\sched_woodSolution\sched_wood.mod.

Pay special attention to how the state constraint interacts with the objective.

© Copyright IBM Corporation 2009. All rights reserved.180

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: A wood cutting problem

Summary

Review
In this lesson, you learned about scheduling problems and how they are modeled,
including:

• Interval decision variables:
An interval variable has a start, an end, a size and a length, each of
which may be fixed or variable.

•

• An interval variable can be declared to be optional.
• A calendar (step function) can be associated with an interval variable.

• Sequence decision variables:
• A sequence variable takes an array of interval variables and fixes these

in a sequence.
• Such a sequence represents a total order over all the intervals in the set

that are present in the solution.
• Specialized scheduling constraints:

• No overlap constraints
• Precedence constraints
• Cumulative constraints
• Calendar constraints
• State constraints

You also learned how to work with the special tools provided by IBM ILOGCPOptimizer
in OPL for modeling detailed scheduling problems.

© Copyright IBM Corporation 2009. All rights reserved. 181

Lesson 9: Scheduling in OPL with CP Optimizer

Lesson 10: Integer and Mixed Integer
Programming

Instructor note
This lesson should last about 1 hour, including the demonstration and
practice.

Aprogram that contains only integer decision variables is called an Integer Programming
(IP) problem. In practice, problems that contain integer elements often also contain
continuous elements. Such a problem is called aMixed Integer Programming (MIP)
problem.

OPL can address both these types of problems effectively.

This lesson introduces simple Mixed Integer Programming (MIP) techniques using OPL.

© Copyright IBM Corporation 2009. All rights reserved. 183

Lesson 10: Integer and Mixed Integer Programming

IP and MIP models in OPL

Learning objective
At the end of this lesson, you will be
able to use OPL to model and solve
a simple MIP.

Key terms
• Integer Programming (IP)
• Mixed Integer Programming

(MIP)
• linear relaxation

© Copyright IBM Corporation 2009. All rights reserved.184

Lesson 10: Integer and Mixed Integer Programming / Topic 1: IP and MIP models in OPL

Practice
The telephone production problem as an IP
Take another look at the telephone production problem. The way it was solved
in your Lab, there could be a non-integer optimal solution.

Set up a new run configuration:
1. Open the project ..\OPL63.labs\Phones\work\phonesWork.
2. Select the project in the OPL Projects Navigator. Then select the File

> Copy Files to Project menu item from the menu bar to copy
..\OPL63.labs\phones\solution\phonesSolution\phones2.dat
to ..\OPL63.labs\Phones\work\phonesWork

3. Create a new run configuration (it should be named Configuration3).

Populate the run configuration and solve the model:
1. Populate Configuration3 with phones1.mod and phones2.dat.
2. Examine the data file. In this instance, available time on the painting

and assembly machines is not an integer, nor is the profit per each type
of phone.

3. Run the model using Configuration3. Leave the project open as you
are going to return to it in the practice.

The model returns a non-integer solution:

production = [299.8 851.93];

In reality, you cannot produce 299.8 desk phones and 851.93 cell phones.
Production values must be represented by integers.

For those who have taken the Learning MP for OPL training, you will
have already taken a descriptive look at this problem.

To get an integer solution, perform the following steps:
1. Select the project phonesWork in the OPL Projects Navigator. Then

Select the File > Copy Files to Projectmenu item from the menu bar
to copy.

2. Create a new run configuration (it should be named Configuration4).
3. Populate Configuration4 with the model phones_MIP.mod and the

data file phones2.dat.
4. Examine the model. Note that the data element Min and the decision

variable production have been changed from floating point to integer
variables.

5. Run the model using Configuration4.

This time, an integer solution is returned: 299 desk phones and 852 cell phones.
Examine these Output window tabs:

• Solutions
• Engine Log
• Statistics

In theEngine Log you can see that theMIP algorithm has been applied. What
else do you learn from the information contained here?

The Statistics tab includes a progress chart showing how the algorithm
progressively converged to the optimal integer solution:

© Copyright IBM Corporation 2009. All rights reserved. 185

Lesson 10: Integer and Mixed Integer Programming / Topic 1: IP and MIP models in OPL

Take a look at the other statistics. In a complex problem that requires a lot of
time to run, what can you learn from looking at this tab?

Comparing solution time
OPL gives you tools for evaluating solution times.

Steps:
1. Return to the modified project, and create another run configuration,

Configuration5.
2. Populate Configuration5with phones_MIP.mod and phones1.dat.
3. Run the model using Configuration5 and examine the Profiler tab.

Notice the total time.
4. Now run the model again, but use Configuration2.
5. Examine the Profiler tab. Notice the difference in time.

Using the data in phones1.dat produces an integer solution with both Simplex
and MIP algorithms. But the Simplex algorithm is more efficient for solving
this problem.While the time difference in this example is relatively insignificant,
in very large problems, it can make a big difference. The declaration of int
data will generally force the use of the MIP algorithm. In some cases it may be
more efficient to declare float data, even if the values to be used are integers.

In a real-world situation, for products as small as telephones, with
relatively low cost, it is probablymore efficient to just round down from
a fractional solution than to perform a MIP run. However, if you are
manufacturing large, expensive items in quantity, for example, yachts,
helicopters or construction cranes, you need an integer solution to avoid
wasting resources, time and money.

Instructor note
Feel free to use this practice as an entry to a more complete discussion
of how the students can use both statistics and profiler tabs to check

© Copyright IBM Corporation 2009. All rights reserved.186

Lesson 10: Integer and Mixed Integer Programming / Topic 1: IP and MIP models in OPL

the efficiency of their models. The tutorial suggested at the end of the
final practice is a very good way to direct students toward more
information on the progress chart without taking up class time, as it
is quite complete, and is a follow-on to the warehouse problem
presented in this lesson.

Linear relaxation
MIP algorithmsmake use of a linear relaxation of themodel during the solution process.
A linear relaxation of a MIP (or an IP), is an equivalent model, except that the integer
requirement on the decision variable has been removed so that the model becomes an
LP. A linear relaxation of a model can help:

• Prove the absence of a solution
• Search for the integer solution near a known fractional solution

You can use IBM® ILOG® Script flow control to create a linear relaxation of a model
by using the convertAllIntVarsmethod as shown below (flow control with IBM ILOG
Script is discussed in detail in another optional lesson):

main {
//converts IP/MIP to LP
thisOplModel.convertAllIntVars();
thisOplModel.generate();
cplex.solve();

writeln("Relaxed Model");
writeln("OBJECTIVE: ",cplex.getObjValue());

}

Relaxation is only available to models that use the CPLEX® engine.

© Copyright IBM Corporation 2009. All rights reserved. 187

Lesson 10: Integer and Mixed Integer Programming / Topic 1: IP and MIP models in OPL

A warehouse allocation model

Learning objective
Gain a better understanding of IP
through a practical example.

Key term
Combinatorial problem

A company is considering a number of locations for building
warehouses to supply its existing stores. Each possible warehouse
has a fixed maintenance cost and a maximum capacity specifying
how many stores it can support. Each store can be supplied by
only one warehouse and the supply cost to the store differs
according to the warehouse selected. There are 5 warehouse
locations, and 10 stores. The problem is to allocate warehouses
to stores at minimum cost.

The fixed costs for the warehouses are all identical and equal to 30. The workshop
contains a table that shows the 5 locations with their respective capacities and supply
costs.

This type of problem can be modeled as an IP.

© Copyright IBM Corporation 2009. All rights reserved.188

Lesson 10: Integer and Mixed Integer Programming / Topic 2: A warehouse allocation model

Practice
An IP solution to the warehouse problem
Perform theWarehouse location workshop

You can perform this lab using the HTML workshop, or by following the
instructions in the workbook. The HTML workshop will give you direct access
to OPL documentation pages that can help you with the lab.

Warehouse location
Problem Description
In this exercise you will model a warehouse location problem using integer
programming and Boolean decision variables.

Principles of the problem:

• A company is considering a number of locations for building warehouses
to supply its existing stores.

• Each possible warehouse has a fixed cost associated with opening the
warehouse, as well as a unique cost associated with assigning a store to
a warehouse.

• Each warehouse has a maximum capacity specifying how many stores
it can support.

• Each store can be supplied by only one warehouse.
• The decisions to be made are whether to open each warehouse or not,

and which stores to assign to each open warehouse, while minimizing
the total cost, which is the sum of the fixed opening costs and cost of
assigning each store to each warehouse.

Data:

• There are 5 warehouses and 10 stores.
• The fixed costs for the warehouses are all identical and equal to 30.
• The following table shows the 5 locations with their respective capacities

and costs of assigning each store to each warehouse.

RomeParisLondonBordeauxBonn

31241capacity

3025112420store 1

7483822728store 2

7096719774store 3

616973552store 4

483599646store 5

5967292242store 6

56597351store 7

9643137310store 8

4685633593store 9

9571556547store 10

Exercise folder
<trainingDir>\OPL63.Labs\Warehouse\work

© Copyright IBM Corporation 2009. All rights reserved. 189

Lesson 10: Integer and Mixed Integer Programming / Topic 2: A warehouse allocation model

Modeling the problem using IP

Objective
• Use IP principles and Boolean decision variables to create a model

optimizing warehouse allocation

Action
• Define constraints

References
integer programming
mixed integer-linear programming
boolean expressions

Use Boolean decision variables
• Import the warehouseWork project and examine the model file.
• The key idea in representing a warehouse-location problem as an integer

program is to use a Boolean (1–0 or true/false) decision variable for each
(warehouse, store) pair to represent whether a warehouse supplies a store:
dvar boolean Supply[Stores][Warehouses];

In other words, Supply[s][w] is 1 if warehouse w supplies store s and
zero otherwise.

• In addition, the model also associates a decision variable with each
warehouse to indicate whether the warehouse is open:
dvar boolean Open[Warehouses];

Define the objective function
The objective function

minimize
sum(w in Warehouses) FixedCost * Open[w] +
sum(w in Warehouses, s in Stores) SupplyCost[s][w] *

Supply[s][w];

expresses the goal that the model minimizes the fixed cost of the selected (i.e.
open) warehouses and the supply costs of the stores.

Define constraints
The constraints state that:

• Each store must be supplied by a warehouse
• Each store can be supplied only by an open warehouse
• No warehouse can deliver more stores than its allowed capacity

The most delicate aspect of the modeling is expressing that a warehouse can
supply a store only when it is open. This constraint can be expressed by
inequalities of the form:

forall(w in Warehouses, s in Stores)
Supply[s][w] <= Open[w];

This ensures that when warehouse w is not open, it does not supply store s. This
follows from the fact that open[w] == 0 implies supply[w][s] == 0.

© Copyright IBM Corporation 2009. All rights reserved.190

Lesson 10: Integer and Mixed Integer Programming / Topic 2: A warehouse allocation model

As an alternative, you can write:

forall(w in Warehouses)
sum(s in Stores) Supply[s][w] <= Open[w]*Capacity[w];

This formulation implies that a closed warehouse has no capacity.

• Look at the model carefully and discuss with your instructor and fellow
trainees how the model is constructed.

• Write the remaining constraints.

Define instance data
• The file warehouse.dat defines the instance data as shown in the table

in the problem definition.
• It declares the warehouses and the stores, the fixed cost of the warehouses,

and the supply cost of a store for each warehouse.
• Discuss how model and data files are constructed with your instructor

and fellow trainees.
• Run the model and examine the results.

Solution to the IP model

Solution with data declarations, decision variables, objective
function and constraints

/*******
* Data *
*******/

{string} Warehouses = ...;
int NbStores = ...;
range Stores = 0..NbStores-1;

int FixedCost = ...; // fixed cost
for opening a warehouse
int Capacity[Warehouses] = ...; // maximum number
stores assigned to each warehouse
int SupplyCost[Stores][Warehouses] = ...; // supply cost
between each store and each warehouse

/*********************
* Decision variables *
*********************/

dvar boolean Open[Warehouses]; // 1 if warehouse
is open, 0 otherwise
dvar boolean Supply[Stores][Warehouses]; // 1 if store
supplied by warehouse, 0 otherwise

/*********************
* Objective function *
*********************/

minimize
sum(w in Warehouses) FixedCost * Open[w]
+ sum(w in Warehouses , s in Stores) SupplyCost[s][w] *

Supply[s][w];

© Copyright IBM Corporation 2009. All rights reserved. 191

Lesson 10: Integer and Mixed Integer Programming / Topic 2: A warehouse allocation model

/**************
* Constraints *
**************/

subject to{

forall(s in Stores)
ctEachStoreHasOneWarehouse: sum(w in Warehouses)

Supply[s][w] == 1;

forall(w in Warehouses, s in Stores)
ctUseOpenWarehouses: Supply[s][w] <= Open[w];

forall(w in Warehouses)
ctMaxUseOfWarehouse: sum(s in Stores) Supply[s][w] <=

Capacity[w];
}

// this script is only for clearer output in the Console and
serves no computational purpose
{int} storesof[w in Warehouses] = { s | s in Stores :
Supply[s][w] == 1 };
execute {

writeln("Open=",Open);
writeln("storesof=",storesof);

}

© Copyright IBM Corporation 2009. All rights reserved.192

Lesson 10: Integer and Mixed Integer Programming / Topic 2: A warehouse allocation model

Summary

Review
In this lesson, you learned:

• Integer Programming (IP) can be used to address mathematical programming
problems that include only integer decision variables.

• Mixed Integer Programming (MIP) is most used to address mathematical
programming problems that include both integer and continuous decision
variables. Many real-world problems are MIPs

• While Linear Programming (LP) can be used when results can be fractional, IP
or MIP is often required when all or part of a result has to be expressed as an
integer, for example the number of discrete units of a product to manufacture.

• In general, IP and MIP problems require more computational power to solve
than pure LP's.

• A linear relaxation of an IP or a MIP can be used to try and construct an integer
solution if no integer solution can be found

You have also had hands-on experience inmodeling and solving IP problems using OPL.

Next steps
For a tutorial that will explore further MIP developments of this example and provide
a real-time example of how to use the progress chart, refer to the online documentation:
IDE Tutorials > Tutorials > Tutorial: Statistics and Progress Chart > The
Scalable Warehouse Example.

© Copyright IBM Corporation 2009. All rights reserved. 193

Lesson 10: Integer and Mixed Integer Programming

Lesson 11: Piecewise Linear Problems

In business, problems don't always conform to simple, regular models. Customer demand
changes with the seasons (or business cycles); availability of components can vary based
on suppliers' stock; prices are subject to all sorts of economic factors and currency
fluctuations.

These fluctuations can be nonlinear and often discontinuous. You can take them into
account using models with piecewise linear functions.

OPL provides piecewise functions to handle problems with these characteristics.

Instructor note
This lesson should last about 1 hour.

© Copyright IBM Corporation 2009. All rights reserved. 195

Lesson 11: Piecewise Linear Problems

Modeling piecewise linear functions

Learning objective
Learn how piecewise linear
functions can be modeled in OPL

Key terms
• piecewise linear function
• breakpoint
• slope

What is a piecewise linear function?
A piecewise linear function is defined as a nonlinear function that
can be represented by a sequence of discrete segments, each of
which is a linear function.

A piecewise transportation problem
If you took the Learning MP for OPL training course, you will
recall the transportation problem in which the transportation cost
between two locations o and d depends on the size of the shipment,

ship[o][d]:

• The first 1000 items have a shipping cost of 0.40 each
• For the next 2000 items (i.e. items 1001-3000) the cost is 0.20 per item
• From item 3001 on, the cost decreases to 0.10 per item.

The cost of each quantity bracket remains intact (i.e. the cost per unit changes
only for additional units, and remains unchanged for the previous quantity
bracket). Therefore, within each bracket there is a linear relationship between
cost and quantity, but at each breakpoint the rate of linear variation changes,
as shown in this diagram:

The diagram shows that the total shipping cost is evaluated by 3 different linear
functions, each determined by the quantity shipped:

• 0.40 * items when ship[o][d] <= 1000
• 0.40 * 1000 + 0.20 * (ship[o][d] - 1000)when ship[o][d] <=3000
• 0.40 * 1000 + 0.20 * 2000 + 0.10 * (ship[o][d] - 3000) otherwise

This is an example of a typical piecewise linear function.

© Copyright IBM Corporation 2009. All rights reserved.196

Lesson 11: Piecewise Linear Problems / Topic 1: Modeling piecewise linear functions

Modeling the piecewise transportation problem in OPL
OPL provides the keyword piecewise to help program this type of model. A piecewise
linear function can be specified by giving:

• A set of slopes which represent the linear variation for each linear piece
• A set of breakpoints at which the slopes change
• The value of the functions at a given point

The syntax for piecewise linear functions is:

piecewise{s1 -> b1;s2 -> b2;...sn}(<knownValue>,<valuePoint>)
<value>;

where:

• s1 is a slope that applies up to breakpoint b1
• s2 is a slope that applies up to breakpoint b2
• sn is the last slope, which applies to all cases not covered by slope/breakpoint

pairs 1..(n-1)
• <knownValue> is the value of the data element <value> that is known at point

<valuePoint>
• <value> is the data element that provides the breakpoints for the piecewise

linear function.

© Copyright IBM Corporation 2009. All rights reserved. 197

Lesson 11: Piecewise Linear Problems / Topic 1: Modeling piecewise linear functions

Practice
The transportation function is a piecewise linear function of ship[o][d].

Can you determine the values of the these aspects of the piecewise function?

• Slopes
• Breakpoints
• The value at point 0

How would you declare this function in an OPL model?

Instructor note
The values are:

• Slopes 0.4, 0.2, and 0.1
• Breakpoints 1000 and 3000
• The value 0 at point 0

It can thus be specified in a model file as:

piecewise{0.4 -> 1000;0.2 -> 3000;0.1}(0,0) ship[o][d];

By default, OPL assumes that a piecewise linear function evaluates to zero at the origin,
so that the piecewise linear function could actually be written omitting the (0,0).

This example has a fixed number of pieces, but OPL also allows the number of pieces
to be generically instantiated. The number of piecesmay then depend on the input data,
as in

piecewise(i in 1..n) {
slope[i] -> breakpoint[i];
slope[n+1];

} ship[o][d];

There may be several different generic pieces in a piecewise linear function. It
is important to stress that:

• Breakpoints and slopes in piecewise linear functions must not contain
decision variables, since these variables have no value at the current
stage of the computation.

• The breakpoints must be strictly increasing.

Example of a piecewise linear function in the objective
The piecewise linear expression:

maximize piecewise(i in 1..n)
{slope[i] -> breakpoint[i]; slope[n+1]}(0,objectiveforxequals0) x;

describes a piecewise linear function of x. The function has slopes 1, 2, and -3, breakpoints
100 and 200, and evaluates to 300 at point 0

Discontinuous piecewise linear functions
A piecewise linear function need not be continuous. A discontinuous piecewise linear
function occurs when, in the syntax of a piecewise linear function with slopes and
break points, two successive breakpoints are identical and the value associated with
the second one is considered to be a "step" instead of a continuous "slope." OPL allows
you to write discontinuous as well as continuous piecewise linear functions.

The syntax is as follows:

© Copyright IBM Corporation 2009. All rights reserved.198

Lesson 11: Piecewise Linear Problems / Topic 1: Modeling piecewise linear functions

piecewise{s1 -> b1;step1 -> b1;s2 -> b2;step2 ->
b2;...sn}(<knownValue>,<valuePoint>) <value>;

where all entities are defined as for continuous piecewise, and step1 is the difference
between the value of s2 at breakpoint b1 and s1 at b1, and so on.

For example, assume that the cost values for each possible value of unit are as shown
in the following table:

CostValues of unit

0<0

100 to 10

1510 to 20

20>20

If you graph this out, you get the following plot:

Discontinuities occur at the breakpoints of 10 and 20. In each case, each discontinuity
has a step of 5. The followingOPL declaration represents the discontinuous cost shown
in the example above:

piecewise{0->10; 5->10; 0->20; 5->20; 0} (0,10) unit;

© Copyright IBM Corporation 2009. All rights reserved. 199

Lesson 11: Piecewise Linear Problems / Topic 1: Modeling piecewise linear functions

Practice
Go to thePasta Production and Delivery lab and complete the step,Factor
in a piecewise cost change.

You can perform this lab using the HTML workshop, or by following the
instructions in the workbook. The HTML workshop will give you direct access
to OPL documentation pages that can help you with the lab.

Factor in a piecewise cost change

Objective
• Redesign the model to take a discontinuous cost change into account.

Action
• Model the cost break

References
piecewise linear programming
discontinuous piecewise linear programming (scroll down)

Problem description
Now, imagine that your pasta production facility is getting old, and when you
make more than 20 units in a batch, the machine overheats and causes the
production cost to go up by a factor of three! This not only changes the inside
production cost, it introduces a breakpoint where the price takes a sudden,
piecewise jump.

The problem, then, is to change the model to take the breakpoint and cost change
into account.

Model the cost break
Perform the following steps:

1. Import the
<trainingDir>\OPL63.labs\Pasta\PWL\work\productWork.
project into the OPL Projects Navigator

2. Since the overall cost of inside production now has to be calculated
differently than the overall cost of outside production, it is necessary to
define them separately. Write two reusable expressions that use the
decision variables insideProduction and outsideProduction to
calculate these values. Name the expressions overallInsideCost and
overallOutsideCost respectively. Hint:use the dexpr keyword for
each of the expressions, and calculate overallInsideCost using the
piecewise keyword.

3. Rewrite the objective function to minimize the sum of the two overall
costs.

4. Run the model and see how the result differs from your original model.
5. Compare your model to the one found in

<trainingDir>\OPL63.labs\Pasta\PWL\solution\productSolution.

© Copyright IBM Corporation 2009. All rights reserved.200

Lesson 11: Piecewise Linear Problems / Topic 1: Modeling piecewise linear functions

Summary

Review
In this lesson, you learned about:

Piecewise linear functions:
• A piecewise linear function is defined as a nonlinear function that can be

represented by a sequence of discrete segments, each of which is a linear function.
It can be specified by:

• A set of slopes which represent the linear variation for each linear piece
• A set of breakpoints at which the slopes change
• The value of the functions at a given point

• A piecewise linear function can be discontinuous.

You also learned how to work with the special tools provided in OPL for modeling these
types of problems.

© Copyright IBM Corporation 2009. All rights reserved. 201

Lesson 11: Piecewise Linear Problems

Lesson 12: Network Models

Your pasta has been produced, now it has to be delivered. Your example problem, like real
business problems, involves more than one set of requirements, and involves different
kinds of data and structures.

Instructor note
This lesson should last 1 hour 30 minutes, including the practices.

Delivering a product over a network of roads requires specialized modeling structures.
OPL can model a network, and, when it is advantageous, can use a specialized network
version of the simplex algorithm to solve it.

© Copyright IBM Corporation 2009. All rights reserved. 203

Lesson 12: Network Models

Product delivery: a network problem

Learning objective
Discover the particularities of a
network model and how OPL deals
with this type of structure

Key terms
• network structure
• arc
• node

The business problem
The pasta company has internal production sites, and an external
production partner with its own site. Products produced in these
diverse locations must be delivered to warehouses of the
distributor for onward delivery to customers.

• A road network links the production sites and the
warehouses (nodes).

• The company has established routes it uses (arcs), with
known costs associated.

• The company wants to know how many of each product
to ship (i.e. how much to ship from each site) over each
existing arc, in order to meet demand andminimize costs.

What are the unknowns?
• How many of each product to ship:

From each manufacturing site•
• To each warehouse

• Which arc to use for each order?

• Minimize cost
• Meet customer demand

Modeling network structures
What makes this problem different from those you have seen until now is the notion of
a node (production location or warehouse) connected by an arc (link). The nodes are
fixed, but many different arcs are possible to connect them. This kind of problem is said
to have a network structure, and OPL can use LP to solve such problems. When the
user specifies it, OPL can use specialized algorithms to solve network problems.

What is the network structure of this problem?
This problem involves planning product delivery from manufacturer to distributor in
such a way as to satisfy the objectives. The assumption remains that all produced
product will be delivered, and that production exactly equals demand.

This network structure is composed of 2 layers:

• Production - includes 2 inside and 1 outside production locations. Each production
location can manufacture and distribute all of the products.

• Distribution - 7 warehouses

The elements to be manipulated are:

• Internal production locations - 2 nodes belonging to the pasta company
• External production locations - 1 node belonging to the outside suppliers
• Warehouses - fixed locations where goods are sent for distribution to customers.
• Arcs - each arc is a trip for a truck between a production location and a

warehouse, i.e. links
• Cost per arc

© Copyright IBM Corporation 2009. All rights reserved.204

Lesson 12: Network Models / Topic 1: Product delivery: a network problem

What are the decision variables?

Representation in OPL
Decision
variable

dvar float
insideFlow[Products][Locations][Warehouses]

Total amount of
product shipped
from internal
production sites to
warehouses.

dvar float outsideFlow[Products][Warehouses]Total amount of
product shipped
from external
production site to
warehouses.

What are the data elements?

Representation in OPLData element

{string} LocationsProduction locations

{string} WarehousesDistributor warehouses

int internalArc[Locations][Warehouses]Table of arcs and costs from
internal sites to
warehouses

int externalArc [Warehouses]Table of arcs and costs from
external sites to
warehouses

What are the objectives?
To minimize the shipping costs and know how much of each product to ship:

• from internal sites to Warehouses using arcs internalProduction
• from the external site to Warehouses using arcs externalProduction

Note that because there is only one external production site, we do not actually
need to define the origin node in the external arcs.

An instance of the problem can be represented as a diagram:

© Copyright IBM Corporation 2009. All rights reserved. 205

Lesson 12: Network Models / Topic 1: Product delivery: a network problem

In this diagram:

Is represented by...
An instance of the

entity...

A node on the Production side, for example, L2Locations

A node on the Distribution side, for example,W2Warehouses

A path between an Internal Production site and a
Warehouse, for example, L1 - W4

internalArc

A path between an External Production site and a
Warehouse, for example,W7

externalArc

What are the constraints?
In order to represent product deliveries to the warehouses, we need to add some
constraints to:

• specify that deliveries can only occur over previously approved arcs (i.e. arcs
with non-zero cost)

• specify that all internally manufactured product must be delivered using one
or more internal arcs

• specify that all externally manufactured product must be delivered using one
or more external arcs

In addition to these constraints, a side constraint reflects a contractual limit on the
number of items delivered from the external sources.

© Copyright IBM Corporation 2009. All rights reserved.206

Lesson 12: Network Models / Topic 1: Product delivery: a network problem

Practice
Go to the Pasta Production and Delivery workshop and read the Product
Delivery step that mirrors the process explained in this lesson.

You can perform this lab using the HTML workshop, or by following the
instructions in the workbook. The HTML workshop will give you direct access
to OPL documentation pages that can help you with the lab.

Review the problem

Problem description
Once the pasta has been produced, it has to be delivered. The pasta company
has internal production sites, and an external production partner with its own
site.

• Products produced in these diverse locations must be delivered to 7
warehouses of the distributor for onward delivery to customers.

• A road network links the production sites and the warehouses. The
company has established routes it uses, with known costs associated.

• The company wants to know how many of each product to ship (i.e. how
much to ship from each site) over each existing arc, in order to:

• meet demand
• minimize costs

This page describes the problem, gives you the data, and lists the steps you will
perform next to arrive at the solution. Read through this page carefully, then go
on to the next step, Add a network to the project.

Requirements:

• All produced product will be delivered
• Production exactly equals demand
• Only routes which have been approved can be used for shipping
• Any of the products could potentially be shipped on an approved route.
• There is a contractual limit on the amount of outside delivery of any one

product to any one warehouse.

Problem data
In addition to the production data you have already entered into the model, you
need the following information:

• There are 2 production locations, designated L1 and L2.
• There are 7 warehouses, designated W1 - W7.
• The maximum number of an outsourced product to be shipped to any

one warehouse is 100.
• Approved arcs are shown in the following table:

Modeling the problem
Note that because products are nowmanufactured at multiple sites and shipped
to multiple warehouses, most of the model data and decision variables will now
be specific to either a production location or a warehouse. For example, product
demand is now warehouse-specific and resource availability is now

© Copyright IBM Corporation 2009. All rights reserved. 207

Lesson 12: Network Models / Topic 1: Product delivery: a network problem

location-specific. You will see in the updated work model in the workshop that
follows, that we have used tuples to incorporate the new location-specific format
of the data.

Steps to the solution
• Add the distribution side of the network to the model - declare:

the production locations•
• the warehouses
• the approved arcs with their shipping costs (unapproved arcs

have a shipping cost of 0)
• Declare other data and decision variables:

• The maximum outside delivery of any product to any warehouse
• The amount of internally produced product to deliver from each

location to each warehouse
• The amount of externally produced product to deliver to each

warehouse
• Modify the objective function so that it minimizes shipping as well as

production costs
• Create new constraints that require:

• Only approved shipping routes can be used (i.e. those that have
a non-zero cost assigned to them)

• For each product, the total production at a particular location is
equal to the sum of deliveries across all valid routes originating
at that location

Modeling the arcs
The representation of the arcs in this model is in two arrays that each represent
a table of values, indexed by Locations and/or Warehouses.

Here is the array for the internal arcs:

internalArc = #[
L1 : [2 , 0 , 2 , 1 , 0 , 0 , 3]
L2 : [3 , 2 , 0 , 0 , 2 , 1 , 2]

]#;

Each table entry indicates an arc from a production site to a warehouse.

• Any non-zero value represents the cost of shipping on the arc.
• A value of 0 indicates that the arc is not approved for shipping, or that

it does not exist.

Now perform the Add the network to the project step. Start with the
substeps,Add the distribution side of the network andDeclare data and
decision variables.

Add the distribution side of the network
1. Import the deliveryWork project into the OPL Projects Navigator. It

is identical to the productSolution project that you worked on earlier,
with indications of where to add new lines.

2. In the model file, the warehouses and production locations are already
declared with the code,
{string} Warehouses = ...;

{string} Locations = ...;

3. Declare the arcs:
• between internal sources and warehouses
• between external sources and warehouses

© Copyright IBM Corporation 2009. All rights reserved.208

Lesson 12: Network Models / Topic 1: Product delivery: a network problem

Hint: for each internal source, declare an array indexed by Locations
and Warehouses and name this array internalArc. For each external
source, declare an array indexed by Warehouses and name this array
externalArc.

4. In the data file, the 7 warehouses and 2 internal production locations
are already initialized.

5. Initialize the arcs with their cost data using the table in the previous
panel. Use named initialization for clarity. Arcs not listed in the table
should have values of 0, as shown below.

internalArc = #[
L1 : [2 , 0 , 2 , 1 , 0 , 0 , 3]
L2 : [3 , 2 , 0 , 0 , 2 , 1 , 2]

]#;
externalArc = [4 , 0 , 3 , 2 , 4 , 3 , 0];

Declare data and decision variables
Declare the following data:

• Maximum allowable outsourced product to be shipped to any warehouse.
Name it maxOutsideFlow.

Declare 2 new decision variables:

• The amount of each internal product to deliver from each location to
each warehouse. Name it insideFlow

• The amount of each external product to deliver to each warehouse. Name
it outsideFlow

For the external product, add a limitation that prevents this delivery
from exceeding maxOutsideFlow.

In the data file, initialize maxOutsideFlow with the values given in the
previous “Product delivery” step.

Modeling the objective
For the objective function, the outsideCost and insideCost data are now
represented by the following two tuples:

tuple outsideCostData {
key string p;
float oc;

}
{outsideCostData} outsideCost with p in Products = ...;

tuple insideCostData
{

key string p;
key string l;
float ic;

}
{insideCostData} insideCost with p in Products, l in Locations
= ...;

The production part of the objective function remains to minimize
manufacturing costs, except that these costs are now specific to each production
location:

© Copyright IBM Corporation 2009. All rights reserved. 209

Lesson 12: Network Models / Topic 1: Product delivery: a network problem

minimize
sum(<p,l,ic> in insideCost)ic * insideProduction[p][l]

+ sum(<p,oc> in outsideCost)oc * outsideProduction[p])

Extra lines are added to minimize shipping costs:

+ sum(p in Products, l in Locations, w in
Warehouses)(internalArc[l][w] * insideFlow[p][l][w])

+ sum(p in Products, w in Warehouses)(externalArc[w] *
outsideFlow[p][w]);

Now return to the workshop and perform the substeps, Modify the objective
function and Create new constraints.

You can perform this lab using the HTML workshop, or by following the
instructions in the workbook. The HTML workshop will give you direct access
to OPL documentation pages that can help you with the lab.

Modify the objective function
The objective function alreadyminimizes production costs. It needs to also include
an expression that takes into account the following:

• The different costs associated with each authorized arc (externalArc
or internalArc)

• The total costs for both inside and outside deliveries
(insideFlow[Locations][Warehouses] and
outsideFlow[Warehouses])

What needs to be minimized is the total of the shipping costs for all the arcs to
be used. The total shipping cost of the arcs for a given product can be expressed
as the number of items to be shipped on an arc multiplied by the cost per arc
(per item). Write an expression that defines this for:

• Inside production, indexed by product, location and warehouse
• Outside production, indexed by product and warehouse

Create new constraints
Constraints limiting the arcs:

The model uses the same array to indicate the cost of an arc, or to indicate that
the arc is not authorized or does not exist. A non zero value gives the cost of
shipping an item on the arc. A zero value indicates that the arc cannot be used.
You must write constraints that test for the zero value and prevent such arcs
from being assigned. Hint: the decision variables insideFlow and
outsideFlow represent the number of items to be shipped on an arc. A 0 value
assigned to one of these variables means the arc is unused.

Constraints forcing shipment of all product:

One of the requirements is that production equals demand, and that all product
be shipped. Write constraints that require that the number of products produced
be equal to the number of products shipped, for both inside locations as well as
the external site.

Name these constraints insideBalance and outsideBalance.

The solution is found in
<trainingDir>\OPL63.labs\Pasta\Network\solution\deliverySolution.
Compare your model with it.

When it is advantageous to do so, the user can specify that OPL use the
Network Simplex Algorithm to solve problems with a network structure

© Copyright IBM Corporation 2009. All rights reserved.210

Lesson 12: Network Models / Topic 1: Product delivery: a network problem

faster. The different optimization algorithms are discussed in more detail later
in this training.

Try using the network algorithm in the workshop. Perform the substep, Use
the network algorithm.

You can perform this lab using the HTML workshop, or by following the
instructions in the workbook. The HTML workshop will give you direct access
to OPL documentation pages that can help you with the lab.

Use the network algorithm
As mentioned earlier, OPL has specialized network algorithms that can be used
when it is advantageous to do so. This problem is an LP problem but the network
you just added gives it a network structure, too. To see how the CPLEX network
algorithm solves this problem, do the following:

1. Use your model, or the one in
<trainingDir>\OPL63.labs\Pasta\Network\solution\deliveryWork.
It should now be open in the IDE.

2. Run the model and examine the different tabs in the Output window.
3. Double click the settings file, delivery.ops in the project window to

open it in the workspace.
4. SelectMathematical Programming >General and set theAlgorithm

for continuous problems to Network simplex.
5. Run the model again, and examine the Engine Log output tab. Notice

the difference in the information displayed.
6. Examine the other output tabs, and compare them to running the problem

with the algorithm set to Automatic.

You will note that the solution is identical, and no particular advantage is gained
by using the network algorithm compared to the automatically chosen simplex
algorithm. You can force use of the network algorithm, if you wish, using the
procedure you just completed.

© Copyright IBM Corporation 2009. All rights reserved. 211

Lesson 12: Network Models / Topic 1: Product delivery: a network problem

Practice
A further refinement of the model is possible by converting its easy-to-read
matrix into more efficient sparse data.

Continue in the Pasta Production and Delivery workshop and perform the
Make the model sparse step

You can perform this lab using the HTML workshop, or by following the
instructions in the workbook. The HTML workshop will give you direct access
to OPL documentation pages that can help you with the lab.

Instructor note
This lab goes with the material on sparsity and slicing in lesson 3. It
is placed here because it requires the network lesson. This will be
corrected in a future edition of this training.

Make the model sparse

Objective
• Redefine the model to take advantage of sparse data structures.

Actions
• Create the "internalLinkData" and “externalLinkData” tuple
• Revise the objective function
• Clean up the constraints
• Initialize the arcs
• Test the model

Reference
sparsity

Problem description
The pasta company has met with a certain level of success, and wants to expand.
Everyone in the company is happy except the OR expert, who is going to have to
expand themodel you have been experimenting with. If the network of production
and distribution becomes too big, it may take a very long time to calculate the
best mix of production and transportation to keep costs down and guarantee the
continued success of the company. When the first mention of expansion is raised
in a company meeting, our OR expert sets out trying to find a way to make the
model more efficient so it won't slow down as more sites are added.

A look at the data file in the deliveryWork project you worked on earlier, shows
that the array of arcs contains several zeros:

internalArc = #[
L1 : [2 , 0 , 2 , 1 , 0 , 0 , 3]
L2 : [3 , 2 , 0 , 0 , 2 , 1 , 2]

]#;
externalArc = [4 , 0 , 3 , 2 , 4 , 3 , 0];

A sparse version of this model would free up memory used to hold zero values
that are not used in the optimization calculation. The OR specialist decides to
convert these arrays into sparse arrays, to make room for new sites and a larger
distribution network.

© Copyright IBM Corporation 2009. All rights reserved.212

Lesson 12: Network Models / Topic 1: Product delivery: a network problem

Exercise folder
<trainingDir>\OPL63.Labs\Pasta\Sparsity\work

Create the "internalLinkData" and “externalLinkData” tuples
1. Import the SparseDeliveryWork project into the OPL Projects

Navigator
2. Declare a new tuple named "internalLinkData" containing the following

data:
• string location;
• string warehouse;
• float cost;

3. Declare a new tuple named “externalLinkData” containing the following
data:

• string warehouse;
• float cost;

4. Declare the arc decision variables (internalArc and externalArc),
making sure that any instance includes the location and/or
warehouse structures from the internalLinkData and
externalLinkData tuples.

Hint: Use the with keyword.

Revise the objective function
The objective function now needs to be changed so that it works with the new
data structures.

• The first set of expressions in the objective function do not need
modification, as they refer to structures that have not changed:

sum(<p,l,ic> in insideCost) ic * insideProduction[p][l]

+ sum(<p,oc> in outsideCost)(oc *
outsideProduction[p])

• The next expression depends, in the existingmodel, on the array structures
internalArc and externalArc as they were originally declared, with
zero placeholders where no arc is authorized. You need to change this to
take into account the sparse structure you have just declared.

Hint: The cost summation should now be over the arc sets, as opposed
to over the locations and/or warehouses.

Clean up the constraints
In the current model, the existing constraints resourceAvailability and
demandFulfillment remain unchanged.Modify the other constraints as follows

• Rewrite the constraints insideBalance and outsideBalance to take
the new definition of decision variables insideFlow and outsideFlow
into account.

• The test for zero values in the arcs (two unnamed constraints) is no longer
necessary, as the sparse structure you've created only initializes valid
arcs. These constraints are now handled intrinsically in the data structure
itself. Remove them.

Initialize the arcs

© Copyright IBM Corporation 2009. All rights reserved. 213

Lesson 12: Network Models / Topic 1: Product delivery: a network problem

Since the arcs are now declared with only their significant elements, they must
be initialized in a different manner. You are going to enter information in the
data file to initialize the arcs without any zeros. Only existing arcs will be taken
into account by the model, saving memory and calculation time.

• The structures internalArc and externalArc are declared via the
with keyword as instances of the internalLinkData and
externalLinkData tuples which contain non-zero values for cost .
It is unnecessary to test for cost, since zero cost means the arc does not
exist. In the data file, initialize these structures with sets of data that
define an arc with these three values. For example,

internalArc =
{<"L1", "W1", 2>,
<"L1", "W3", 2>,...etc.

• Continue to declare all the arcs, per the data table in the Product
delivery panel.

This type of data structure allows OPL to take advantage of both
sparse data structures (using tuples) and slicing.

Test the model
1. In the IDE, load your working file for this lab, import or the solution

file,
<trainingDir>\OPL63.Labs\Pasta\Sparsity\solution\SparseDeliverySolution.

2. Also load the file
<trainingDir>\OPL63.Labs\Pasta\Network\solution\deliverySolution.

3. Run the deliverySolution project. Examine the following items in
the Output window:

• In the Statistics tab, explore all the information, especially the
number of non-zero coefficients and constraints.

• In the Profiler tab, the total time.
4. Run the SparseDeliverySolution project.
5. Make the same observations as for the deliverySolution project.

You will note that the sparse model reduces the number of non-zero coefficients
from 168 to 105, thanks to the sparse arrays and slicing. The number of
constraints is reduced from 55 to 34. The total time will be determined in part
by your machine, but you may see a difference that can become significant in a
very large model with a huge array and many zero values.

© Copyright IBM Corporation 2009. All rights reserved.214

Lesson 12: Network Models / Topic 1: Product delivery: a network problem

Practice
Scalability and Sparsity
Up to this point, the network model has remained small. In a real business
situation, however, the network can quickly become very large, and performance
issues can arise when modeling. This lab presents a much larger version of the
original network problem, and then shows you how using sparse data in the
model saves time and memory.

Once again, in the Pasta Production and Delivery workshop. Perform the
Grow the mode step

You can perform this lab using the HTML workshop, or by following the
instructions in the workbook. The HTML workshop will give you direct access
to OPL documentation pages that can help you with the lab.

Instructor note
This lab is optional, if you want to explore scalability and go into
greater depth about sparsity with your students.

Grow the model

Objective
• Observe how a very large model benefits from sparsity and slicing

techniques

Actions
• Examine and run the enlarged model
• Examine and run the sparse version of the model

Reference
sparsity

Problem description
The worst nightmares of our OR specialist have come true. Not only has the
company grown, it has grown exponentially, and now has to deliver products to
a network of 6 production locations and 40 000 warehouses!

Exercise folder
<trainingDir>\OPL63.labs\Pasta\Bigger

Examine and run the enlarged model
• Import the project bigger and double click bigger.dat to load it into

the editing area.
• Scroll down the data file until you come to the entries for internalArc

and externalArc.

You can see that the model has been artificially enlarged for this
workshop to include 6 production locations 40 000warehouses. Normally,
large amounts of data like this will be imported from a database or
spreadsheet. This subject is treated in another workshop.

• Run themodel. When it finishes, examine the information in the different
output tabs. Pay particular attention to the Profiler tab.

© Copyright IBM Corporation 2009. All rights reserved. 215

Lesson 12: Network Models / Topic 1: Product delivery: a network problem

• Use the Problem Browser window to visualize the properties of all the
items in the model by category, and to visualize the results more clearly
than is shown in the Solutions output tab.

• Now examine the model file. Note that, even though it uses the same type
of tuple structure as the sparseDelivery.mod file does, the model runs
very slowly. Take a close look at the elements of this model.

Examine and run the sparse version of the model
• Now load the sparse version of the model, thesparseBigger project. Do

not close the bigger project.
• Run the model and compare the statistics in the output tabs, especially

the Profiler tab, with the results from running bigger. It should be
obvious that this version of the model runs much faster.

• Examine the model and data files for the differences from bigger.
• Discuss the effects of the changes in the model with your instructor. Use

theProblemBrowserwindow to visualize the properties of all the items
in the model by category, and to visualize the results more clearly than
is shown in the Solutions output tab.

© Copyright IBM Corporation 2009. All rights reserved.216

Lesson 12: Network Models / Topic 1: Product delivery: a network problem

Summary

Review
Delivering a product over a network of roads is an example of a type of model that
requires specialized modeling structures. OPL can model a network, and, when it is
advantageous, can use a specialized network version of the simplex algorithm to solve
it.

The determining characteristic of network models is that they are comprised of nodes
and arcs.

You have explored how to model a network structure in OPL using a simple
transportation network example.

You have also seen how sparse data representation can be important in networkmodels,
and especially when the scale of the model increases dramatically.

Characteristics of network structures:
• Network models are
• How to model a network structure in OPL
• OPL provides a Network Simplex Algorithm that can be invoked when necessary

© Copyright IBM Corporation 2009. All rights reserved. 217

Lesson 12: Network Models

Lesson 13: Portfolio Optimization with Quadratic
Programming

Linear programming deals with a limited but useful subset of mathematical programming.
Integer programming, mixed integer programming and piecewise linear programming all
derive from linear programming (LP), and OPL provides efficient algorithms to handle all
of these. Some problems, however, require the use of quadratic expressions. Stock
portfolio optimization represents a common type of quadratic problem.

Instructor note
This lesson should last about 1 hour.

This lesson introduces OPL's support for Quadratic Programming (QP) using a portfolio
management example.

In OPL, you can use simple quadratic programs or quadratically constrained programs,
in combination with continuous, integer, or mixed integer elements.

© Copyright IBM Corporation 2009. All rights reserved. 219

Lesson 13: Portfolio Optimization with Quadratic Programming

Quadratic programming and OPL

Learning objective
Learn how OPL works with
quadratic and quadratically
constrained models

Key terms
• Simple Quadratic Programming
• Quadratically Constrained

Programming

Linear vs. quadratic
A linear optimization program contains a feasible region that is
represented, geometrically, by a space bounded by straight lines.
A quadratic optimization program, on the other hand, will have
its feasible region bounded by at least one curved line or
surface, as shown in the following comparison:

OPL supports different types of quadratic programming, including:

• Simple QP
• Quadratically-constrained programming (QCP)
• Mixed-integer quadratic programming (MIQP)
• Mixed-integer quadratically-constrained programming (MIQCP)

The following diagram shows the characteristics of each type:

© Copyright IBM Corporation 2009. All rights reserved.220

Lesson 13: Portfolio Optimization with Quadratic Programming / Topic 1: Quadratic programming and OPL

Form of a QP problem
Conventionally, a quadratic program is formulated this way:

As in other problem formulations, lb indicates lower bounds and ub upper bounds. The
following example shows a QP model:

dvar float x[0..2] in 0..40;

maximize
x[0] + 2 * x[1] + 3 * x[2]
- 0.5 * (33*x[0]*x[0] + 22*x[1]*x[1] +

11*x[2]*x[2] - 12*x[0]*x[1] -
23*x[1]*x[2]);

subject to {
ct1: - x[0] + x[1] + x[2] <= 20;
ct2: x[0] - 3 * x[1] + x[2] <= 30;
}

© Copyright IBM Corporation 2009. All rights reserved. 221

Lesson 13: Portfolio Optimization with Quadratic Programming / Topic 1: Quadratic programming and OPL

The addition of the quadratic constraint ct3 in the version that follows turns this program
into a QCP:

dvar float x[0..2] in 0..40;

maximize
x[0] + 2 * x[1] + 3 * x[2]
- 0.5 * (33*x[0]*x[0] + 22*x[1]*x[1] +

11*x[2]*x[2] - 12*x[0]*x[1] -
23*x[1]*x[2]);

subject to {
ct1: - x[0] + x[1] + x[2] <= 20;
ct2: x[0] - 3 * x[1] + x[2] <= 30;
ct3: x[0]*x[0] + x[1]*x[1] + x[2]*x[2] <= 1.0;

}

OPL can only solve convex quadratic functions.

© Copyright IBM Corporation 2009. All rights reserved.222

Lesson 13: Portfolio Optimization with Quadratic Programming / Topic 1: Quadratic programming and OPL

Practice
Go to the workshop, and perform the Portfolio Optimization problem.

You can perform this lab using the HTML workshop, or by following the
instructions in the workbook. The HTML workshop will give you direct access
to OPL documentation pages that can help you with the lab.

Portfolio optimization
Problem Description
This is a quadratic programming exercise.

Principles of the problem:

• In order to mitigate risk while ensuring a reasonable level of return,
investors purchase a variety of securities and combine these into an
investment portfolio. Any given security has an expected return and an
associated level of risk (or variance). There is also a tendency for securities
to covary, i.e. to change together with some classes of securities (positive
covariance), and in the opposite direction of other classes of securities
(negative covariance).

• To optimize a portfolio in terms of risk and return, an investor will
evaluate the following:

• Sum of expected returns of the securities
• Total variances of the securities
• Covariances of the securities

• A portfolio that contains a large number of positively covariant securities
is more risky (and potentially more rewarding) than one that contains
a mix of positively and negatively covariant securities.

What to model:

• Choose securities for the portfolio to improve its return and decrease its
volatility.

As the securities covary with one another, selecting the right mix
of stocks can change or even reduce the volatility of the portfolio
with the same expected return.

• At a given expected rate of return, there is one portfolio which has the
lowest risk.

• The problem, then, is to write a model that finds the mix of securities
that provides the lowest risk for a pre-selected rate of return.

A quadratic function
• If you plot each lowest-risk portfolio for each expected rate of return, you

will observe that the result is a convex graph, called the efficient frontier.
• The risk-return characteristics of a portfolio change in a non-linear

fashion, and so, quadratic expressions are needed to model them.

Exercise folder
<trainingDir>\OPL63.labs\Portfolio\work

Write objective and constraints

Objective
• Use QP principles to create a portfolio optimization model

© Copyright IBM Corporation 2009. All rights reserved. 223

Lesson 13: Portfolio Optimization with Quadratic Programming / Topic 1: Quadratic programming and OPL

Actions
• Model the problem using QP
• Define objective and constraints
• Use a logical constraint to limit diversity

Reference
quadratic programming

Model the problem using QP
• Import the portfolioWork project and examine the portfolio.mod

file.
• In this model, most of the problem is already defined. It is up to you to

write the objective and constraints.
• The data elements are:

{string} Investments = ...;
float Return[Investments] = ...;
float Covariance[Investments][Investments] = ...;
float Wealth = ...;
float goalReturn = ...;
range float FloatRange = 0.0..Wealth;

• The decision variables are:

dvar float allocation[Investments] in FloatRange;

Define objective and constraints
• The objective is to minimize the portfolio risk (variance).

The covariance of returns of stocks i and j is defined as the allocation
of the portfolio to stock i times the allocation of the portfolio to stock j
times the covariance between i and j.

• Write the constraints
• Allocate All Wealth
• Meet Total Return Minimum

Return is defined as the sum of the allocation of the portfolio to
stock i times the expected return of stock i.

• Run your solution and debug it if necessary.

Use a logical constraint to limit diversity
If you run the solution file
<trainingDir>\OPL63.labs\Portfolio\solution\portfolioSolution,
you will note that every possible security has an allocation assigned to it. In
many cases, this type of diversity of investment is desirable, but some investors'
objectives may include a limit on the number of different stocks in their portfolio.

To do this, it might seem logical to simply use a linear constraint: count the
number of allocations (using the card function) and ensure that this number
is always greater than or equal to a data element we set as the diversity limit
(call it maxSecurities). However, card only works over sets, and allocations
is a decision variable, so another way has to be found, using a logical constraint.

1. Copy the portfolioSolution project and paste it
as<trainingDir>\OPL63.labs\Portfolio\work\portfolioLimitedWork

© Copyright IBM Corporation 2009. All rights reserved.224

Lesson 13: Portfolio Optimization with Quadratic Programming / Topic 1: Quadratic programming and OPL

You must do this from inside the OPL Projects Navigator. Do
not attempt to copy and paste the project directory in the file
system, you will not be able to import the copy.

2. Add an integer data declaration to create the data element
maxSecurities. This can be initialized internally in the model or from
the .dat file, as you wish. Set its value to 5.

3. Define a logical constraint that says that the number of non-zero
allocations must be equal to or less than maxSecurities.

To set the maximum for non-zero applications equal to
maxSecurities, use a formula that tests for the number of
allocations set to 0, and constrains the model to limit that
number to be at least equal to or greater than the difference
between the total number of securities under consideration, and
maxSecurities (Remember, strict inequalities are not permitted
in OPL.).

4. Run your solution and debug it if necessary.

A different logical constraint: investment percentage
As already pointed out, investors' objectives can be very different, so our model
needs to be flexible enough to be reused with a variety of investor needs. Simply
by changing our logical constraint, for example, we can adjust the model to
require that any investment represent, at minimum, 6% of the overall portfolio
value.

1. Copy the portfolioLimitedWork project and paste it
as<trainingDir>\OPL63.labs\Portfolio\work\portfolioLimited2Work

You must do this from inside the OPL Projects Navigator. Do
not attempt to copy and paste the project directory in the file
system, you will not be able to import the copy.

2. Replace the integer data declaration maxSecurities.with a float value
called minAllocation. Initialize this value from the .dat file as 0.6.

3. Replace the logical constraint maxStock with one called
minInvestment. This time, it must require that any investment, at
minimum,must be greater than or equal to the value of minAllocation.

4. Run your solution and debug it if necessary.
5. Run the project and compare the results with the results from the

portfolioSolution project.
6. How many allocations are there? Try changing the value of

minAllocation and running the problem again. Compare the different
results

Solutions

Actions
• Define objective and constraints
• Use a logical constraint to limit diversity

Define objective and constraints
The solution file can be found in
<trainingDir>\OPL63.labs\Portfolio\solution\portfolioSolution.

/*****************************
* Objective and constraints *

© Copyright IBM Corporation 2009. All rights reserved. 225

Lesson 13: Portfolio Optimization with Quadratic Programming / Topic 1: Quadratic programming and OPL

*****************************/

minimize
(sum(i,j in Investments)

Covariance[i][j]*allocation[i]*allocation[j]);

subject to {
// sum of allocations equals amount to be invested
allocate: (sum (i in Investments) (allocation[i])) ==

Wealth;

// achieve a minimum return on investment
minReturn: (sum(i in Investments) Return[i]*allocation[i])

>= goalReturn;

Use a logical constraint to limit diversity
The solution file can be found in
<trainingDir>\OPL63.labs\Portfolio\solution\portfolioLimitedSolution.
Note the additional declaration of the maxSecurities variable and the
maxStock logical constraint.

/*******
* Data *
*******/

{string} Investments = ...;
float Return[Investments] = ...;
float Covariance[Investments][Investments] = ...;
float Wealth = ...;
float goalReturn = ...;

// Variable to set the maximum number of securities in the
portfolio
int maxSecurities = ...;

range float FloatRange = 0.0..Wealth;

/**********************
* Decision variables *
**********************/

dvar float allocation[Investments] in FloatRange; //
Investment Level

/**************************************
* Objective function and constraints *
**************************************/

minimize
(sum(i,j in Investments)

Covariance[i][j]*allocation[i]*allocation[j]);

subject to {
// sum of allocations equals amount to be invested
allocate: (sum (i in Investments) (allocation[i])) ==

Wealth;

© Copyright IBM Corporation 2009. All rights reserved.226

Lesson 13: Portfolio Optimization with Quadratic Programming / Topic 1: Quadratic programming and OPL

// achieve a minimum return on investment
minReturn: (sum(i in Investments) Return[i]*allocation[i])

>= goalReturn;

// use a logical constraint to limit the number of
different securities we can use

maxStock: sum(i in Investments)
(allocation[i]==0)>=card(Investments)-maxSecurities;
}

• Run the project and compare the results with the results from the
portfolioSolution project.

• How many allocations are there?
• Try changing the value of maxSecurities and running the problem

again. Compare the different results.

A different logical constraint: investment percentage
The solution file can be found in
<trainingDir>\OPL63.labs\Portfolio\solution\portfolioLimited2Solution.
Note the additional declaration of minAllocation and the minInvestment
constraint.

/*******
* Data *
*******/

{string} Investments = ...;
float Return[Investments] = ...;
float Covariance[Investments][Investments] = ...;
float Wealth = ...;
float goalReturn = ...;

// data to set the minimum allocation percentage
float minAllocation=...;

range float FloatRange = 0.0..Wealth;

/**********************
* Decision variables *
**********************/

dvar float allocation[Investments] in FloatRange; //
Investment Level

/**************************************
* Objective function and constraints *
**************************************/

minimize
(sum(i,j in Investments)

Covariance[i][j]*allocation[i]*allocation[j]);

subject to {
// sum of allocations equals amount to be invested
allocate: (sum (i in Investments) (allocation[i])) ==

Wealth;

© Copyright IBM Corporation 2009. All rights reserved. 227

Lesson 13: Portfolio Optimization with Quadratic Programming / Topic 1: Quadratic programming and OPL

// achieve a minimum return on investment
minReturn: (sum(i in Investments) Return[i]*allocation[i])

>= goalReturn;

// use a logical constraint to require that any investment
represent, at minimum, 6% of the total portfolio value
minInvestment: forall(i in Investments)

(allocation[i]!=0)=>(allocation[i]>=minAllocation*Wealth);

}

• Run the project and compare the results with the results from
portfolioSolution.

• How many allocations are there? Try changing the value of
minAllocation and running the problem again. Compare the different
results

© Copyright IBM Corporation 2009. All rights reserved.228

Lesson 13: Portfolio Optimization with Quadratic Programming / Topic 1: Quadratic programming and OPL

Summary

Review
In this lesson, you learned:

• Some processes that you want to optimize (for example, stock portfolio
management or chemical interactions) cannot be expressed by linear functions.
These require quadratic functions to be modeled.

• OPL supports different types of quadratic programming:
• Simple QP
• Quadratically-constrained programming (QCP)
• Mixed-integer quadratic programming (MIQP)
• Mixed-integer quadratically-constrained programming (MIQCP)

You have also had hands-on experience writing a model that uses these techniques to
optimize a portfolio of investments.

© Copyright IBM Corporation 2009. All rights reserved. 229

Lesson 13: Portfolio Optimization with Quadratic Programming

Lesson 14: From Model to Application - The ODM
Connection

OPL is one of the tools that constitutes the IBM® ILOG® Optimization Suite, a tightly
integrated decision-support system that provides a complete solution for the development
and deployment of optimization-based planning and scheduling applications.

IBM ILOG Optimization Decision Manager (ODM) works together with OPL to provide
an environment for prototyping and development of end-user applications

Instructor note
This lesson is optional. If performed, it should last about 2 hours,
including the practices. It is not intended to train the students how to
use ODM nor is it a complete course in application development. Its
primary purpose is to introduce the OPL-ODM connection and
demonstrate the synergy of using these two tools together.

In this lesson, you will learn:

• How ODM functions as a natural extension of OPL
• How to generate an application from your model quickly and easily
• How to customize an application so that business users have easy access to key

information

This lesson gives only a quick overview of the power and potential of OPL-ODM integration.
For more information, contact your IBM representative.

© Copyright IBM Corporation 2009. All rights reserved. 231

Lesson 14: From Model to Application - The ODM Connection

What is an ODM application?

Learning objective
Understand how ODM generates
an interactive end-user application
from an OPL model

Key terms
• Optimization Decision Manager

(ODM)
• goal
• requirement
• scenario
• "what-if" analysis

About IBM ILOG ODM
You can generate standalone applications based on OPL models
in less than a minute, using IBM ILOG Optimization Decision
Manager (ODM). ODM is both a tool for application development
and a runtime environment. It puts all the power of OPL models
in the hands of business users and other non specialists whomust
make decisions based on your models.

When both OPL and ODM are installed, you can use OPL to
generate and customize applications that permit business decision
makers to create different scenarios using the same model. This
allows users to:

• Perform 'what if' analysis on optimization solutions -
generating decision scenarios by changing input data,
requirements, cost and yield assumptions, goals, and
business rules

• Easily compare these decision scenarios
• Use ODM's built-in charting functions to visualize and

analyze input and solution data
• Export the decision scenario result sets to Excel for

printing and further analysis

About IBM ILOG ODM applications
An application generated in IBM ILOG Optimization Decision Manager (ODM) is a
representation of an OPL model that is quickly, easily, and intuitively accessible to
business users. It does this in two ways:

• It represents the OPLmodel in terms of necessary input data, results, and goals,
in a language that is familiar to business users.

• It provides the business user with easy access to the above-mentioned data, and
allows the user to change data and/or constraints to make different scenarios,
which can be saved separately ("what-if" analysis).

In ODM, decision expressions in the objective function are mapped to goals and OPL
constraints are mapped to requirements. The requirements can be easily relaxed or
further constrained by the user, or their priorities can be changed to make them more
or less important. If there is an infeasibility, ODM reports the requirements that conflict
with the current data, and helps the user either to redefine the problem requirements
or to change the data.

Because ODM allows users to easily create and compare multiple scenarios, they can
explore alternatives and their impact on costs, revenues, or other goals in those different
scenarios.

ODMapplications can be deployed as final applications to your end users. Using JavaTM,
you can extend the default ODM application by adding your own custom views, more
adapted to your business problem. You can also add specific data sources, if you need
more than SQL queries, Excel files or text files to get to your data.

Model limitations
Some limitations apply to models converted to ODM applications:

• The models should be LP, MP, MIP, or CP. It is possible to use quadratic
expressions, but with some limitations.

© Copyright IBM Corporation 2009. All rights reserved.232

Lesson 14: From Model to Application - The ODM Connection / Topic 1: What is an ODM application?

• Model size can have an impact on ODMperformance. Formodels that are solved
interactively on a local PC in real time, ODM works best for models that are
solved in less than 10 minutes. Models which are solved externally via a batch
process, however, can be larger.

Instructor note
The most important point to convey to the students with regard to this limit
is that models that are appropriate for real time interactive solution with
ODM should be solvable in a short enough time to insure interactivity on the
part of the user. Users should be able to click Solve and get a result fairly
quickly, so that they can see their results without waiting for them.
Batch mode solutions provide a facility to let solves run in the background
while the user does other tasks. When the batch has finished running, the
results can be viewed in ODM. Batch mode is not treated in this training, but
you can introduce it if you wish.

© Copyright IBM Corporation 2009. All rights reserved. 233

Lesson 14: From Model to Application - The ODM Connection / Topic 1: What is an ODM application?

ODM architecture

Learning objective
Understand the basic ODM
architecture in terms of its
components and how they relate to
each other.

Key terms
• solver engine
• CPLEX
• CP Optimizer
• OPL Runtime
• ODM Studio
• scenario
• relational model
• ODM repository
• ODM view

Inside IBM ILOG ODM
The following diagram shows the basic ODM runtime architecture
for a single-user desktop:

The three main components of the ODM Studio Desktop are as follows:

• The ODM GUI: This is where the user works with scenarios.
• The processing service, where scenarios are solved, consisting of:

• OPL runtime
• CPLEX® solver engine: Used to solve LPs or MIPs. CPLEX can also be

used to solve some QP problems, but with certain limitations.
• CP Optimizer solver engine: Used to solve problems that require

constraint programming, especially scheduling problems.

© Copyright IBM Corporation 2009. All rights reserved.234

Lesson 14: From Model to Application - The ODM Connection / Topic 2: ODM architecture

• The data service, consisting of:
ODM data sources (XML/custom code)•

• OPL/ODM data sources (OPL .dat files)
• ODM data exporter

Instructor note
There are limitations on quadratic expressions in ODM for the current release:
If models use quadratic expressions in objective functions (QP or MIQP), the
quadratic objectives are not monitored and not seen in the solve progress
panel in ODM. You should use caution when making quadratic constraints
relaxable, as in certain cases this might lead to non-positive semi-definite
problems, which CPLEX cannot handle.

These three components of the ODM Studio Desktop talk to each other in the following
way:

• The ODM GUI
Sends processing instructions to the processing service, for example to
solve a scenario.

•

• Sends instructions to edit or check data to the data service.
• The data service

• Sends data for display to the ODM GUI.
• Sends/receives scenario data to/from the processing service.

• The processing service, using OPL runtime
• Converts the OPL model and data to a CPLEX or CP Optimizer model.
• After solving the model, sends the solution data back to the data service

The following databases are part of the runtime architecture, but external to the ODM
Studio Desktop:

• The ODM repository
Stores scenario data.•

• Sends/receives scenario and workspace data to/form the ODM data
service.

• Other external databases, excel, files, etc.
• Send data to the ODM data service to create or update scenarios.
• Receive scenario data exported by the ODM data exporter.

Note the following important distinctions between OPL/ODM data sources (OPL .dat
files), and pure ODM data sources (XML or custom code):

XML or custom codeOPL .dat

1-step data transfer (data source to ODM)2-step data transfer (data source to OPL,
OPL to ODM)

More efficientMore convenient

Does not need OPL runtimeNeeds OPL runtime

Ideal for productionIdeal for development

© Copyright IBM Corporation 2009. All rights reserved. 235

Lesson 14: From Model to Application - The ODM Connection / Topic 2: ODM architecture

Generating a basic ODM application

Learning objective
Learn how to generate and
customize a basic ODM application
from an OPL model.

Key terms
• ODM Application Generation

Wizard
• Scenario Explorer
• default mapping
• goals
• goal view

Before generating an ODM application, you need:

• An OPL model
• Specifications (mappings) that describe how items in ODM

(rules, goals, requirements, etc.) will be linked to items in
OPL (constraints, decision expressions, decision variables,
etc.)

• A list of the data views you want to display in ODM
• Optionally, a list of data sources for ODM
• Optionally, a list of custom views for ODM (to display data

in a format that is not proposed by default: for example,
maps, charts, diagrams, Gantt charts)

The initial ODM application is configured in OPL. It can then be
customized further directly using the ODM editors, by editing
XML files generated by the OPL connector, or by adding custom

JavaTM code.

Generating an ODM application is a quick and easy process. As a demonstration, you
are now going to generate a simple ODM application from an OPLmodel, together with
your instructor. In the labs for this training you will work with a single application used
to address a Unit Commitment Problem (UCP).

Power generation - the unit commitment problem
The purpose of the UCP is to plan the operation of a number of power generators over
a given time horizon with a known load (demand) profile. The data used by this
application includes:

• The demand (load) forecast over a given planning horizon. The load levels
correspond to a large state, region or province, or 2-3 smaller ones, so our
fictitious utility company is a fairly large supplier.

• A set of generators (units) with a number of characteristics, namely initial
production level, minimum and maximum generation levels, minimum up and
down time, maximum ramp up and ramp down rate, a startup fuel consumption
coefficient, and a fuel consumption formula.

For each time period, the decision variables include:

• Status of each unit (non-exclusive):
In use•

• Being turned on
• Being turned off

• The production level for each unit.

The constraints involved in the decision making process are as follows:

• The forecasted load must be satisfied.
• A unit that is in use must operate between defined minimum and maximum

power generation levels.
• Restrictions on the production load to which a unit can ramp up or down during

consecutive time periods must be respected.
• Once a unit turns off, a minimum down time must be respected.
• Once a unit turns on, a minimum up time must be respected.
• The total operating cost, consisting of the fuel cost and startup cost for each

unit, must be minimized.

In addition, the application allows the user to specify a number of rules regarding:

© Copyright IBM Corporation 2009. All rights reserved.236

Lesson 14: From Model to Application - The ODM Connection / Topic 3: Generating a basic ODM application

• Unit maintenance
• Maximum hours of usage per day
• Specific time periods during which a given unit must be either on or off
• Spinning reserve requirement. This refers to a production reserve to deal with

differences between the actual and forecasted load levels.

The ODM application generated from this model also includes a number of Key
Performance Indicators (KPIs), such as utilization and alternative cost measures.

In the next section, you’ll get familiar with the basic model for this problem. This basic
model has an objective to minimize costs, while meeting demand and satisfying the
constraints on the operating conditions of each generator. Later on you’ll see how the
ODM application can be customized to deal with special situations, such as:

• Suppose you need to perform maintenance or repairs on a given generator. You
can create a scenario to determine the best time to do this.

• Actual load values are more than likely to vary from the forecasts you are using.
It will be necessary, then, to reserve a certain amount of capacity (“Spinning
Reserve”) at all times to cover any extra demand.

© Copyright IBM Corporation 2009. All rights reserved. 237

Lesson 14: From Model to Application - The ODM Connection / Topic 3: Generating a basic ODM application

Practice
Getting to know the UCP model
You are now going to perform a lab in which you will:

• Get familiar with the UCP model in OPL
• Generate a default ODM application
• Get familiar with some basic elements of an ODM application

You can perform this lab using the HTML workshop, or by following the
instructions (in italics) in the workbook. The HTML workshop will give you
direct access to ODM documentation pages that can help you with the lab. The
first step is to Generate a default ODM application.

Exercise directories
• <TrainingDir>\OPL63.labs\default
• <TrainingDir>\OPL63.labs\BaseODMapp

Study the exercise directory
1. Open the exercise directory

<TrainingDir>\OPL63.labs\default\ucpDefault and spend a
minute or two familiarizing yourself with its contents:

• There are five OPL files:
ucp.mod is the OPL model file.•

• ucp.dat contains the data.
• ucp.ops is the settings file that can be used to fine-tune

the behavior of the optimization engine or to modify other
default setings.

• .project is the project description file.
• .oplproject is the opl project description file which

maintains run configurations.
• There are two MS Excel files.

• unitData.xls contains data for each generator.
• loadData.xls contains load data for each time period.

These data files contain input data to the OPLmodel. The specific
data read into the model and the order in which it is read are
specified in the ucp.dat file.

Open the project in ODM Enterprise
IMPORTANT: Only follow this step if you are using the ODM Enterprise IDE.
For the desktop version of ODM, you'll use the OPL IDE to open projects.

1. Launch Eclipse for ODM Enterprise from the Windows® Start menu
by choosing Start > All Programs > IBM ILOG > IBM ILOG ODM
Enterprise 6.3 > Developer > Eclipse for ODM Enterprise.

2. In the mainmenu bar, chooseWindow >Open Perspective > Other....
In the Open Perspective window, choose OPL. The OPL perspective
you now see on the screen looks the same as the OPL IDE you would see
if you were working with OPL as a standalone product.

3. In the main menu bar, select File >Import. In the Import window,
expand OPL and select Existing OPL 6.x projects.

4. Choose Next, and in the Select root directory field navigate to
<TrainingDir>\OPL63.labs\default\ucpDefaultdirectory.Make
sure that theCopy projects into workspace checkbox isNOT checked.
ClickOK. Note that the ucpDefault project is the file that contains and
manages all the elements of the project.

© Copyright IBM Corporation 2009. All rights reserved.238

Lesson 14: From Model to Application - The ODM Connection / Topic 3: Generating a basic ODM application

Generate a default ODM application
1. In the OPL Projects Navigator (the window in the top left corner of the

IDE), expand the ucpDefault project, and look at the contents of the
.mod and .dat files. You don't need to fully understand the content, but
see if you can relate it to the problem description given before.

2. In the OPL Projects Navigator, right-click the name of the project (in
this case, ucpDefault (Unit Commitment Demo)) and choose
Generate ODM Application from the context menu. The ODM
Application Generation Wizard opens.

3. Two options are presented:
• Generate a default ODM application creates an ODM

application with a full representation of model and data from
the OPL model.

• Generate an empty ODM application generates an empty
ODM application with no data or model information.

SelectGenerate a default ODMapplication and click theNext button.
At this point, you could skip the next three steps, if you don't need them,
by clicking Finish. In this case, however, we will have a look at the
screens to see what they do.

4. The next screen asks you to select model and data files to use in the ODM
application. Since this project contains only one of each, they are already
selected:

• ucp.mod is the only choice in the drop-down list box.
• ucp.dat is the only file shown in the data file list.

You can have more than one of either type of file in the project, and you
then have to select which you want to use in the ODM application. Click
Next.

5. The next screen asks for the name of the ODM application. Accept
ucpDefault as the name by clicking the Next button.

6. The final screen presents a summary of the options you have chosen. You
could correct previous actions by clicking the Back button, but at this
point, accept them by clicking Finish.

The application is generated, and you will now see 2 new entries in the OPL
Projects Navigator tree:

© Copyright IBM Corporation 2009. All rights reserved. 239

Lesson 14: From Model to Application - The ODM Connection / Topic 3: Generating a basic ODM application

The entry ODM Application expands to seven items. Five of these are used to
customize the ODM application, and the other two that are greyed out (and
cannot be edited by the OPL user) define the mapping between OPL and ODM.
There is also a new run configuration, called Run ODM application. This is
a special run configuration that launches the ODM application (as opposed to
running the model in OPL).

Solve options
ODM allows you to control how the solve algorithm will behave when a solve
is launched from ODM Studio. This behavior differs slightly from when the
solve is launched through OPL.

Click ODM Application > ucpDefault_optimmodel.odmom in the OPL
Projects Navigator, and select theModel Options tab.

Under the Solve Algorithm heading, there are three options:

• Solve: A good option if you feel certain that there will be no constraint
violations. This will speed up processing, but if the problem is in fact
infeasible, no solution will be found.

• Solve First: The optimization engine builds a requirements tree, but
then attempts to solve the problem using the Solve algorithm. If that
fails, it starts a new solve using the solveAnyway algorithm.

• Solve Anyway (the default): Build on the CPLEX® feasOpt algorithm
which finds minimal constraint relaxations when a model is infeasible.

© Copyright IBM Corporation 2009. All rights reserved.240

Lesson 14: From Model to Application - The ODM Connection / Topic 3: Generating a basic ODM application

Remember that relaxable constraints correspond to requirements in ODM – if
a constraint is relaxed by Solve Anyway, it will appear as a requirement in
ODM.

For CP problems, only the Solve option is available.

More on Solve Anyway
Inside CPLEX theSolve Anyway algorithmperforms a loop on top of feasopt.

Solve Anyway systematically adds constraints in the "relaxable pool" of
constraints, starting with those that have the lowest priorities, until a feasible
solution is found.

When a feasible solution is found, Solve Anyway will try to optimize the
objective function.

ODM users can set priorities on constraint relaxation.

The Solve Queue
From ODM3.0 onwards, solve operations can run in the background, while
users continue to work with scenarios in ODM Studio in the foreground.

• You can submit multiple solve operations to run in the Solve Queue.
• Scenarios are solved in the order submitted.
• You can check on the solve progress or cancel a solve at any time.
• You can abort a solve process that is not active yet, but waiting in the

queue.

Return to Step 1 of the Introduction to the Unit Commitment Problem
workshop and perform the substeps, Launch the ODM application and
Create and solve the default scenario.

Launch the ODM application
• In the OPL Projects Navigator, the Run ODM application run

configuration has automatically been set as the default. This is a special
run configuration that launches the ODM application. Right-click on
this run configuration and chooseRun this from the context menu. This
will launch ODM Studio (ODM's graphical user interface) with the
ucpDefault application loaded.

Create and solve the default scenario
1. Look at the ODMStudio window. Although theucpDefault application

is loaded, you cannot see any data yet. This is because no scenarios have
been created or imported yet. In the ODM Studio main menu bar, select
File > New > New Default Scenario. A scenario will be created
containing the data and model information as configured in OPL.

2. In theScenarios Overviewwindow, right clickNewDefault Scenario
and select Rename from the context menu. Rename the scenario ucp
Baseline and press <enter>.

3. In ODM, click the Solve button (third from the left) in the main toolbar
to display the Solve Progresswindow and solve the problem. When the
solve completes, click the Close button.

ODM goals
In ODM, goals are optimization criteria. ODM optimizes the sum of different
goals as a function of assigned weights for each goal. In the ODM Goals view
you can:

• See the value of goals in the current solution

© Copyright IBM Corporation 2009. All rights reserved. 241

Lesson 14: From Model to Application - The ODM Connection / Topic 3: Generating a basic ODM application

• Specify a goal's weight
• See the goal breakdown
• Search the goal bounds
• Add constraints to its value

To create an ODM goal, the OPL objective (an expression to maximize or
minimize) must be expressed as a weighted sum of one or more OPL decision
expressions (dexprs). Each dexpr element of the objective becomes a goal in
ODM.

While OPL does not require the use of dexpr expressions in the
objective function, these are required for the creation of ODM goals.

Each goal can have a weight or importance factor, which in OPL is the coefficient
multiplying the dexpr in the minimize or maximize statement. The weight
assigned to each of the dexpr expressions is used as an importance factor
in ODM when calculating the goal total.

Note the following important rules when writing an OPL objective for
an ODM application:

• Weights must be explicitly set in the objective function and
cannot be derived from another data element. For those already
familiar with OPL syntax, the following is not allowed:
float coefficient[terms] = [term : coeff |
<term,coeff> in objectiveCoefficients]

Here, a float array called coefficient is indexed by the
objective terms. The value of each array element (each
coefficient for each objective term) is derived from another data
element, namely a tuple <term, coeff> in the set
objectiveCoefficients.

• The objective must not contain parentheses.

Perform the rest of the substeps in theGenerate a default ODMapplication
step of the Introduction to the Unit Commitment Problem workshop.

Examine the goals
1. In the Scenario Explorerwindow of ODM, expand the Analysis entry

and click Goals to display the Goals window. In this example, two
decision expressions have been converted to ODM goals as part of the
default mapping performed by the ODM Application Generation
Wizard:

• FuelCost
• StartUpCost

Examine how these are described in the OPL model file and how they
appear in the Goals window, to understand the relationship.

2. Select FuelCost in the Goal Name column of the upper pane. Then, in
the lower pane of this window, click the + sign besideFuelCost to expand
this item and see the values assigned to each fuel type for this decision
expression. Do the same for StartUpCost.

Compare the model representation in OPL and ODM
1. In the Scenario Explorer window, click Analysis > Requirements.

No ODM requirements are displayed in the Requirements window,
because no requirements needed to be relaxed to find a solution.

© Copyright IBM Corporation 2009. All rights reserved.242

Lesson 14: From Model to Application - The ODM Connection / Topic 3: Generating a basic ODM application

2. In Scenario Explorer, expand the Input Data entry and click on each
of the tables to open them in the main window.

• Notice the column names in each of the tables – these are the
default mappings of the input data definitions in the OPLmodel.
These default names may be changed later.

• Notice also that the actual values in the Input Data tables, taken
from the ucp.dat file, are editable. Although it is not used here,
the Scenario data checker feature in ODM enables a developer
to embed business-specific data validation rules, which are
executed when the business user solves a scenario and which
report errors and warnings before solving the scenario.

3. Expand the Solution entry in Scenario Explorer and choose the
production table. The column names in this table show the default
mapping from the OPL model. The numbers are generated when the
model is solved.

4. Make sure you understand how the data shown in ODM are mapped to
the declarations in the OPL model.

Examine the work directory
Now open the exercise directory
<TrainingDir>\OPL63.labs\Default\ucpDefault and look at the files
that have been generated there.

There are four new editable XML files:

• ucpDefault_views.odmvw – contains the description of how the input
and solution data is displayed in the different ODM views.

• ucpDefault_optimmodel.odmom – contains descriptions of the
components of the optimization model, including requirements, goals
and rules.

• ucpDefault_deployment_dev.odmds – contains descriptions of the
data sources and deployment configurations used by the ODMapplication
in development mode.

• ucpDefault_deployment_prod.odmds – contains descriptions of the
data sources and deployment configurations used by the ODMapplication
in production mode.

These files can be edited in OPL by clicking their entries under ODM
Application in the OPL Projects Navigator. They can also be edited directly
using a text editor or an XML editor.

A distinction ismade inODMbetween developmentmode and production
mode to allow you to create different data sources and run configurations
for each one. The ...deployment_dev.odmds file is used during
development, while the ...deployment_prod.odmds file is intended
for production.

The entry, ODM Application (ucp.mod), in the OPL Projects Navigator contains
a set of files that you can also see in the exercise directory:

• ucpDefault_relationalmodel.odmrm
• ucpDefault_mapping.dat
• ucpDefault_start_mapping.dat

The latter two files are grayed out in OPL, and you cannot edit them from the
IDE. They define tables in the ODM relational model, and how the ODM data
in those tables are mapped to the OPL data. These files are not usually edited
by developers, though for some tasks you may need to access them.

© Copyright IBM Corporation 2009. All rights reserved. 243

Lesson 14: From Model to Application - The ODM Connection / Topic 3: Generating a basic ODM application

When you have finished examining the files, close the ODM application. Select
the ucpDefault project from the OPL Projects Navigator, and delete it from
OPL by right-clicking and selectingDelete. When theConfirm Project Delete
window appears, make sureDelete project contents on disk isNOT selected
before deleting, otherwise the project will also be deleted from your computer.

© Copyright IBM Corporation 2009. All rights reserved.244

Lesson 14: From Model to Application - The ODM Connection / Topic 3: Generating a basic ODM application

Creating an ODM application from a CP Scheduling model

In this practice, the instructor will demonstrate:

• How to generate an ODM application from an OPL model that uses constraint
programming (CP) to solve a scheduling problem.

• The appearance of the default application.
• How to create a chart within ODM to combine data from two different ODM tables

into one graphical representation to better visualize the solution.

You do not have to perform the steps of this demo yourself

Problem Description

This problem is used to demonstrate how to generate an ODMapplication from anOPLmodel

that uses CP Optimizer (instead of CPLEX®) to solve a scheduling problem. You do not have
to perform the steps of this demo yourself, but the project is available to you in
<TrainingDir>\OPL63.labs\Scheduling\sched_wood_for_ODM\work\sched_wood_for_odmWork
if you want to experiment with it after the completion of the course.

The wood cutting example involves a machine in a wood cutting factory that cuts stands
(processed portions of log) into chips. Each stand has a certain length, diameter and species.
The machine can cut a limited number of stands at a time, with some restriction on the sum
of the diameters that it can accept. Only one species of wood can be processed at the same
time. Finally, each stand has fixed delivery dates and a processing status— either 'standard'
or 'rush.' Any delay on 'rush' stands will incur a penalty. The objective is to minimize the
total cost of operating and delay, while satisfying the following constraints:

• The truck fleet that carries stands to machines for processing is limited.
• The machine is a discrete resource with capacity specified in terms of the number of

stands that can be cut at the same time.
• In addition to the diameter constraint, only a limited number of stands can be loaded

at the same time.
• To express that only one species can be cut at the same time a state resource is used.

At any given time, this resource indicates the state in terms of which species the
machine can cut at a given moment.

One of the aspects of the problem that the user wants to monitor is that the end times for
each stand in the solution schedule meet the established due dates for delivery. This
information is displayed as data within OPL, but might be difficult for a business user to
envision. So in this demonstration the instructor will use ODM's built-in charting capability
to create a visual representation of this data.

Generating the Wood Cutting application

Watch as the instructor demonstrates this process.

Instructor note
Use the following procedure for this demo:
Generating the ODM application

1. Open the
<TrainingDir>\OPL60.labs\Scheduling\sched_wood_for_odm
project.

2. Double-click on sched_wood.mod to show the students that this is
a CP model.

3. Choose Generate ODM Application from the File menu. On the
opening screen, click Finish, explaining that in this model there is

© Copyright IBM Corporation 2009. All rights reserved. 245

Lesson 14: From Model to Application - The ODM Connection / Practice: Creating an ODM application from a CP Scheduling model

only one model and data file, and so there is no need to go through the
individual screens that they saw in their first practice.

4. Point out the additional objects added in the OPL Projects panel, and
then run the ODM application.

5. Solve the problem, and when a solution is found (this could take up to
30 seconds), open the Solution > a2 table. Point out that the data is
there, but it's as difficult to interpret as it was in OPL. Tell them you're
now going to create a chart to visualize the relationship of due dates
to end times in the solution schedule.

Create the Due Dates Met chart
• In OPL, double-click on sched_wood_for_odm_views.odmvw to
open its editor and right-click on the Solution folder. Select Add
Chart View from the popup menu.

• Change the View Name of the chart to Due Dates Met.
• On theChart Tables tab, clickAdd. On the popup, choose the stands
table, choose dueDate (Integer) from the Columns dropdown list,
and change its label from the default toDue Date. Then clickFinish.

• Click the Add button again, choose the a2 table, choose e (Integer)
from the Columns dropdown list, and change its label to End Date.
Click Finish.

• Switch to theChart Settings tab and chooseBar from theRendering
dropdown list. Then choose Clustered from the Type dropdown list.
Finally, chooseOutside Labels from the Annotation dropdown list.

• Run the ODM application again and solve the problem. Open the
Solution folder and display the new Due Dates Met chart.

• Point out that this chart is much easier to read than the Solution >
a2 table, and shows at a glance that all end dates in this schedule
meet their due dates.

• You may want to end the demo by showing the students the
non-user-friendly default mapping in place on the Input tables and
the Solution > a2 table. Remind them that this is easily changed, and
that they did it themselves in their previous practice. Also tell them
that they'll get a chance to create a chart themselves in one of the next
lessons.

© Copyright IBM Corporation 2009. All rights reserved.246

Lesson 14: From Model to Application - The ODM Connection / Practice: Creating an ODM application from a CP Scheduling model

Extending ODM applications: custom visualizations

Learning objective
Learn how ODM charts can be
designed in OPL and displayed in
ODM

Key term
Chart Views

You are now going to examine, with your instructor, one of the
important features of ODM, the ability to create customized
visualizations of your information. This can help business users
do “what if?” analysis.

The version of the Unit Commitment Problem application
that you will use for this exercise has already been highly
customized in OPL and using Java to create custom views
and other extensions. Follow the steps below carefully,
and DO NOT use the ODM Application Generation
Wizard as you did in the previous topic. If you do, all of
the customization in the application will be lost.

© Copyright IBM Corporation 2009. All rights reserved. 247

Lesson 14: From Model to Application - The ODM Connection / Topic 4: Extending ODM applications: custom visualizations

Practice
Work with ODM charts
In this step, you will examine the built-in charting capabilities of ODM, and
how they can help the user visualize the data.

Go to the Introduction to ODM workshop and perform the Create a chart
view using the OPL IDE step.

You can perform this lab using the HTML workshop, or by following the
instructions in the workbook. The HTML workshop will give you direct access
to OPL documentation pages that can help you with the lab.

Create a chart view by using the .odmvw
editor

Objective
• Create a new chart

Action
• Create a chart for the Average Cost KPI

Reference
Adding a bi-indexed chart

The planner had a change of heart and would prefer to see the average cost
information in the form of a chart. In this exercise, you'll create a chart to show
the average cost per unit per period.

Create a new chart
1. Import the

<TrainingDir>\OPL63.labs\ConfigViaOPLIDE\chart\work\ucp_chart_work
project into OPL. Do not check the Copy projects into workspace
checkbox.

2. In the OPL Projects Navigator, expand ODMApplication (ucp.mod) and
double-click ucp_views.odmvw.

3. Expand the Solution andKPI directories. Right-click the KPI directory
and choose Add Chart View. Change the name of the view to Average
Cost per Unit Chart.

4. Under the Chart Tables panel, choose the Bi-indexed radio button,
because your data is bi-indexed. You can see this by looking at the data
declaration in the OPL model: avgCostByUnitByPeriod[u in
Units][t in Periods], with u being the first index and t being the
second index. Click Add and select the Table to be
avgCostByUnitByPeriod ,Column to be value (Double) and change
the Label to Average Cost. Click Finish.

5. For the X From field select Range Periods, and enter 0 for theMin
and 24 for theMax (to see only the first day's data), and for the Chart
for Each field select Units to create a separate line for each unit.

6. Save all and launch the ODM application. Create a New Default
Scenario renamed Chart Scenario and solve the scenario. Select the
Close this dialog box when solve completes check-box.

7. When the solve has completed, return to the chart creation editor in OPL.
Click the Import Data from ODM button to see how your chart will
look in ODM (or look at it in ODM).

© Copyright IBM Corporation 2009. All rights reserved.248

Lesson 14: From Model to Application - The ODM Connection / Topic 4: Extending ODM applications: custom visualizations

8. In OPL, select theChart Settings tab and play with the different settings
to see the impact on your chart display. For example, choose Stacked
for the Type field.

9. Save all, close ODM and launch it again for your changes to take effect.
Look at your Average Cost per Unit Chart again to make sure it looks
like you intended. Compare with the view in the
chart\solution\ucp_chart_solution directory if you need tomake
any changes.

10. Close ODM and delete any open projects from OPL before moving on to
the next step (do not check the Delete project contents on disk box).

© Copyright IBM Corporation 2009. All rights reserved. 249

Lesson 14: From Model to Application - The ODM Connection / Topic 4: Extending ODM applications: custom visualizations

Working with multiple scenarios in ODM Studio

Learning objective
Understand how to create and
compare multiple scenarios in ODM.

Key terms
• scenarios
• reference scenario
• goals
• requirements
• relaxed requirements

Multiple scenarios for the same OPL model
The ability to create multiple scenarios in ODM Studio for the
same OPL model is a power feature for “what-if” analysis.

Each scenario can be saved separately and modified separately
in ODM Studio. Examples of possible modifications are:

• Changing the input data
• Activating, deactivating, constrain, and set priorities on

goals
• Defining, activating and deactivating rules
• Setting relaxation priorities

Changes made to scenarios in ODM Studio do not affect the original OPL model.

Any new default scenarios will be created from the original OPL model. You can also
copy any existing scenario, with any changes you might have already made to its
parameters, and then make additional changes in the copy.

Comparing scenarios
Any two scenarios can be compared by doing the following:

• Choose one scenario as the reference scenario.
• Select the Differences check-box in the ODM Legend panel.
• Open any view in the non-reference scenario to see the differences between the

two scenarios. The numbers corresponding to the reference scenario are shown
in parentheses next to the numbers of the non-reference scenario.

Use Multi-Scenario Comparison Views to compare more than two scenarios.

Youwill now learn how to create and comparemultiple scenarios in ODMStudio without
modifying the original OPL model.

© Copyright IBM Corporation 2009. All rights reserved.250

Lesson 14: From Model to Application - The ODM Connection / Topic 5: Working with multiple scenarios in ODM Studio

Practice
Create and compare multiple scenarios
In theUCP example, the “Spinning Reserve” refers to themaximumproduction
capacity by all active generators minus the actual amount produced. In the
following exercise you will create several scenarios with different Spinning
Reserves expressed as percentages of the maximum production capacity, and
then compare these scenarios.

You can either follow the instructions in the html workshop (which also include
links to relevant documentation) or you can follow along in this book.

Create multiple scenarios and compare two
scenarios

Objectives
• Create multiple scenarios to cover different business use cases
• Compare two scenarios

Actions
• Import the project and launch ODM Studio
• Create scenarios
• Compare two scenarios

References
tables
storing scenario data
scenario explorer
create a default scenario

Import the project and launch ODM Studio
1. Import the ucpBaseODMapp project from the

<TrainingDir>\OPL63.labs\BaseODMapp\ucpBaseODMappdirectory.
Do not check Copy projects into workspace.

2. Right-clickRunConfigurations > RunODMApplication (default)
in the OPL Projects Navigator and choose Run this to launch ODM
Studio.

Create scenarios
You will now create four scenarios with different percentages for the Spinning
Reserve, and compare two of these scenarios.

1. If aNew Default Scenario is present in the ODM application, leave it
in place. If no scenarios are present, create one by choosing File > New
> New Default Scenario from the main menu.

2. Create a second default scenario using the same procedure and rename
it Spinning Reserve 8%.

3. Make sure that the Spinning Reserve 8% scenario is selected in
Scenarios Overview window, and in Scenario Explorer click Rules
>Reserve Requirement to display that window in the main window
area.

4. Right-click Reserve Requirement, and choose Add Rule >Spinning
reserve should be at least <percent>% of load in each period from
the context menu.

© Copyright IBM Corporation 2009. All rights reserved. 251

Lesson 14: From Model to Application - The ODM Connection / Topic 5: Working with multiple scenarios in ODM Studio

5. In the rule editing area at the bottom of the window, click the <percent>
field, type 8, and press <enter>. You have added a rule to this scenario
that sets the reserve amount to 8%.

6. In Scenarios Overview, right-click Spinning Reserve 8% and choose
Duplicate Current Scenario from the context menu. Rename this new
scenario Spinning Reserve 16%.

7. On the Reserve Requirement window for this new scenario, change
the reserve amount in the rule editing area to 16%.

8. In Scenarios Overview again, right-click Spinning Reserve 8% and
copy it a second time, renaming the new scenario Spinning Reserve
24%.

9. On the Reserve Requirement window for this new scenario, change
the reserve amount in the rule editing area to 24%.

10. Save all and solve each of the four scenarios.

Compare two scenarios
You will now set a Reference Scenario and compare it to one of the other
scenarios.

1. In Scenarios Overview, right-click the New Default Scenario and
choose Use as reference from the context menu. Note that the scenario
name is now displayed in bold. This scenario will be used as a reference
when comparing to the other three scenarios in the next steps.

2. Open the Solution folder in Scenario Explorer and clickProduction
Schedule to display that window in the main window area. This is the
solution schedule for the New Default Scenario.

3. Leaving the Production Schedule window open, select the Spinning
Reserve 24% scenario in the Scenarios Overview window. You are
now looking at the solution schedule for that scenario.

4. To compare it to the Reference Scenario, in theLegend panel at the lower
left of the ODM application frame, check the Differences box. The
differences between the solution found by the Spinning Reserve 24%
scenario and the New Default Scenario become highlighted in gold.
In the highlighted fields, note that the value displayed in parentheses is
the value from the Reference Scenario, while the other value is for the
currently-selected scenario.

5. Click on each of the other Spinning Reserve scenarios, and watch the
Production Schedule window as the highlighted fields change.

6. If you want, open the Solution > Production Pivot Table, and do the
same comparison.With theDifferences option turned on in theLegend
panel, you can easily see which fields have changed in the different
scenarios, compared to the Reference Scenario. You can also change
the Reference Scenario, and see how that affects what you see.

You should now be able to see how, in an ODM application with multiple
scenarios, you can generate comparisons between any two scenarios, using any
of the existing scenarios as the Reference Scenario. However, using this
procedure you are only able to compare two scenarios at the same time. What
if you wanted to compare more than two scenarios at the same time?

Complete the Compare multiple scenarios step in the workshop to practice
doing this.

Compare multiple scenarios

Objective
• Use a Multi-Scenario View to compare three or more scenarios

© Copyright IBM Corporation 2009. All rights reserved.252

Lesson 14: From Model to Application - The ODM Connection / Topic 5: Working with multiple scenarios in ODM Studio

Actions
• Add a Multi-Scenario View
• Compare multiple scenarios

Reference
scenario comparison view

Add a Multi-Scenario View
You will now add a new Multi-Scenario Comparison View to the ODM
application.

1. Leaving the ODM application open, return to OPL and double-click the
ODM Application > ucp_views.odmvw file.

2. In the left pane of the editor, right-click the Unit Commitment Demo
item at the top and choose New Group from the context menu. In the
popup window, name the new groupMSV and click Finish.

3. Next, right-click the newMSV group and choose Add Multi-Scenario
Comparison View from the context menu. A new view is created, and
an editor for the view appears in the right pane of the editor.

4. In the right pane of the editor, change the View Name field to
Multi-Scenario Comparison View.

5. Save and launch the ucpBaseODMapp ODM application again. You
will be prompted to save your changes, and the ODM application will
automatically be shut down and relaunched, with the new view in place.

Compare multiple scenarios
Now compare all four scenarios in the newMulti-Scenario ComparisonView
window.

1. In ODM Studio, select theMSV > Multi-Scenario Comparison View
window in any of the scenarios. In the next step you will add the data
for all the scenarios.

2. Click theConfigure Table button in the top far right side of the window.
(It is the topmost of the three buttons; you can mouseover the icons to see
their tooltips to locate the right one.)

3. In the Configure Table popup window that appears, check the boxes
for each of the four scenarios and click OK. The window is displayed,
now containing all four scenarios. If necessary, drag the top pane of the
window down so that you can see all four in the table area at the top.

4. Note that this view provides a high-level overview of each of the four
scenarios and their solutions. In the table area, you can see the Scenario
name, followed by the two goals of the UCP application — Fuel Cost
andStart Up Cost. The values that you see in each column are the same
that you would see in the Goals window for each of the scenarios. Next
is the Number Of Periods for each scenario.

5. The next two columns show the solution status for the scenarios. A check
in theHas Result column indicates that this scenario ran to completion
and found a solution. A check in the Is Feasible column indicates that
it is a feasible solution. Note that one of the scenarios,Spinning Reserve
24%, is displayed in red. This is because that scenario's solution required
relaxations of at least one of the requirements.

6. The Gap column displays the relative difference between the integer
solution found and the proven best possible objective solution value.

7. The lower part of theMulti-Scenario Comparison View window
displays the goal results in chart format, by default a Bar chart. To
change the configuration of this chart, click theConfigure Chart button

© Copyright IBM Corporation 2009. All rights reserved. 253

Lesson 14: From Model to Application - The ODM Connection / Topic 5: Working with multiple scenarios in ODM Studio

in the top right of the window. (It is the middle of the three buttons.) On
the resulting popupwindow, you can choose between normal and 3DBar
charts, and normal and 3D Polyline charts.

8. To remove one or more scenarios from the view, highlight the one you
want to remove in the chart area and click the Remove Selected Rows
button in the top right of the window. (It is the bottom of the three
buttons.)

You've now seen how you can comparemultiple scenarios using aMulti-Scenario
Comparison View.

© Copyright IBM Corporation 2009. All rights reserved.254

Lesson 14: From Model to Application - The ODM Connection / Topic 5: Working with multiple scenarios in ODM Studio

ODM Requirements

Learning objective
Understand how requirements are
generated from relaxed OPL
constraints and how they can be
modified in ODM.

Key terms
• requirements
• soft constraint
• requirement view

An OPL model contains constraints. These constraints can be
mapped to ODM requirements to be candidates for relaxation.
In Operations Research terms, requirements are mapped to soft
constraints.

OPL constraints can be simple constraints, or indexed constraints
in a forall declaration. To be mapped to requirements, these
constraints need to be labeled in the OPL model.

Only requirements that have actually been relaxed by the
solveAnyway algorithm are shown in the Requirements view
of ODM Studio.

Each relaxed requirement is displayed in ODM Studio in a tree
structure. The top level consists of a folder that has the same name as the labeled
constraint in the OPL model. The next level of the tree structure shows the grouping
of this requirement.

Each requirement is assigned a priority by the priority propagation scheme assigned to
the requirement when the ODM application is generated. The ODM Application
GenerationWizard assigns a default priority ofParent to each requirement in a group.
This means that each of the child levels of the requirement’s tree structure inherits its
priority from its parent in the tree, and by default, the top level of each requirement
group is assigned the priorityMedium.

Priorities can be changed in order to try and find better solutions to the problem. There
are two ways to do this:

• In the ODM Studio Requirements view.

Priority changes made in this way are temporary, and are not automatically
saved when you exit from the ODM application; you need to explicitly save.

Because requirements only appear in this view when the corresponding
constraints have been relaxed during a solve, you can only use this
method of changing priorities if the corresponding constraint has been
relaxed.

• In the IDERequirements editor. These changes are automatically saved, and
become part of the generated ODM application.

Continue with the next step of the workshop to practice modifying requirements.

© Copyright IBM Corporation 2009. All rights reserved. 255

Lesson 14: From Model to Application - The ODM Connection / Topic 6: ODM Requirements

Practice

Modify requirements

Objective
• Learn how an end user can work with constraint relaxation from within

the ODM application

Action
• Change requirements, relaxations and priorities

Reference
Changing the priority of a requirement in ODM Studio

Change requirements, relaxations and priorities
In ODM Studio, go to the Scenario Explorer and select Analysis >
Requirements. As before, this window is blank, because no constraints have
been violated. Requirements are only visible in ODM when a constraint was
relaxed in order to find a feasible solution. You are now going to change the
demand data to demonstrate this principle.

1. In the Scenario Explorer, go to Input Data > Load and change the
Load data for the first 7 periods to 3000.

Note how easy it is for an end-user to change data. Changes
made in this way are not written to the OPL ucp.dat file. The
data is only changed to the particular scenario in ODM.

2. Solve the model again. You will be asked to save the scenario. Click Save
and Continue to proceed with the solve. While it is running, notice that
the Solve Progress window displays the message (at the bottom),
“Searching for a solution enforcing requirements above Medium.” This
means that there is a conflict or other infeasibility somewhere in the
model, and that constraints with a priority (as set in OPL or changed
locally in ODM) at or below “Medium” are candidates for relaxation.

3. When the solve finishes, close the Solve Progress window and go to the
Scenario Explorer. See that the word Requirements is now shown
in red. The Legend window tells you that this means there are relaxed
requirements.

4. Return to the Requirements window and note that themeet_demand
requirement (and also some others) has been relaxed. In other words, the
demandwas not alwaysmet. Expand this item to see for which particular
generators and time periods the constraint was relaxed for.

The message in the Relaxation column shows the production values
found in the relaxed solution, as well as the original demand target.

5. Now look at the Priority column. Each of the levels of the tree structure
indicates that it has a priority ofMedium.

This is because the default priority propagation scheme assigned to the
requirement by the ODMApplication GenerationWizard isParent.This
means that each of the child levels of the requirement’s tree structure
inherits its priority from its parent in the tree. The parent requirement
in this case was assigned the default value of Medium, so all of its
children inherit that priority.

© Copyright IBM Corporation 2009. All rights reserved.256

Lesson 14: From Model to Application - The ODM Connection / Topic 6: ODM Requirements

Click the wordMedium in thePriority column of the for 1 requirement.
SelectMandatory from the drop-down list and note the changes in the
window:

• The item is highlighted in color.
• The Priority Modified checkbox is checked.
• The requirement is shown as modified in the Summary of

changes to the model pane below the list.
6. Save and solve the model again. Close theSolve Progresswindowwhen

done, and return to the Requirements window.

You can see that for 1 no longer appears in the list of relaxed
requirements. Its priority was changed, and ODMhas had to relax many
other requirements in order to meet the mandatory load requirement in
the first period. Examine the other relaxed requirements.

If a constraint in the OPL model has not been relaxed, it will
not appear as a requirement in ODM.

7. Expand the oper_max_generation requirement, and expandCOAL_1.
Note that there are two periods grouped under it. The default grouping
for this requirement, then, is first by unit (u) and then by period (t) from
the OPL model. This can be changed when configuring the application.

8. Click the wordMedium in the Priority column of the
oper_max_generation requirement. Select Low from the drop-down
list. Note that all the branches and leaves of this requirement have
changed their priority to Low. This is because their default priority setting
is Parent.

Requirements are constraints that could be relaxed. If a constraint is
not declared as a requirement, ODM will not consider that constraint
for relaxation when solving themodel. Any hard constraints, for example
that a unit must be turned on for it to be in use, should not be declared
as requirements.

© Copyright IBM Corporation 2009. All rights reserved. 257

Lesson 14: From Model to Application - The ODM Connection / Topic 6: ODM Requirements

Copy to Microsoft Office

As a last "stop" on this tour, we will show you one of the built-in features of ODM that could
be very useful to your users. Often users want to be able to export the solution data into a
spreadsheet for further analysis. With ODM, this can be done in one click.

The following exercise uses the<TrainingDir>\OPL63.labs\BaseODMapp\ucpBaseODMapp
example. If it is not already open in OPL, open it and launch the ODM application.

Export your schedule to Excel or other Microsoft Office applications
1. In any scenario that contains a solution (that is, one that has been solved), open

Solution > Production Schedule to display the final schedule for the scenario.
2. Remove any filters that may have been created, so that the entire table is displayed.
3. Click in the window, then press <ctl>A to select the entire table.
4. Right-click the selected area and selectCopy from the contextmenu (or press <ctl>C).

The contents of the table have been copied to the Windows Clipboard.
5. Open Microsoft® Excel and, in the blank spreadsheet that appears, press <ctl>-V

to paste the data into Excel. The data is pasted into Excel, including the column
headings.

If you want to cut and paste data without the column headings, right-click
in the table before copying it, and deselect Includes Headers In Copy. This
is a toggle switch, and is either on or off.

You can also select a smaller group of cells in the table, and only the selected
cells will be cut and pasted, with or without the column headings.

You can use this method to cut and paste from most ODM views, including pivot table views.
The destination application can be Excel, PowerPoint, Word, or any of the Microsoft Office
applications.

© Copyright IBM Corporation 2009. All rights reserved.258

Lesson 14: From Model to Application - The ODM Connection / Practice: Copy to Microsoft Office

Summary

Review
In this lesson, you learned about the IBM ILOG Optimization Suite and integration
between OPL and ODM:

• OPL models can be used to quickly generate an ODM end-user application.
• You can design graphs and charts to visualize both input data and solution

results, and have them displayed in ODM.
• The user can createmultiple scenarios and change goals, constraints and bounds,

all without affecting the original OPL model.
• Scenarios can be compared, saved for later use, and/or exported to Excel

spreadsheets.

If you want to see additional features of ODM, we suggest that you complete
theODMWalkthrough, contained in the ODMdocumentation. That document
takes you on amore in-depth tour of how to manage different scenarios in ODM
and shows you more ways that you can work with them to come up with the
best solution. It also demonstrates several additional built-in features of ODM,
and a few custom views that have been created for this example using Java.

© Copyright IBM Corporation 2009. All rights reserved. 259

Lesson 14: From Model to Application - The ODM Connection

Lesson 15: Flow Control with IBM ILOG Script

Instructor note
This is an optional lesson. This lesson should last about 2 hours,
including the practices. This lesson assumes that the students have
already learned how to read andwrite from a database. The lab (Staffing)
uses an MS Access database (the files are given with the labs, but you
need to have Access installed on the students' computers as well as your
own).

IBM® ILOG® Script is embedded in OPL to enable pre- and postprocessing, as well as flow
control. In an earlier lesson you learned how to use IBM ILOG Script for pre- and
postprocessing. In this lesson, you'll learn how to use IBM ILOG Script for flow control.

At the end of this lesson you will be able to:

• Understand the difference between JavaScriptTM and the IBM ILOG Script
extensions for OPL

• Implement some of the flow control functionality available in OPL, specifically:
• Accessing and modifying model and data elements
• Modifying the CPLEX® matrix incrementally
• Looping controls
• Warm start
• Integer relaxation
• Postprocessing
• Debugging

This lesson includes a practice and an example that shows a column generation
implementation using both CPLEX and CP Optimizer.

© Copyright IBM Corporation 2009. All rights reserved. 261

Lesson 15: Flow Control with IBM ILOG Script

IBM ILOG Script extensions for OPL

Learning objective

Understand what the IBM® ILOG®

Script extensions for OPL are.

Key terms
• OPL extension classes
• JavaScript

What is IBM ILOG Script?
• IBM ILOG Script is an implementation of the ECMA-262

standard (also known as ECMAScript or JavaScriptTM)
• This implementation also includes extension classes for

OPL
• The extensions for OPL enable script blocks to access and

manipulate OPL elements
• The same extension classes are used in the OPL APIs –

IBM ILOG Script offers a subset (some methods and
concepts are only available in the APIs).

The IBM ILOG Script extension classes for OPL are essential for flow control. In this
topic you'll learn what the extension classes are conceptually, and how to find more
information on these classes.

JavaScript vs. OPL extension classes
In the earlier lesson on basic script functionality, you learned how to use IBM ILOG
Script to perform some basic tasks such as pre- and postprocessing.

Some of the keywords required to perform these tasks correspond to JavaScriptTM, for
example for and writeln.

However, accessing the OPL elements requires using the IBM ILOG Script extension
classes. These are classes that extend JavaScript to meet the needs of OPL users.

All the IBM ILOG Script extension classes for OPL start with Ilo, for example
IloOplModel or IloCplex, and are therefore easily recognizable.

Note that even though extension classes are used to access model elements in an OPL
script block, they are not always explicitly visible in the code, for example in the following
execute block that accesses the tuple set Workers, as well as the tuple elements
salary and raise:

execute {
for (var w in Workers) {

w.salary = w.salary * w.raise;
}

}

In other cases, such as calling a model in a main block, the call to the extension class
is visible, for example:

main {
var source = new IloOplModelSource(“basicmodel.mod”);
var def = new IloOplModelDefinition(source);
...
}

In the remainder of this lesson, you'll see how the IBM ILOG Script extension classes
for OPL are used to implement flow control using IBM ILOG Script main blocks. While
you'll learn more about some of the extension classes and their methods in this lesson,
please refer to the IBM ILOG Script Reference Manual in the documentation for
a complete list and explanation.

© Copyright IBM Corporation 2009. All rights reserved.262

Lesson 15: Flow Control with IBM ILOG Script / Topic 1: IBM ILOG Script extensions for OPL

Instructor note
The class library documentation previously in this topic has been removed to
permit you to show whichever classes you might want to explore with your
students, as a function of needs and student ability. While several of the
extension classes will be covered in the remainder of this lesson, feel free at
this point to put the documentation up on the screen and explore individual
classes if you think this is useful for your student group. This documentation
will always be the latest and thus up to date.

© Copyright IBM Corporation 2009. All rights reserved. 263

Lesson 15: Flow Control with IBM ILOG Script / Topic 1: IBM ILOG Script extensions for OPL

Flow control and the main block

Learning objective
Understand what is meant by flow
control and how to implement it
using a main block.

Key terms
• flow control
• main block

What is flow control?
Flow control enables you to control how models are instantiated
and solved, for example to:

• solve several models with different data in sequence or
iteratively

• run multiple “solves” on the same base model, modifying
data and/or constraints after each solve

• decompose amodel into smallermoremanageablemodels,
and solve these to arrive at a solution to the original model
(model decomposition)

Some examples where you may want to use IBM® ILOG® Script for flow control are:

• Implementing column generation (a mathematical programming algorithm)
• Decomposing a supply chain model into a planning model and a scheduling

model and solving these in sequence
• Using one model to create a “warm start” for another model

Flow control can also be implemented using the available OPLAPIs, for example
for implementations in C++ or Java. Themethods used in such implementations
are similar to the ones you'll learn about in this lesson.

© Copyright IBM Corporation 2009. All rights reserved.264

Lesson 15: Flow Control with IBM ILOG Script / Topic 2: Flow control and the main block

Practice
Discussion
Can you think of some other examples where flow control can be useful? Discuss
with the instructor and the class.

Instructor note
Some topics you can discuss here depending on the level of your
audience:

• Lagrangean decomposion/relaxation.
• Aggregating a set of smaller time periods for a long-term
planning problem into a set of larger time periods (e.g.
aggregating 52 weekly periods into 12 periods of 1 week each,
2 periods of 4 weeks each, and 2 periods of 16 weeks each), and
finding a solution to this aggregate problem. You can then
disaggregate the time periods into the original 52 periods and
use parts of the solution to the aggregate problem to help find
a solution for each of the original time periods.

• Decomposing a problem that contains both tactical and
operational decisions into an upper level tactical planning
problem and a lower level operational planning problem.

The main block
To implement flow control, you must add a main block to your .mod file using this
general syntax:

main {
...
}

Each .mod file can contain at most one main block, and the main block will be executed
first, regardless of where it is placed in the .mod file.

What is a model instance?
A model instance is a combination of a model and data. Two model instances in a main
block can use the same model definition (that is, the same .mod file), or different model
definitions from other .mod files.

A main block using CPLEX
The following example shows some simple and often used content of a main block when
solving a model with CPLEX:

main {
thisOplModel.generate();
if (cplex.solve()) {
var obj=cplex.getObjValue();
}
}

• thisOplModel is an IBM ILOG Script variable available by default referring
to the current model instance, that is, the model definition that contains the
main block currently executed together with the associated .dat files (if they
exist).

• generate() is a method used to generate the model instance.

© Copyright IBM Corporation 2009. All rights reserved. 265

Lesson 15: Flow Control with IBM ILOG Script / Topic 2: Flow control and the main block

• cplex is an IBM ILOG Script variable available by default, that refers to the
CPLEX instance.

• solve() calls CPLEX to solve the model.
• getObjValue() is a method to access the value of the objective function.

A main block using CP Optimizer
The following example shows some simple and often used content of a main block when
solving a model with CP Optimizer:

main {
thisOplModel.generate();
if (cp.solve()) {
var obj=cp.getObjValue();
}
}

Many of the methods available when using CP Optimizer are the same as for CPLEX.
The only difference in the example above is that cp is an IBM ILOG Script variable
that refers to the CP Optimizer instance.

If the main block is in amodel file starting with using CP;, the cp variable is available
by default, but you'll have to declare the cplex variable explicitly if you want to call
cplex in that same main block:

var cplex = new IloCplex();

Conversely, if you do not state using CP; in the model file containing the main block,
youwill have to declare the cp variable explicitly if you want to solve using CPOptimizer.

Templates to construct a main block
You can work with models and data in a main block by

• Calling a project and creating a run configuration, or
• Calling a model and data

You can use the following two templates as starting points for writing flow control script.
These will come in handy for the exercise later in this lesson.

Flow control script template calling a project:

main {
var proj = new IloOplProject("../../../../../opl/mulprod");
var rc = proj.makeRunConfiguration();
rc.oplModel.generate();
if (rc.cplex.solve()) {
writeln("OBJ = ", rc.cplex.getObjValue());
}
else {
writeln("No solution");
}
rc.end();
proj.end();
}

This main block first creates a variable proj that calls the OPL project mulprod.prj.
It then uses the makeRunConfiguration() method to create a variable, rc, for the
run configuration. Because no particular run configuration name is given as an argument
to the method makeRunConfiguration, it will use the default run configuration as

© Copyright IBM Corporation 2009. All rights reserved.266

Lesson 15: Flow Control with IBM ILOG Script / Topic 2: Flow control and the main block

configured in the project, but one can also specify the name of a particular run
configuration. From the rc variable, you can then access the OPL model instance and
the cplex instance to call other methods such as generate(), solve() and
getObjValue().

Flow control script template calling a model and data:

main {
var source = new
IloOplModelSource("../../../../../opl/mulprod/mulprod.mod");
var def = new IloOplModelDefinition(source);
var opl = new IloOplModel(def,cplex);
var data = new
IloOplDataSource("../../../../../opl/mulprod/mulprod.dat");
opl.addDataSource(data);
opl.generate();
if (cplex.solve()) {
writeln("OBJ = ", cplex.getObjValue());
}
else {
writeln("No solution");
}

opl.end();
data.end();
def.end();
source.end();
}

This main block first creates a variable source that calls the OPLmodel. It then creates
the def variable for the model definition using source, and the opl variable for the
model instance. Next, it creates the data variable for the data source (mulprod.dat)
and adds this data source to the opl model instance.

The opl model instance is then used to generate the model, and the cplex instance is
used to call the solve() and getObjValue() methods.

While these two templates result in similar behavior (generating and solving
a model), you should use the first if you'd like to add a settings file in the script,
because you can only add a settings file using a run configuration.

Ending objects in a main block
In the given templates, the end()method is called to end objects. It is good practice to
use this method to systematically terminate objects that are no longer necessary.

The end() method is disabled by default in the OPL IDE. You can enable it by setting
mainEndEnabled to true using the following script statement:

thisOplModel.settings.mainEndEnabled = true;

We recommend that you use caution applying this setting. Faulty memory
management by the user, such as attempting to use an object after it has been
deleted may result in crashes.

Looping controls
The following table summarizes the looping controls available in IBM ILOG Script:

© Copyright IBM Corporation 2009. All rights reserved. 267

Lesson 15: Flow Control with IBM ILOG Script / Topic 2: Flow control and the main block

Note that if the condition for the for loop is omitted, it is taken to be true, producing
an infinite loop. If this condition gives a non-Boolean value, this value is converted to
a Boolean value.

There is no range syntax in IBM ILOG Script loops. For example,

for(var i in 1..n)

will yield an empty loop.

For more detail see Language > Language Reference Manual > IBM ILOG Script
for OPL > Language structure > Statements in the OPL documentation.

© Copyright IBM Corporation 2009. All rights reserved.268

Lesson 15: Flow Control with IBM ILOG Script / Topic 2: Flow control and the main block

Model and data access

Learning objective
Understand how to access model
and data elements in a main block,
and how to modify the model

directly in CPLEX® or CP Optimizer
without affecting the original OPL
model. Learn how to create an
integer relaxation and implement a
warm start.

Key terms
• Data access
• Model access
• Integer relaxation
• Warm start

Data access
Data for a particular model instance can be accessed and/or
changed in a main block, for example to run an iterative solve on
the same model, where data is changed with each iteration.

To change data during flow control before regenerating themodel,
you must get the data elements from the IloOplModel instance,
for example:

main {
...
var data = thisOplModel.dataElements;
...
}

When calling the method dataElements on an
IloOplModel instance, you obtain a container of all the
data elements of this model. The original data source (e.g.
the .dat file) remains unchanged – you are only
changing data associated with a particular model
instance.

Data access example
The following example shows how to solve a model, edit a data element, and resolve the
same model with the changed data. It assumes the model data includes an array called
Capacity, indexed over different products. In the example below the capacity is changed
for “flour” before generating and solving the model a second time.

main {
// generate and solve the initial model
var initialModel = thisOplModel;
initialModel.generate();
if(cplex.solve())
writeln(“The objective with initial capacity “, flourCapacity, “
is “, cplex.getObjValue());

// access and edit the flour capacity
var flourCapacity = initialModel.Capacity[“flour”];
flourCapacity = flourCapacity + 10;

// create a new data instance with the new capacity
var data = initialModel.dataElements;
data.Capacity[“flour”] = flourCapacity;

// create a new model instance using the same model defintion, with
the updated data
var def = initialModel.modelDefinition;
var updatedModel = new IloOplModel(def,cplex);
updatedModel.addDataSource(data);

// generate and solve the updated model
updatedModel.generate();
if(cplex.solve())

© Copyright IBM Corporation 2009. All rights reserved. 269

Lesson 15: Flow Control with IBM ILOG Script / Topic 3: Model and data access

writeln(“The objective with updated capacity “, flourCapacity, “
is “, cplex.getObjValue());
}

There is no tuple syntax available in main blocks.

Instead, use the find() and get() methods to control tuple objects

Example:

Let's say, in the preceding example, that the Capacity is an array indexed over a tuple
set productsOnMachines with tuple components product and machine

In that case, instead of using tuple syntax such as:

Capacity[<product>,<machine>]

you need to use:

Capacity[productsOnMachines.get(product,machine)]

Only data external to the model can be modified using IBM® ILOG® Script (e.g. data
declared in the .mod file, but initialized in a .dat file).

Data elements that are initialized within the model file cannot be modified using IBM
ILOG Script.

Scalar data, whether in the .mod file or the .dat file, cannot be modified via
scripting. Scalar data is the simplest form of data (for example, int i = 4 or
float demand = 10), where the data item does not have a more complex
structure such as a set, array or tuple.

While the method you just saw for changing data is very useful, the model needs to be
generated each time after a modification.

Sometimes, when solving iteratively with a large number of iterations, generating the
new iteration takes a long time compared to solving it.

In this case, youmay prefer to have a direct interaction with the generated optimization
model to be able to work incrementally on the result of the previous iteration.

Modifying the CPLEX/CP Optimizer model directly
IBM ILOG Script allows you to modify the CPLEX®/CP Optimizer model directly to:

• Change the bounds on a constraint
• Change the bounds on a variable
• Change the variable coefficient in an objective or constraint

When you use this technique, the CPLEX/CP Optimizer model is directly modified but
the OPL model is not.

Therefore, the solution given by CPLEX/CP Optimizer corresponds to the modified
model (in memory), but no longer to the original OPL model that you see in the IDE.

The advantage is that the CPLEX/CP Optimizer model is directly modified (not rebuilt
from scratch) and any new search can take advantage of the previous ones.

The following example shows how to modify a constraint upper bound directly in the
CPLEX/CP Optimizer model. Instead of writing

data.Capacity[“flour”] = flourCapacity;

© Copyright IBM Corporation 2009. All rights reserved.270

Lesson 15: Flow Control with IBM ILOG Script / Topic 3: Model and data access

to edit the Capacity data element, you can edit the upper bound on the capacity
constraint directly, where we assume in this case that ctCapacity is the name (or
label) of this constraint:

thisOplModel.ctCapacity["flour"].UB = flourCapacity;

You can use similar syntax to modify variable bounds, and the setCoef method can
be used to change variable coefficients.

Using this technique, the changes are only in the CPLEX/CP Optimizer model, and the
OPL model is not affected. On the other hand, the change is taken into account
incrementally by the CPLEX/CP Optimizer engine.

See IBM ILOG Script for OPL > Tutorial: Flow control and multiple searches
>Modifying the CPLEX matrix incrementally in the Language User's Manual
of the documentation for more information.

Integer relaxation
IBM ILOG Script provides a simple way to perform integer relaxation, that is, relaxing
the integer requirement on decision variables to convert a MIP to an LP. Simply call
the following method:

IloOplModel.convertAllIntVars

To undo a relaxation, call:

IloOplModel.unconvertAllIntVars

Accessing reduced costs, duals and slacks
IBM ILOGScript also allows you to access the following information for CPLEXmodels:

• Reduced costs for variables (variableName.reducedCost)
• Dual values for constraints (constraintName.dual)
• Slack values for constraints (constraintName.slack)

This information can be used for sensitivity analysis.

Formore information, seeLanguage > LanguageUser’sManual > The application
areas > Applications of linear and integer programming > Linear programming
in the OPL documentation.

© Copyright IBM Corporation 2009. All rights reserved. 271

Lesson 15: Flow Control with IBM ILOG Script / Topic 3: Model and data access

Practice
Example: Data access and flow control using a while loop
Launch the OPL IDE and import the
project<OPLhome>\examples\opl\cutstock suppliedwith the product, where
<OPLhome> represents the top level directory where OPL is installed.

Look at the .mod file called cutstock_int_main. The main block starts at
line 30. The following diagram highlights certain elements of data access and
flow control. A new run configuration is generated, starting at line 39.

In this example you saw how a while loop can be used for flow control.
In this particular case, the while loop is part of a column generation
implementation – you'll learn more about column generation later in
this lesson.

Instructor note
In the course of this practice, you may want to demonstrate how you
can use the problem browser to view the IBM ILOG Script call stack.

© Copyright IBM Corporation 2009. All rights reserved.272

Lesson 15: Flow Control with IBM ILOG Script / Topic 3: Model and data access

Practice
Example: Accessing and changing data elements
Import the project <OPLhome>\examples\opl\mulprod found in the product
example files directory.

This multiperiod production planning example is a generalization of the
single-period Pasta Production workshop you did earlier. The multiperiod
version considers the demand for the products over several periods and allows
the company to produce more than the demand in a given period.

There is an inventory cost associated with storing the additional production.
Look at the .mod file called mulprod_main.

© Copyright IBM Corporation 2009. All rights reserved. 273

Lesson 15: Flow Control with IBM ILOG Script / Topic 3: Model and data access

The main block starts at line 50 and initiates 2 local script variables, produce
and capFlour.

Starting at line 60 you can see an example of using the while keyword to iterate
through data and solve multiple models (see diagram above).

The program changes the quantity of flour available until the solution can't be
improved any more.

© Copyright IBM Corporation 2009. All rights reserved.274

Lesson 15: Flow Control with IBM ILOG Script / Topic 3: Model and data access

Practice
Example: Changing data directly in the CPLEX matrix
In the mulprod project, open the file
<OPLhome>\examples\opl\mulprod_change_main.mod.

This file shows you how the example can bemodified to change the optimization
model directly (i.e. without generating a new CPLEXmodel). In particular, line
76 changes the bound of a constraint:

for(var t in thisOplModel.Periods)
thisOplModel.ctCapacity["flour"][t].UB = capFlour;

}

© Copyright IBM Corporation 2009. All rights reserved. 275

Lesson 15: Flow Control with IBM ILOG Script / Topic 3: Model and data access

Postprocessing and debugging

Learning objective
Understand how postprocessing is
handled when called inside a main
block. Learn how to debug a main
block.

Key terms
• postprocessing
• debugging

Postprocessing from a main block
When a model is executed in a main block, the postprocessing
part is not executed by default. To execute a postprocessing block,
call the postProcess() method:

main{
...
thisOplModel.postProcess();
...
}

Debugging a flow control script
The debug features in the IDE are:

• breakpoint management
• call stack display
• variable object examination
• stepping

A simple debugging scenario is to place a breakpoint in a script, execute the script by
means of the Debug button, examine the call stack, and then interactively execute
statements using the Step Over button.

© Copyright IBM Corporation 2009. All rights reserved.276

Lesson 15: Flow Control with IBM ILOG Script / Topic 4: Postprocessing and debugging

Practice
Debugging mulprod_main
Go toOPL IDE > IDE Tutorials > Using IBM ILOG Script for OPL > The
multiperiod production planning example in the OPL documentation, and
perform the last step entitled Debugging a flow control script.

© Copyright IBM Corporation 2009. All rights reserved. 277

Lesson 15: Flow Control with IBM ILOG Script / Topic 4: Postprocessing and debugging

Lab – The Staffing Problem

Learning objective

Practice using the IBM® ILOG®

Script functionality learned thus far.

Key terms
• integer relaxation
• model access

© Copyright IBM Corporation 2009. All rights reserved.278

Lesson 15: Flow Control with IBM ILOG Script / Topic 5: Lab – The Staffing Problem

Practice
The Staffing Problem
In this lab, you'll get to practice using the principles of flow control learned thus
far.

In the first exercise, you'll implement a heuristic solution process where the
solution to a relaxedmodel is used to create a warm start for the original model.

In the second exercise, you'll access model elements to iteratively improve a

solution by editing constraint bounds directly in the CPLEX® matrix.

Go to the Staffing Problem workshop and perform the following steps, in
order:

• LP relaxation script
• Model access script

LP relaxation script

Objective
• Use IBM ILOG Script to write a simple solution heuristic

Actions
• A heuristic solution approach
• Steps to implement the heuristic

Reference
IloOplModel

Exercise folder
<trainingDir>\OPL63.labs\Staffing\Scripted_models\LP_Relaxation\work

A heuristic solution approach
For some complex MIP models, it may take prohibitively long to find even a first
feasible solution, not even to mention an optimal solution. In such cases, it could
be very useful to use a heuristic approach in order to find a partial MIP solution,
and then to feed that solution as an advanced starting point to the original
model. CPLEX's default settings are such that if an advanced start is available
in memory, it will be used in a subsequent solve and you therefore do not need
to do anything special to ensure that this advanced information will be used,

except for solving the models in sequence using IBM® ILOG® Script (or an API).

In this exercise, you will practice implementing such a heuristic for the staffing
problem. The steps of the heuristic you'll be implementing are as follows:

1. Solve the LP relaxation of the original MIP model.
2. Fix all Boolean decision variables that have a relaxed value above 0.6

to 1.
3. Solve the MIP with the fixed subset of Boolean decision variables. Note

that the model is still guaranteed to be feasible, because we've only forced
a subset of workers to be hired and we haven't forced any exclusions. The
MIP now has a reduced set of decision variables, because a subset of
them has been fixed. This would be especially useful for larger models
where the size of the MIP could be significantly reduced. The solution to
this model is not necessarily optimal, but you're not interested in

© Copyright IBM Corporation 2009. All rights reserved. 279

Lesson 15: Flow Control with IBM ILOG Script / Topic 5: Lab – The Staffing Problem

optimality at this point seeing that you're only using the solution as a
starting point for the original model.

4. Use the solution from Step 3 as an advanced starting point for solving
the original MIP.

Steps to implement the heuristic
1. Import the staffing2Work project in the

<trainingDir>\OPL63.labs\Staffing\Scripted_models\LP_Relaxation\work
directory. Leave the Copy projects into workspace box unchecked.
You'll write your heuristic inside the main block. Some script statements
to print intermediate values to the Scripting log output tab are already
included.

2. Generate the original model using the thisOplModel.generate()
command, relax the model using the
thisOplModel.convertAllIntVars() command, and solve the
relaxation using the cplex.solve() command

3. Test each Boolean decision variable in the array
hireWorker[namesOfWorkers] for values greater than or equal to
0.6, and fix the lower bounds on any such Booleans to 1 using the
thisOplModel.hireWorker[w].LB = 1 statement.

4. Undo the relaxation to the model using the
thisOplModel.unconvertAllIntVars() command. Solve themodel
using the cplex.solve() command.

5. Use the previous solution as an advanced start to the original MIP. To
do this, reset all lower bounds to 0 and solve the MIP.

6. Check your script with the solution in the
<trainingDir>\OPL63.labs\Staffing\Scripted_models\LP_Relaxation\solution
directory, and make any necessary changes.

7. Run your model and check the Scripting log output tab to follow the
sequence of steps.

IBM® ILOG® Script is especially useful for writing heuristics such as
the one your just implemented. Without script, you would've had to write
separate models, solve each of the models individually and fix variable
values manually in between solves. IBM ILOG Script automates all
these steps in the main script block, without changing anything in the
original OPL model definition.

Model access script

Objective
• Practice using flow control and model access to solve a variation of the

original model.

Actions
• Problem description
• Steps to complete the model access script

References
IloOplModel
script syntax

Exercise folders
<trainingDir>\OPL63.labs\Staffing\Scripted_models\Model_Access\work

© Copyright IBM Corporation 2009. All rights reserved.280

Lesson 15: Flow Control with IBM ILOG Script / Topic 5: Lab – The Staffing Problem

You can find useful examples related to model access and flow control
in the example directory installed with the
product,<OPLhome>\examples\opl,where <OPLhome> is the top level
directory where OPL is installed. Specifically, mulprod and cutstock
projects, in the main run configurations, contain some examples for
changing decision variables and accessing model information using

IBM® ILOG® Script.

Problem description
1. The foreman hopes to hire fewer people by getting one of the workers to

work a few extra hours.
2. Determine which person should have their availability raised to reduce

the number of workers by one.
3. Determine the minimum raise in availability required to reduce the

minimum number of workers by one.
4. Use a script to solve this problem and do not edit the original model

definition.

Steps to complete the model access script
1. Import the project Staffing3Work in the work folder. Leave the Copy

projects into workspace box unchecked. Study the part of the script
that has been completed and note that a name, hiring, has been assigned
to thisOplModel.

2. Under the comment that reads “// define script variables
worker, slackVal and lowest”, define the following script variables:
worker to denote the worker with least slack in their availability,
slackVal to denote the slack value of each ctAvailability constraint,
and lowest to denote the lowest slack value among all slackVal with
initial value of Infinity.

3. Fill in the for (var w in hiring.namesOfWorkers) loop: To
determine which worker should have their availability raised, iterate
through the list of workers, namesOfWorkers, and determine which
worker's availability constraint, ctAvailability, has the least slack.
With each iteration, first find the value of the slack, slackVal, using
the expression thisOplModel.ctAvailability[w].slack. Next test
whether slackVal is less than the lowest slack found thus far, lowest.
If it is, assign slackVal to lowest. Break out of the loop if a slackVal
equal to zero is reached.

4. Define and assign a value to a script variable representing the
skillGroup corresponding to the worker with the lowest slack.

Use the workerSkillGroup[worker] array.

5. Define and assign values to a script variable availabilityIndex
representing the element in workerSkillGroupPairs corresponding
to the skillGroup and the worker.

Use the find keyword.

6. Use a while loop to iteratively add 1 unit to the worker's
endingAvailability and then solve themodel. The while loop should
stop as soon as the objective value is 1 less than the original objective.
The bulk of this loop has been completed. You need to insert the
termination criteria, a statement to increase the endingAvailability,

© Copyright IBM Corporation 2009. All rights reserved. 281

Lesson 15: Flow Control with IBM ILOG Script / Topic 5: Lab – The Staffing Problem

and a statement to set the worker's availability to the new
endingAvailability value.

7. Include an extra termination criteria for the while loop, namely that
the endingAvailability should not be more then 20 units greater
than the initialAvailability, to cover the possibility that increasing
this particular person's availability will not be of any help. Add an error
message to be written to the Scripting log in case this condition is reached.

8. Check you script against the solution provided in the
<trainingDir>\OPL63.labs\Staffing\Scripted_models\Model_Access\solution
directory. Make any necessary changes.

9. Run your model and check the output in the Scripting log output tab.

© Copyright IBM Corporation 2009. All rights reserved.282

Lesson 15: Flow Control with IBM ILOG Script / Topic 5: Lab – The Staffing Problem

Column generation with IBM ILOG Script

Learning objective

Learn how IBM® ILOG® Script can
be used to implement column
generation.

Key terms
• decomposition
• column generation

What is column generation?
Column generation is a decomposition technique often used to
solve complex optimization models. This technique is especially
useful when a problem has many variables (columns in the

CPLEX® matrix), but relatively few constraints.

The basic idea is to decompose the original problem into a master
problem and a subproblem. The subproblem uses a subset of the
constraints to generate a set of variables (i.e. columns) to be used
by themaster problem. Themaster problem is then defined using
this subset of variables, thus resulting in a much smaller model

than the original.

The sub- and master problems can be solved in sequence to generate one solution, or
iteratively to try and find an improved solution with each iteration.

In the example that follows, you'll see how IBM ILOG Script can be used to implement
column generation for a configuration problem. An interesting feature of this
implementation is that it uses both CP Optimizer and CPLEX.

Instructor note
If you are not familiar with the Vellino problem, please refer to Language >
Language User’s Manual > The application areas > Applications of
constraint programming > The vellino example (column generation)
in the OPL documentation to help you explain the example to the students.

© Copyright IBM Corporation 2009. All rights reserved. 283

Lesson 15: Flow Control with IBM ILOG Script / Topic 6: Column generation with IBM ILOG Script

Practice
Example: Column generation using both CPLEX and CP
Optimizer
This configuration problem involves placing objects of different materials (glass,
plastic, steel, wood, and copper) into bins of various types (red, blue, green),
subject to capacity (each bin type has amaximum) and compatibility constraints.
All objects must be placed into a bin and the total number of bins must be
minimized.

Import the project from <OPLhome>\examples\opl\vellino and study this
with your instructor.

The original model is decomposed into two models, namely an MP model (the
master problem) and a CP satisfiability model (the sub problem).

The CP satisfiability model is used to generate all possible bin configurations,
as most of the compatibility constraints are logical constraints for which the
CP Optimizer engine offers good support.

These are then passed to the MP model, which is used to select the best
combination of configurations.

The MP problem is a linear set covering problem where each decision variable
corresponds to a possible configuration.

The cutstock example you looked at earlier uses column generation with an
iterative approach.

© Copyright IBM Corporation 2009. All rights reserved.284

Lesson 15: Flow Control with IBM ILOG Script / Topic 6: Column generation with IBM ILOG Script

Summary

Review
Among the benefits of using IBM ILOG Script in your models are:

• Possibility to repeat execution of multiple instances of models within a single
script session

• Rich communication between script and models
• Access to model state information
• Rich data output features including database access

In this lesson, you learned how to implement flow control in an IBM ILOG Script main
block using the extension classes for OPL. Specifically, you learned how to:

• Access and modify model and data elements
• Modify the CPLEX matrix incrementally
• Use looping controls
• Use a warm start
• Perform integer relaxation
• Execute postprocessing from a main block
• Debug a main block

You applied some of these techniques in the Staffing lab, and saw some flow control
examples, including a column generation implementation.

Additional resources
Examples

• <OPLhome>\examples\opl\cutstock
• <OPLhome>\examples\opl\mulprod
• <OPLhome>\examples\opl\vellino

Tutorials
• Language > Language User’s Manual > IBM ILOG Script for OPL >

Tutorial: Flow control and multiple searches
• Language > Language User’s Manual > IBM ILOG Script for OPL >

Tutorial: Flow control and column generation
• Language > Language User’s Manual > IBM ILOG Script for OPL >

Tutorial: Changing default behaviors in flow control

© Copyright IBM Corporation 2009. All rights reserved. 285

Lesson 15: Flow Control with IBM ILOG Script

Lesson 16: Integrating OPL Models with
Applications

Instructor note
This lesson should last about 2 hours.

Once amodel has been developed, debugged and fine-tuned, you will often want this model
to interact with other, existing tools for analysis and control of your organization. To do

this, IBM® provides a set of programming interfaces in OPL.

This lesson introduces the IBM ILOG OPL Interfaces, which give you full access to the

CPLEX® and CP Optimizer APIs from external applications.

At the end of this lesson, you will:

• Knowwhen to use the OPL interfaces to integrate anOPLmodel into an application
• Have an overview of the interfaces and how they work
• Know how to program a basic integration module for a simple OPL model

© Copyright IBM Corporation 2009. All rights reserved. 287

Lesson 16: Integrating OPL Models with Applications

The process of OPL model integration

Learning objective
Understand how OPL
communicates with the outside
world, and when it is best to use the
OPL programming interfaces.

Key terms
• development mode
• OPL application programming

interfaces (APIs)

In order to integrate your model into an external application or
suite of applications, the model needs to communicate with the
outside world.

OPL communicates with the outside world in three
ways:

• OPL Studio's development mode – i.e. via commands that
read and write data in a spreadsheet or database

• OPL application programming interfaces (APIs)
• Via an ODM application.

The focus of this lesson is the use of the OPL programming
interfaces. The other methods are presented in separate lessons.

Using OPL Studio development mode
The diagram below shows how OPL interacts with a database in development mode.
You are limited to reading, writing and updating the database. Spreadsheets work
similarly, except you can only read and write.

Details and syntax for this process have already been covered in an earlier lesson.

OPL communicates directly with the optimization engine to set engine parameters,
extract and solve the model.

© Copyright IBM Corporation 2009. All rights reserved.288

Lesson 16: Integrating OPL Models with Applications / Topic 1: The process of OPL model integration

Using the OPL API
The diagram below shows a typical scenario for OPL interactions with a database and
with other external applications via the API. In this scenario, the external program is
responsible for managing data imports and exports to external programs other than
the database.

It may also, optionally, handle:

• Model extraction
• Setting engine parameters
• Running the solve

The advantage of doing these things with the external program is that the OPL project
itself contains only the modeling information. The model is instantiated at runtime,
and the engine control processes are handled by the integration program.

When to use the API
Some examples of when you opt for the OPL interfaces include:

• You need to communicate with a different type of application than a spreadsheet
or database

• You have an existing application with its own interface that everyone knows,
and you want to integrate the model into that interface

• You need to work with volatile data, coming from real-time sources such as the
internet, or calculated by another application and held in program memory

Using the interfaces, you can write modules that interact with the OPL engines in these
programming languages:

• C++
• Java

© Copyright IBM Corporation 2009. All rights reserved. 289

Lesson 16: Integrating OPL Models with Applications / Topic 1: The process of OPL model integration

• .Net languages such as:
VB.NET•

• C#
• etc.

These interfaces allow you to:

• Solve a model many times with different parameters
• Solve several OPL models
• Modify a model.

© Copyright IBM Corporation 2009. All rights reserved.290

Lesson 16: Integrating OPL Models with Applications / Topic 1: The process of OPL model integration

The IBM ILOG OPL Interfaces

Learning objective
Gain familiarity with the 3
programming APIs available to work
with OPL

Key term
IBM ILOG OPL Interfaces

The IBM® ILOG® OPL Interfaces provide 3 different APIs:

• The .NET API:
• Provides interaction with Visual Basic.NET, C#
• Refers to the oplall.dll and

opl<versionNumber>_dotnet.dll dynamic
library

• The generic C++ API links with many libraries placed in
<OPLhome>\lib\<port_name>\format

• The Java Native Interface (JNI) API refers to the OPL61
.dll dynamic library

The following diagram shows the architecture of the IBM ILOG OPL Interfaces:

Importing the libraries
Each API needs to import a set of libraries to use the OPL Interfaces:

• For Microsoft® .NET:
• ILOG.Concert
• ILOG.CPLEX
• ILOG.CP
• ILOG.OPL

• For JavaTM:
• ilog.concert.*
• ilog.cplex.*
• ilog.cp.*
• ilog.opl.*

© Copyright IBM Corporation 2009. All rights reserved. 291

Lesson 16: Integrating OPL Models with Applications / Topic 2: The IBM ILOG OPL Interfaces

• For C++:
<ilopl/iloopl.h>•

• <ilcplex/ilocplex.h>
• <ilcp/cp.h>

© Copyright IBM Corporation 2009. All rights reserved.292

Lesson 16: Integrating OPL Models with Applications / Topic 2: The IBM ILOG OPL Interfaces

Practice
Demonstration: A simple example
You are now going to take a look at a working example of some of the different
ways the APIs can be used. Your instructor will guide you through the steps,
which are also described here in the workbook.

The files for demo can be found with the labs for this training:

<training_dir>\OPL 63.labs\APIModelIntegration

These examples are programmed using JavaTM. Similar results can be obtained
with the other interfaces.

The problem is a simple staffing allocation problem that includes:

• Employees
• Daily cost per employee
• Slots to which employees can be assigned
• Couplings of slots and employees which are not allowed

The objective is to minimize costs subject to meeting the demand.

Instructor note
This is intended as an instructor-led demo, not a hands-on lab. There
are no slides to accompany this demo, as it is presumed you will put
your desktop on the screen to show how to do it.

1. Show the students the OPL project (found in
APIModelIntegration\oplmodel with its two run
configurations. There should be nothing in this model that is
not already familiar to them.

2. The next step is to show how to write code to call this model
from Java

3. In the last step, you also demonstrate how to read the data from
a custom database.

Inside the APIModelIntegration directory, the data directory
contains excel spreadsheets used for reading input data and writing
results. There are also three .csv files that are the simulated data
sources for the custom data source class.

The java directory contains a src subdirectory where you can find
the source code for the Java classes used in this demo, and a classes
subdirectory where you will find built classes that can be used to run
the application. You can use an ant script to launch the application:

• Run ant oplmodeljavamainrunxlsdata from the java
directory to run the basic OPL model without main block, that
reads data from an Excel spreadsheet.

• Run ant oplmodelscriptmainrunxlsdata from the java
directory to run the OPL model controlled by an OPL Script
main block, that reads data from an Excel spreadsheet.

• Run ant oplmodeljavamainrunjavadata from the java
directory to read the custom data source and run the OPLmodel

You can also run these scripts from Eclipse, or another Java IDE, by
loading the build.xml file.

In Eclipse, the procedure is:

© Copyright IBM Corporation 2009. All rights reserved. 293

Lesson 16: Integrating OPL Models with Applications / Topic 2: The IBM ILOG OPL Interfaces

1. Load the build.xml file into the IDE.
2. In the Outline, right click the class you want to execute.
3. Select Run As > Ant Build from the context menu.
4. The output is displayed in the Console output tab.

Comparison with an all-OPL solution
In this example, the oplmodel project contains two versions of this problem
that use only the OPL IDE to solve the model. Use these for comparison with
the java-based solutions:

• The run configuration OPLIDEMainXLSDataFileConfig uses data

read from a spreadsheet, with IBM® ILOG® Script used for preprocessing
and postprocessing.

• The run configuration ILOGScriptMainXLSDataFileConfig is
identical with the addition of the model file, opldmainmodel.mod
containing an IBM ILOG Script main block, used to control each step
of the problem's execution.

It is important to note the use of the OPL keyword include in this model,
which permits modular reuse of different parts of the model for different run
configurations and for the java-based examples, as well.

Invoking an OPL .mod file from Java
Now suppose that this OPL model needs to be included in a suite of tools used
by an organization to plan its activities. You can see how to do this in Java by
looking at the source files found in the
APIModelIntegration\java\src\javaoplapi directory.

The Java OplModelRun.java source code creates a class that simply calls
the OPL model and executes it when necessary. This code looks for an IBM
ILOG Script main block, and if it is present, lets the script control the problem's
processing and solving steps. Otherwise, the java class controls them. The code
also includes error handlers.

It can also be the case that your input data is already memory resident in a
data and/or business object model, or that it needs to be read from specific data
sources that are not Data Bases, Excel spreadsheets or OPL .dat files (for
example, XML, in-house applications, business process managements systems,
etc.). In that case, you need to create a custom data source in Java:

• The CsvDataSource.java source code file creates a custom data source
class that simulates (in this case) reading the data from such a source.
In this simulation, it reads the data from a .csv file provided in the
APIModelIntegration\data directory.

• The JavaApiOplModelRun.java source code file creates a class that
reads the data using the CsvDataSource.java data source and
instantiates the same OPL model with the data it reads.

Examples using the other interfaces
You can see examples of the same problem modeled in each of the APIs. The
statements for importing the libraries are found at the top of each source file.
This is the stock cutting problem you looked at in the previous lesson.

Open the following files in the OPL IDE editor or other editor:
• For JavaTM:

<OPLhome>\examples\java\cutstock\src\cutstock\Cutstock.java
• ForVB.NET:<OPLhome>\examples\dotnet\Cutstock\Cutstock.vb
• For C++: <OPLhome>\examples\cpp\src\cutstock.cpp

© Copyright IBM Corporation 2009. All rights reserved.294

Lesson 16: Integrating OPL Models with Applications / Topic 2: The IBM ILOG OPL Interfaces

Examine how the same problem is modeled in each API.

© Copyright IBM Corporation 2009. All rights reserved. 295

Lesson 16: Integrating OPL Models with Applications / Topic 2: The IBM ILOG OPL Interfaces

OPL extension classes

Learning objective
Gain practice via a hands-on tutorial
with some of the OPL extension
classes

Key term
OPL extension classes

The examples you have been looking at all use the OPL
extension classes.

IBM providesmajor extension classes for use with JavaTM, .NET,
and C++ to access, modify, and run OPL models. The extension
classes vary in their naming conventions, but share the same
methods and attributes.

In general, The C++ and Java class names start with IloOpl,
while the .NET class names start with Opl.

Finding the class reference documentation
The documentation of all the classes of the OPLAPIs can be found in the documentation,
in the Interfaces manual:

• Interfaces User's Manual
• C++ Interface Reference Manual
• Java Interface Reference Manual
• .NET Interface Reference Manual

You will find complete, up-to-date documentation of all the classes and their methods
in these manuals.

© Copyright IBM Corporation 2009. All rights reserved.296

Lesson 16: Integrating OPL Models with Applications / Topic 3: OPL extension classes

Practice
Extension classes tutorial
Go to theOPL Interfaces Tutorial in the workshop. Go through all of it with
your instructor. It will present 8 of the 10 extension classes and their methods.

© Copyright IBM Corporation 2009. All rights reserved. 297

Lesson 16: Integrating OPL Models with Applications / Topic 3: OPL extension classes

The oplrun command

Learning objective
Learn how oplrun can be used to
run models and projects from the
command line, and how compiled
model files can be used to connect
with the programming APIs

Key terms
• oplrun command
• .opl file

OPL allows you to execute a model or project from the command
line (Windows or UNIX environments) using the oplrun
command.

Executing a model from the command line
You can execute a .mod file as a standalone model using the
following syntax:

oplrun [<options>] <model-file> [<data-file> ...]

The <options> and <data-file> arguments are optional.
However, if the model requires external data, the <data-file>

argument is mandatory. For a list of options, refer to oplrun Reference> Running
OPL from the Command Line in the Other Reference documentation.

Standalone models are no longer supported in the IDE from OPL 5.0 on. In
general, it is preferable to run a project, however, running standalone models
presents no problems when using oplrun.

Executing a project from the command line
You can run a project from the command line, and can specify a run configuration to
use during execution. Use the following syntax:

oplrun [<options>] -p <project-file> [<run-configuration>]

The <options> and <run-configuration> arguments are optional. If no run
configuration name is specified, the default configuration is executed.

Compiled models
OPL provides the possibility to generate compiled model files from within the IDE. A
compiled model is a binary version of a .mod file.

You can pass a compiled model file name as an argument to a method of the OPL
Interface libraries. An additional benefit of keeping your models as compiled files is
that these binary files are not human-readable, and this may help you protect your
intellectual property.

A compiled model can also be run from the command line, without starting the OPL
IDE, using the oplrun command with the -c option. Refer to oplrun Reference>
Running OPL from the Command Line in the Other Reference documentation.

A compiled model (.opl) cannot be loaded directly into the IDE

© Copyright IBM Corporation 2009. All rights reserved.298

Lesson 16: Integrating OPL Models with Applications / Topic 4: The oplrun command

Practice
Create a compiled model from a project
Perform the following steps:

1. Open a validated project in the IDE in the usual way.
2. Rick click on a model file and select Compile Model in the contextual

menu The corresponding compiled model is generated. The extension
of the generated file is .opl.

For example, if you generate a compiled model file for gas2.mod, the
resulting file will be gas2.opl.By default, the file is saved in the same
directory as the model file.

3. Click Save and check for the compiled model file (for example, in the
Windows Explorer).

© Copyright IBM Corporation 2009. All rights reserved. 299

Lesson 16: Integrating OPL Models with Applications / Topic 4: The oplrun command

Practice
You are now going to perform 2 workshop steps. They are similar to the IBM
ILOG Script steps you've already done, except they're done in OPL Interfaces.
The basic concepts behind the workshops do not change, but the language
required to access the OPL data structures does.

Each workshop step is available for 2 interfaces (Java and .NET): just select
your preferred API. Each workshop step uses one or more examples from the
examples folder. You can copy from these examples to create the solution.

The first workshop step is just to get comfortable with the Interfaces andmodel
building. The second workshop step goes deeper into the OPL data structures.

1. Perform the Staffing problem > LP relaxation API workshop step.
2. Perform the Staffing problem > Model access API workshop step.

You can perform this lab using the HTML workshop, or by following the
instructions in the workbook. The HTML workshop will give you direct access
to OPL documentation pages that can help you with the lab.

LP relaxation API

Objective
• Get familiar with using the OPL Interfaces.

Action
• LP relaxation steps

Reference
IloOplModel in Java

Exercise folders
OPL63.labs\Staffing\API\LP_Relaxation\Java\work

OPL63.labs\Staffing\API\LP_Relaxation\dotnet\work

When working in Visual Studio, add references to the appropriate .dll as follows:

1. Open the .sln file
2. Go to the Solution Explorer
3. right click the project or the References folder
4. Check that the OPL dll (oplall.dll) is in the references, and if not add

it by selecting Add References

You can view the mulprod example in the <OPLhome>\examples\... folder
to see similar code as some of the code used for this lab.

LP relaxation steps
In this lab, you will duplicate the LP relaxation script step using the API
language code. In this version, you will first solve the original model, then the
relaxed model, and then revert back to the original model.

1. Open the appropriate file in the work folder, depending on the API you
choose. Study the code that has been partially completed.

2. Use the convertAllIntVars() method to convert the model into the
relaxed model.

© Copyright IBM Corporation 2009. All rights reserved.300

Lesson 16: Integrating OPL Models with Applications / Topic 4: The oplrun command

3. Use the unconvertAllIntVars() method to convert the model back
to a MIP.

4. Call postProcess() where indicated and note the effect thereof when
solving the model. This demonstrates how tasks that are more easily
programmed in the .mod file can be written in the post processing script
and called in the API code.

5. Cross-check your code with the solution in the solutions folder, and
make any necessary changes.

6. Run your model.

Model access API

Objective
• Use flow control and model access to increase worker availability and

reduce the number of workers required

Action
• Steps to completing the lab

References
IloOplModel in Java
IloForAllRange
IloCplex
IloTupleSet
IloOplDataElements
IloSymbolSet

Exercise folders
OPL63.labs\Staffing\API\Model_Access\Java\work

OPL63.labs\Staffing\API\Model_Access\dotnet\work

Examples that use similar code as used for this lab, are
cutstock\cutstock_change.mod and mulprod\mulprod_main.mod in the
<OPLhome>\examples\opl folder.

Steps to completing the lab
1. Open the appropriate file in the work folder, depending on the API you

choose. Study the code that has been partially completed.
2. Fill in code to link the program to staffing3.mod and staffing3.dat

in the work folder for your chosen API.
3. Add code to solve the model and store the objective value.
4. Open staffing3.mod file for editing and scroll down to the post

processing script. Note that the post processing is now used to both print
the solution, and also to write the slack values for the ctAvailability
constraints to an array. You will access the slacks in the API using this
array. In your chosen API program, call postProcess after solving the
model.

5. Write the slacks from the array in the OPL model to an IloNumMap
called workerSlackMap by using the getElement method. Note the
various class names used to access OPL data types throughout the code.

6. In order to find the tuple corresponding to the skill group and worker
with the least slack, get the contents of the skillGroupNames tuple set
using the getElement method and iterate through the set until you've
found the index that corresponds to the relevant skill group and worker.

© Copyright IBM Corporation 2009. All rights reserved. 301

Lesson 16: Integrating OPL Models with Applications / Topic 4: The oplrun command

7. Create a tuple from this index by using the makeTuple method, and
find the initialAvailability associated with that tuple from the
workerAvailabilityMap.

8. In the while loop, create new IloOplModel and IloCplex instances
(see the top of the code for examples).

9. After studying the remaining code, compare your code with that found
in the solutions directory and run the model.

© Copyright IBM Corporation 2009. All rights reserved.302

Lesson 16: Integrating OPL Models with Applications / Topic 4: The oplrun command

Summary

Review
In this lesson, you learned about IBM ILOG OPL Interfaces:

• .NET, Java and C++ libraries allow the integration of OPL models within
applications.

• You can generate compiled model files, and use these models as arguments for
applications via the interfaces.

© Copyright IBM Corporation 2009. All rights reserved. 303

Lesson 16: Integrating OPL Models with Applications

Lesson 17: Optimizing Engines and Algorithms

When you have a big problem to solve, involving large numbers of decision variables and
constraints, the calculation process can be long. Naturally, you want to be sure you are

using themost efficient means to arrive at a quick, reliable solution. OPL is built on IBM®'s

proven technology. The CPLEX® and CP Optimizer engines provide different strategies
for Linear Programming (LP),Mixed Integer Programming (MIP), Quadratic Programming
(QP) and Constraint Programming (CP) to assure the fastest calculation time possible for
your particular problem.

Instructor note
This lesson should last about 1 hour 15 minutes.

You must first choose whether you want to use CPLEX or CP Optimizer to solve the
problem.

Then, depending on this choice, you could optionally make some additional choices related
to the solve process, such as specifying the algorithm used by CPLEX, setting some solver
parameter settings, or specifying a search phase for CP.

This lesson provides:

• Guidelines for choosing which engine to use
• An overview of the different MP optimization algorithms available in IBM ILOG

OPL
• Guidelines for deciding which MP algorithm to choose
• Guidelines for fine tuning the algorithms in the settings file

OPL provides two powerful engines: CPLEX and CP Optimizer.

CP Optimizer uses Constraint Programming techniques, featuring built in search. The
built in search can also be customized if necessary.

CPLEX provides access to seven different MP algorithms:

• Simplex optimizers can solve linear and quadratic problems with millions of
constraints and continuous decision variables:

• Primal
• Dual
• Network (a specialization of the primal and dual simplex optimizer for

network problems)
• Barrier optimizer, an alternative to the simplex method for solving linear and

quadratic problems, and an approach for solving quadratically constrained problems
(QCP)

• Mixed Integer Programming (MIP) optimizer for problems with mixed-integer
decision variables (continuous or binary) using linear or quadratic objective
functions

• Sifting optimizer
• Concurrent optimizer

These optimizers are described briefly in this lesson, followed by information on configuring
them and guidelines for selecting them.

© Copyright IBM Corporation 2009. All rights reserved. 305

Lesson 17: Optimizing Engines and Algorithms

Choosing your optimization engine

Learning objective
Learn the basic guidelines for
choosing the correct engine.

Key terms
• CPLEX
• CP Optimizer

The first decision you need to make, is whether the model you are
about to write is a candidate for MP or for CP. You need to make
this decision at the start, as the design of themodel is intrinsically
different, most of the time.

CPLEX® is used as the default optimization engine if you do not
specify one. Select CP Optimizer by typing the command using
CP as the first line in your model (.mod) file.

Guidelines for choosing your engine
You need to make your choice of engine using your knowledge of the problem you are
going to model. Here are a few guidelines that can help:

Use CPLEX when:
• The problem can be expressed naturally using MP
• You need proven optimality, or a robust measure of the percentage of optimality

of the best solution found
Use CP Optimizer when:

• You need to do detailed scheduling
• The problem contains numerous or complex logical constraints
• The problem contains constraints that are hard to express using MP (e.g.

quadratic expressions, generalized elements, standard deviation, lexicographic
ordering, allowed/forbidden assignment combinations, etc.)

Very large problems, which may require different engines to solve different aspects,
should be decomposed into multiple models, and each engine used for the appropriate
part of the problem. For example, planning using CPLEX, and detailed scheduling of
the resulting plan using CP Optimizer.

It is important to remember that these are general guidelines, and your knowledge of
the problem, together with accumulated experience, will provide the best guidance. If
you have a problem that does not use expressions that only one of the engines can
extract, it is worthwhile to try both engines to see which is more efficient in solving
your problem.

© Copyright IBM Corporation 2009. All rights reserved.306

Lesson 17: Optimizing Engines and Algorithms / Topic 1: Choosing your optimization engine

CPLEX optimization algorithms

Learning objective
Learn the different MP optimizing

algorithms available in the CPLEX®

engine, and how each works

Key terms
• simplex
• barrier
• MIP
• sifting
• concurrent
• CP

The Primal Simplex optimizer
The Primal Simplex optimizer has two phases:

• A first phase finds a feasible starting point.
• The starting point is an extreme point belonging

to the edge of the feasible region.
• If you do not provide an objective function in your

model, OPL gives the starting point as the solution.
• A second phase iteratively improves the optimality.

The Primal (and Primal Network) Simplex algorithm reaches
optimality by following the edge of the feasible region.

The Dual Simplex optimizer
The Dual Simplex optimizer has two phases:

• A first phase finds an optimal but not feasible starting point.
• A second phase iteratively improves the objective toward optimality.

Dual Simplex is generally faster than Primal Simplex when the number of constraints
exceeds the number of decision variables but this is very sensitive to problem structures,
particular cases, etc.

The Network Simplex optimizer
The Network Simplex optimizer includes adaptations of the Primal and Dual Simplex
algorithms to problems having a network substructure. It functions similarly to Primal
and Dual, with the addition of these adaptations.

The Barrier optimizer
The Barrier optimizer is a one-phase interior point method reaching optimality and
feasibility simultaneously. It can generate solutions inside (suboptimal), outside
(infeasible) or on the edge of the feasible region, using a primal-dual, predictor-corrector
method to converge toward optimality. The Barrier optimizer is generallymore efficient
than the Primal Simplex for large size problems (thousands of decision variables and
constraints). It also offers a fast, robust method for solving quadratically constrained
programs.

The MIP optimizer
The MIP optimizer employs a branch-and-bound technique that can be used to solve
mixed-integer linear programs (MILP); mixed-integer quadratic programs (MIQP); and
mixed-integer quadratically constrained programs (MIQCP). This optimizer includes
cutting-plane strategies such as Gomory, clique and cover, flow cover, GUB cover and
implied bound. Cutting plane strategies are beyond the scope of this training, but more
information can be found in the CPLEX user documentation.

The MIP optimizer is automatically invoked in problems using CPLEX when there are
integer decision variables or data in the model.

The Sifting optimizer
The sifting optimizer performs best when the problem has a large aspect ratio. That is
when there aremanymore decision variables than constraints. It works well in problems

© Copyright IBM Corporation 2009. All rights reserved. 307

Lesson 17: Optimizing Engines and Algorithms / Topic 2: CPLEX optimization algorithms

where an optimal solution can be expected to place most decision variables at their
lower bounds.

Sifting optimizer process:
1. It first solves the working problem, i.e. a subproblem:

All rows are included.•
• A small subset of the columns is included.
• The remaining columns are assumed to have an arbitrary solution, such

as decision variables fixed at their lower bounds.
2. It uses the solution of the working problem to re-evaluate the reduced costs of

the remaining columns.
3. Any such columns whose reduced costs can improve the objective of the working

problem become candidates to be added to the working problem for the next
major sifting iteration.

4. When no candidates are present, the solution of the working problem is optimal
for the full problem. Sifting terminates.

The Concurrent optimizer
The concurrent optimizer can be used with a parallel processing server and a parallel
(multi-thread) CPLEX license. It solves the problem by simultaneously using Primal
Simplex, Dual Simplex, and Barrier algorithms and returns a solution when any of the
algorithms finds a solution.

The concurrent optimizer launches distinct optimizers on multiple threads. When the
concurrent optimizer is launched on a single-threaded platform, it calls the Dual Simplex
algorithm.

In other words, choosing the concurrent optimizer makes sense only on amultiprocessor
computer where threads are enabled.

MP Optimization strategies compared
The following 2 diagrams illustrate how themost commonly usedMP optimizers function.
The first diagram shows where each optimizer looks for an initial solution or starting
point in its first phase or cycle.

© Copyright IBM Corporation 2009. All rights reserved.308

Lesson 17: Optimizing Engines and Algorithms / Topic 2: CPLEX optimization algorithms

The next diagram shows how the optimizer goes about moving toward its optimal
solution.

© Copyright IBM Corporation 2009. All rights reserved. 309

Lesson 17: Optimizing Engines and Algorithms / Topic 2: CPLEX optimization algorithms

© Copyright IBM Corporation 2009. All rights reserved.310

Lesson 17: Optimizing Engines and Algorithms / Topic 2: CPLEX optimization algorithms

Controlling optimization

Learning objective
Learn how and when to configure
optimizing algorithm options

Key terms
• settings file
• controlling optimization

OPL gives you a large measure of control over the selection of
optimizers and the configuration of their parameters. You perform
both of these operations in the settings (.ops) file.

This topic steers you to the configuration options in the settings
file, and gives you some guidelines for choosing the best algorithm
for a given problem. A project does not automatically have a
settings file, but you can create one at any time.

You can also configure the optimizer parameters using

IBM® ILOG® Script.

Changing default parameters
Formost problems, the default parameters function best. There are occasions, however,
where you want or need to change certain parameters to control the behavior of the
optimizer. The theory and practice of fine tuning optimizer performance is an advanced
topic and beyond the scope of this training. Here you will learn how parameters are
modified, should you wish to do your own performance tuning.

To change parameters of an algorithm:
1. Create a new settings file by selecting, from the main menu, File >New

>Settings. After choosing the folder and file name for saving, the settings file
opens in the OPL IDE workspace.

2. Select a group of parameters where you want to make one or moremodifications.
For example, select the General leaf of the Simplex branch of the navigation
tree. The window resembles the following illustration:

© Copyright IBM Corporation 2009. All rights reserved. 311

Lesson 17: Optimizing Engines and Algorithms / Topic 3: Controlling optimization

In this window, you can select parameters you wish to modify. Some parameters are
selected from a list, others can be entered directly from the keyboard. Each optimizer
has its specific set of parameters. You can see a quick popup description of the
parameter's function by hovering your mouse cursor over the “note” icon alongside the
parameter.

The curved arrow icon, if clicked, restores the default setting for the parameter.

Selecting your optimization algorithm
There are several places where you can decide either to force the use of a particular
algorithm or let the engine decide automatically, for example:

• Select algorithms to use for continuous problems and for continuous quadratic
problems in the General leaf of theMathematical Programming branch in
the navigation tree of the dialog box.

• Select algorithms used for different processes of the barrier optimizer in the
Barrier >General leaf.

• Select the algorithm used to solve the sifting subproblem in the Sifting
>General leaf.

The following screen shot shows how you select the dual simplex algorithm for linear
optimization.

If you select Automatic, OPL will choose the algorithm for you. This is the default
setting, but you can choose a specific algorithm from the list if you need to.

Your choice of algorithm and specific parameters apply only to the current active project
and run configuration. Each run configuration can thus have its own customized settings,
and optimizer behavior in different projects can be separately configured.

© Copyright IBM Corporation 2009. All rights reserved.312

Lesson 17: Optimizing Engines and Algorithms / Topic 3: Controlling optimization

Selecting the best algorithm
The choice of algorithm is very sensitive to problem structure, particular cases and your
specific data. Your knowledge of the problem and experience with OPL will always be
the most important factors. The following table offers a few guidelines to help youmake
the choice.

The concurrent algorithm can be useful if you have a multiprocessor machine and can
work in multithreading mode.

© Copyright IBM Corporation 2009. All rights reserved. 313

Lesson 17: Optimizing Engines and Algorithms / Topic 3: Controlling optimization

Summary

Review
In this lesson, you learned about:

• Optimizing engines used by OPL:
CPLEX for Mathematical Programming•

• CP Optimizer for Constraint Programming

You select your optimizing engine before writing the model.

• Optimization algorithms used by CPLEX:
• Primal simplex
• Dual simplex
• Network simplex
• Barrier
• Sifting
• MIP
• Concurrent

MP algorithms can be selected and configured in the settings file.

You have also learned some general rules of thumb for when to use whichMP algorithm.

© Copyright IBM Corporation 2009. All rights reserved.314

Lesson 17: Optimizing Engines and Algorithms

Lesson 18: Performance Tuning

Performance tuning focuses on two areas: speed and memory. OPL model resolution time
can be greatly improved by paying attention to some syntax and modeling tips that deal
with these issues.

Instructor note
This lesson should last about 30 minutes.

This lesson reviews some tips which, if followed, will bring significant results, due to:

• Better memory management
• Choice of syntax that works most efficiently with OPL's internal mechanisms
• Use of sparse model data, which reduces the number of elements that need to be

calculated.

Many of these tips summarize material which you have already seen in the preceding
lessons.

Use the Profile output tab in the OPL IDE to test different methodologies and fine tune
your models.

© Copyright IBM Corporation 2009. All rights reserved. 315

Lesson 18: Performance Tuning

Prefer declarative syntax

Learning objective
Improve the efficiency of OPL
models

Key term
declarative syntax

In OPL, the rule of thumb is that declarative syntax is preferable
to imperative syntax. For example,

int T[r in 0..10] = 2*r;

is better than

execute {
for (r in 0..10)

T[r] = 2*r;
}

© Copyright IBM Corporation 2009. All rights reserved.316

Lesson 18: Performance Tuning / Topic 1: Prefer declarative syntax

Use sparse arrays

Learning objective
Improve the efficiency of OPL
models

Key term
sparse arrays

As in all programming languages, it is better to keep the data
and model information as small as possible. In situations where
there are fewer values than there are combinations for those
values, it is better to use arrays of tuples. Thus,

tuple namesAndPlacesType {
string name;
string place;
}
{namesAndPlacesType} namesAndPlaces = ...;
int availability[namesAndPlaces] = ...;

is better than

{string} names = ...;
{string} places = ...;
int availability[names][places] = ...;

If we used the two-dimensional array, we would have lots of zeros in the matrix – i.e.
memory locations used by combinations which have to meaning for solving the problem.
The array of tuples produces only those combinations that are non-zero and thus are
of interest for solving the problem.

© Copyright IBM Corporation 2009. All rights reserved. 317

Lesson 18: Performance Tuning / Topic 2: Use sparse arrays

Think about data instantiation

Learning objective
Summarize hints related to data
instantiation methods

Key term
instantiation

Throughout this training you have learned about different ways
to instantiate data elements. Some of the advice may seem
contradictory. In reality, the method you need to use is a function
of your situation, the type of model you are constructing, and
where bottlenecks may occur. Here you will find a number of tips
assembled together, that present different considerations. It is
impossible to follow all of them in one model. The objective is to
select the method that is best for your situation.

Ranges and sets
Sets instantiated by ranges are represented explicitly (unlike ranges). As a consequence,
a declaration of the form {int} s = asSet(1..100000); creates a set where all the
values 1, 2, ..., 100000 are explicitly represented, while the range range s =
1..100000; represents only the bounds explicitly.

Pay attention to data initialization modes
In OPL, the initialization mode you choose affects memory allocation. In particular,
external initialization from a .dat file, while enabling a more modular design, may
have a significant impact on memory usage:

• Internally initialized data (directly from the model file) is initialized when first
used. This is also called "lazy initialization". Unused internal data elements are
not allocated any memory. In other words, internal data is "pulled" from OPL
as needed.

• Externally initialized data (from a data file) is initialized while the .dat file is
parsed and is allocated memory whether it is used by the model or not. In other
words, external data is "pushed" to OPL.

As a general rule, you should maintain separation of model and data. Internal
initialization should be considered only in cases of extremememory use problems
that cannot be overcome by other techniques.

Array instantiation - summary of tips
• Prefer generically instantiated indexed arrays rather than an execute

INITIALIZE block – as is indicated earlier in this lesson, declarative syntax is
more efficient, except for the most complex cases.

• Use sparse arrays – see above
• In pre- or postprocessing script statements, do not instantiate array elements

to zero, OPL does that for you
• When you use multidimensional arrays, the order of the dimensions may be

significant. For instance, in the following example:

/*..*/

range r1 = 1..n1;
range r2 = 1..n2;

dvar int+ x[r1][r2];

/*..*/

a1 == sum(i in r1, j in r2) x[i][j];
a2 == sum(j in r2, i in r1) x[i][j];

© Copyright IBM Corporation 2009. All rights reserved.318

Lesson 18: Performance Tuning / Topic 3: Think about data instantiation

the calculation of a2 is more efficient because the OPL internal caching
mechanism recalculates x[i] only when i changes.

© Copyright IBM Corporation 2009. All rights reserved. 319

Lesson 18: Performance Tuning / Topic 3: Think about data instantiation

Scripting hints

Learning objective

Learn to use IBM® ILOG® Script
efficiently

Key term
IBM ILOG Script

• Use the profiler to detect execute blocks that run for a
long time during the preprocessing phase.

• If you observe that the execution of amodel is slow because
the main scripting block loads many engine instances or
submodels, you can improve this by turning off the OPL
Language optionUpdate charts and statistics inmain
in the settings file.

• In pre- or postprocessing script statements, do not
instantiate array elements to zero.

• Calculate iteration sets for conditional blocks.
• Declare local script variables using the keyword var.
• Use the methods end and endAll to free memory in IBM

ILOG Script and interfaces.

Instructor note
The end() and endAll() methods are by default disabled in the IDE to
prevent faulty memory management by the user. To enable them, we must
set the mainEndEnabled setting on the model. See OPL-2058 for more
information.

© Copyright IBM Corporation 2009. All rights reserved.320

Lesson 18: Performance Tuning / Topic 4: Scripting hints

Choose your MP optimizer

Learning objective
Improve the efficiency of OPL MP
models

Key term
optimizer selection

Choose the MP optimizer based on the problem structure, and
remember these basic guidelines:

• Use Primal Simplex for general problems.
• Use Network Simplex when the problem has a network

substructure (each decision variable appears in two
constraints).

• Use Dual Simplex when the problem hasmore constraints
than decision variables.

• Use the Barrier Optimizer with large problems (thousands
of decision variables and constraints).

• Use the Sifting Optimizer when the problem has more
decision variables than constraints, and it is expected that
most decision variables will remain at their lower bounds.

• Use the Concurrent Optimizer for very large or complex
models when working in a multithreading environment

© Copyright IBM Corporation 2009. All rights reserved. 321

Lesson 18: Performance Tuning / Topic 5: Choose your MP optimizer

Additional performance tuning tips

Learning objective
Add to your bag of tricks for tuning
models

Key term
performance tuning

• The general expression p in S where S is a set of tuples
containing n fields, can be replaced by an indexed
expression:<p1,...,pn> in S.

While it speeds up processing, this process can be
very memory consuming especially if used in
labeled constraints! You need to evaluate which
efficiency is most important for your model.

• Avoid dummy indexes for tuple components.
• In CPmodels with customized search strategies, consider

the order of search phases.
• Change the way the engine solves models by changing

engine parameters in the settings file.
• Constraint labels can result in largememory usage; when

memory is a concern, constraint labels should be avoided.
• Often, memory usage and speed improvements are

trade-offs, one against the other. Be sure you know which
will give you the greatest improvement, and make your
choices according to common sense.

© Copyright IBM Corporation 2009. All rights reserved.322

Lesson 18: Performance Tuning / Topic 6: Additional performance tuning tips

Summary

Review
In this lesson, you learned some basic tips to improve the efficiency of your OPLmodels:

• Use declarative syntax
• Use sparse arrays
• Choose your optimizer based on the problem structure

© Copyright IBM Corporation 2009. All rights reserved. 323

Lesson 18: Performance Tuning

Lesson 19: Appendix:The OPL IDE Graphical
Interface

This optional lesson provides you with a quick overview of the OPL IDE graphical interface.
It is not a complete tutorial. For that, please refer to the product documentation, where
you will find tutorials and detailed explanations of the features and operation of the OPL
IDE.

Instructor note
This lesson is optional. You can decide to present the user interface
formally if you think the students will really need it (beyond what you
show them during the regular lessons), or you can let them follow it on
their own, as a self-guided tour through the interface. It can also serve
as a reference guide during the training. Presented as a continuous
lesson, it should take about an hour.

© Copyright IBM Corporation 2009. All rights reserved. 325

Lesson 19: Appendix: The OPL IDE Graphical Interface

The OPL IDE main window

Learning objective
Learn the geography of the main
OPL IDE window

Key terms
• OPL Projects Navigator
• Editing Area
• Output Area
• Problem browser
• Outline

Starting the IDE
There are three ways to start the OPL IDE:

• From the Windows Start menu, click Programs > IBM
ILOG > IBM ILOG OPL > OPL IDE

• In Windows Explorer, double-click the IDE executable
oplide.exe in the <OPLhome>\oplide directory,
where <OPLhome> is your installation directory

• From the command line, by typing oplide.

When the OPL IDE starts, by default you see the Welcome
window:

The Welcome window provides a convenient means of navigating to different tools that
help you learn more about the OPL IDE. These are identified by icons:

•

Overview takes you to two parts of the Starting Kit documentation:
• From OR to OPL and ODM provides an overview of IBM® ILOG® OPL

and its main features.

© Copyright IBM Corporation 2009. All rights reserved.326

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 1: The OPL IDE main window

• Migrating from previous versions of OPL is useful for people who have
used previous versions of OPL and need to migrate existing projects.

•

*Tutorials provides a list of links to tutorials on various aspects
of the OPL IDE

•

Samples links you to sections of the documentation that explain the example
files provided with the software

•

What's New takes you to release notes that cover changes in the OPL IDE and
in the underlying software, and also shows live links to the latest discussions
in OPL and ODM user forums.

•

TheWorkbench icon in the upper righthand corner of the
Welcome window takes you to the OPL Main window.

TheWelcomewindow has its own toolbar, used to navigate among the different elements
available via this window, and to customize the way the page is displayed.

When you use theWorkbench icon to navigate to the Main window, the Welcome
window is minimized. Its elements are available from small icons in the lower righthand
corner of the OPL IDE Main window.

Main window components
TheMain window is organized into different views.A view can be an editor, a navigator,
or it can provide alternative ways to visualize a project and its components.

The following diagram shows the primary views and controls of the OPLMain window.
The diagram shows theMain windowwith a project loaded into the IDE. Tooltips appear
when you move the pointer over most elements of the main window

© Copyright IBM Corporation 2009. All rights reserved. 327

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 1: The OPL IDE main window

Two of the most important areas in the OPL IDE are the:

• Editing Area
• Output Area

The Editing Area is the center of the IDE. It is where you display and work on your
model, data and settings.

The Output Area contains multiple tabs that permit you to view different information
produced by OPL as it processes your model:

• Problems displays semantic and syntax errors as you type when you write a
model manually, and internal errors, such as scripting or algorithm errors, when
you solve a model.

• Scripting log shows execution output related to the IBM® ILOG® Script main
or execute or prepare blocks of the model (if applicable).

• Solutions displays the final solution to a model and, if applicable, any
intermediate feasible solutions found.

• For infeasible CPLEX® models, Conflicts shows the places where you can
change the data or the way filtering constraints are expressed so as to remove
the incompatibilities that made the model infeasible.

• For infeasible CPLEX models, Relaxations shows the places that constraints
can be relaxed to remove the incompatibilities that made the model infeasible.

• Engine log displays information from the solving engine (CPLEX or CP
Optimizer) on the solving process and on the objective function.

• Statistics shows details of the algorithm used by the solving engine.
• Profiler is a tool that computes the time and memory used by each execution

step and displays it as a table. You can use this information to improve the
model so that it executes faster and consumes less memory. It also displays
details of model extraction and engine search during the solving phase.

© Copyright IBM Corporation 2009. All rights reserved.328

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 1: The OPL IDE main window

Instructor note
In previous versions of OPL, Conflicts and Relaxations were shown in the
same output tab. As of OPL V6.0, they are separated.

These views and their use are explained in more detail in the OPL documentation.

Other important areas in the Main window include:

• OPL Projects Navigator – this is where you manage OPL projects and the
different files that each project uses.

• Problem browser – gives you different views of critical modeling elements such
as solution values, data and decision variables.

• Outline – shows the structure of the file selected in the OPL Projects Navigator.

Manipulating views
Views in the OPL IDE can be:

• opened
• closed
• moved
• resized
• detached

You can easily rearrange the IDE to suit your personal preferences or changing needs,
based on what you are doing at the moment.

For many operations, the OPL IDE provides a variety of different ways to access
commands, including:

• Main menu bar

© Copyright IBM Corporation 2009. All rights reserved. 329

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 1: The OPL IDE main window

• Context menus (available via a right-click)
• Keyboard shortcuts (such as <Ctl>+c for copying)
• Toolbar buttons

Toolbars
The OPL IDE provides toolbars at different levels. At the top level, two toolbars are
available:

• Standard toolbar
• Execution toolbar

These toolbars are always available, although all buttons may not be active at the same
time. Additional view toolbars are also available for individual views.

Many toolbar buttons are shortcuts to menu commands, but some buttons have no
equivalent commands from the menu bar. When you move the pointer over a button in
any toolbar, a tooltip displays a short description of it.

The standard toolbar, containing a common set of functions, is shown below with an
explanation of its buttons.

The Execution toolbar provides functions related to executing projects:

© Copyright IBM Corporation 2009. All rights reserved.330

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 1: The OPL IDE main window

View toolbars include:

• Projects Navigator view toolbar - used to expand and collapse elements in the
OPL Projects Navigator, maximize and minimize the view and customize the
way the view interacts with the Editing Area.

• Problem browser view toolbar - controls how much information is displayed,
sorting options and filters.

• Output Area tab views toolbars - options specific to each tab of the Output Area.
Mouseover each button to see a tooltip for it.

• Debug views toolbars - used to control debugging. They are active in the three
debugging views (Debug view, Variables view and Breakpoints view) only when
a solution is running. They remain active as long as execution is in progress,
including when a solve operation is suspended.

The OPL Preferences window
The OPL Preferences window allows you to customize many aspects of the behavior of
the OPL IDE to suit your needs. Open the Preferences window by selectingWindow
>Preferences from the main menu bar.

To set options in the Preferences window:
1. In the navigation tree at the left, select the item you want to modify. Items can

be expanded or collapsed using the “+” and “–” symbols before certain headings.
2. Change the settings in the fields at the right. Options for changing settings

include:
• Selecting or deselecting a check box
• Selecting a radio button
• Selecting items in a tree structure, list box or drop-down list
• Filling in a text field
• Calling up a secondary dialog box by clicking a button
• Some of the dialogs provide links to other, related preference settings.

© Copyright IBM Corporation 2009. All rights reserved. 331

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 1: The OPL IDE main window

3. When you have finished making changes, do one of the following:
• Click Apply to save your changes and continue working in preferences.
• Click Restore defaults to restore default settings to all fields for the

currently displayed dialog and continue working in preferences.
• Click OK to save your changes and close the dialog box.
• Click Cancel to keep settings unchanged and close the dialog box.

© Copyright IBM Corporation 2009. All rights reserved.332

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 1: The OPL IDE main window

Working with projects

Learning objective
Learn about OPL projects and files,
how they are created, edited and
saved

Key terms
• resource
• project
• file
• folder
• workspace

Resources
A project in OPL is a type of resource. A resource is defined as
one of the following:

• Project: comprised of folders and files. It maps to a
directory in your computer's file system. You use a project
to define the contents of a build, for version management,
and to manage sharing and resource organization.

• Folder: similar to a folder (or subdirectory) in your
computer's file system.

• File: similar to a file in your computer's file system

Resources are most often stored in the workspace, defined as
the root directory in which you store andworkwith your resources.

It can be located anywhere on the file system, but its default location is C:\Documents
and Settings\<user_name>\Application Data\ILOG\OPL Studio IDE\6.3\.

The OPL Projects Navigator
The OPL Projects Navigator is where you manage your projects by creating, adding or
removing resources. You can display more than one project at the same time.

The OPL Projects Navigator displays projects as tree structures with the files below
them listed in alphabetical order (except for within run configurations, where the order
of files is important).

Projects in the OPLProjects Navigator are persistent. Once you have imported or created
projects, you can leave them in your OPL Projects Navigator. When you next launch
the OPL IDE, they will be there, ready to use.

Instructor note
It may be useful to call attention, at this point, to the difference between an
“open” OPL project and a “closed” one. Both appear in the workspace, but a
“closed” project is not parsed at run time, and so saves CPU time andmemory.
This will be discussed later in the lesson, as well.

An OPL project contains:

Mandatory resources:
• The project name (and optional description in parentheses). This is the root of

the tree structure.
• A default run configuration (labeled as “default” in parentheses)
• At least one model (.mod) file

Optional resources (zero, one or more):
• Additional run configurations
• Additional model (.mod) files
• Data initialization (.dat) files
• Settings (.ops) files
• If you are generating an ODM application, additional files to configure and

customize the ODM application.

© Copyright IBM Corporation 2009. All rights reserved. 333

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 2: Working with projects

Creating a new project
To create an empty project:

1. In the main menu bar, select File >New >OPL Project. The New Project
dialog box opens.

2. Type a name for the file in the Project Name field.

Each project name has to be unique. Duplicate project names are not
allowed, even if stored in different locations.

3. Use theBrowse button (to the right of the Project Location field) to navigate
to the directory where you want to store your project. In the navigation dialog,
use theMake New Folder button, if necessary.

This location is your workspace.

4. You can add a Description in the last field. This description appears in the
OPL Projects Navigator next to the project name. It can be useful to
distinguish between different projects with similar names and/or purposes.

5. If you want to configure custom settings for this project, check the Create
settings box. A settings (.ops) file will be created for the project.

You can create a settings file at any time, using the menu command
File >New >Settings.

6. If you want to create a data file for this project, check the Create Data box. A
data initialization (.dat) file will be created for the project.

You can create a data initialization file at any time, using the menu
command File >New >Data.

7. Click Finish. Your project is saved to your specified location and opens with an
empty model file of the same name.

Importing an existing project into the OPL Projects Navigator
When you want to work on an OPL project that is not already in the OPL Projects
Navigator, you need to import it.

Instructor note
This procedure applies only to OPL V6.0 projects and later. Projects from
previous versions of OPL (for example, V5.x projects that use .prj files) need
first to be migrated. Refer students to the OPL V6.3 Migration Guide in the
documentation. If students request it, you can lead them through amigration,
though it is not given in this training workbook.

Set up your import
1. From the main menu, choose File >Import, or right-click in the OPL Projects

Navigator and choose Import.
2. Select Existing Projects Into Workspace from the submenu. The Import

wizard is displayed.
3. The Import wizard offers you two choices for the location of your project. Choose

one:
• Select root directory to indicate the directory on your file system

where the project is located. You can select it by navigating to the
directory after clicking the Browse button.

• Select archive file to indicate a compressed archive, such as a .zip
or .tar file that contains the project files. Archive contents will be

© Copyright IBM Corporation 2009. All rights reserved.334

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 2: Working with projects

imported into the OPL Projects Navigator without the need to unarchive
them. You can navigate to the archive by clicking the Browse button.

In the import wizard, the OPL projects in the selected directory (or archive) that do not
currently exist in your workspace are listed in the Projects view.

To complete your import:
1. Check the box of each of the projects you want to import.
2. The Copy projects into workspace check box has the following behavior:

• Check the box if you want to copy the project from its current location
to your workspace. Anymodifications youmake to the project in the OPL
IDE will affect only the copy in the workspace, and not the copy in the
original location.

• Leave the box unchecked if you wish to edit the original copy directly in
its current location. Changesmade in the OPL IDEwill affect the original
location, the project is not copied to the workspace.

3. Click Finish to complete the operation. The project has now been imported into
the OPL Projects Navigator and you can work on it.

Editing and saving files in projects
The Editing Area displays various contents, depending on what you select:

• The text editor appears with:
The contents of amodel file when you double-click a .mod file in the OPL
Projects Navigator

•

• The contents of a data file when you double-click a .dat file in the OPL
Projects Navigator

• The settings editor appears if you double-click an .ops settings file
• Specialized ODM editors appear if you have IBM ILOG ODM installed and

double-click on one of the files in the ODM Application area of a project.

© Copyright IBM Corporation 2009. All rights reserved. 335

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 2: Working with projects

Open files for editing by double-clicking the file name in the OPL Projects Navigator.
Multiple editors can be open in the Editing Area at once. You can switch back and forth
between the open views by clicking the tabs of the views that are visible in the Editing
Area.

You can display more than one editor at a time by grabbing the tab of a hidden window
you want to display and moving it around inside the Editing Area. The different editors
can be resized, but they cannot be moved out of the central frame of the IDE.

You save the file you are working on using the File >Save main menu selection. You
can also use the equivalent toolbar button. Both menu item and toolbar button are only
available when the file has been modified.

To save all files in the OPL Projects Navigator that have been modified (in all open
projects), use File >Save All or the equivalent toolbar button.

The OPL text editor
The .mod and .dat files appear in the OPL text editor. The text editor has the following
features:

• Multiple document tabs enable you to edit more than one file at the same time.
You can also tile multiple documents inside the Editing Area.

• Syntax coloring: the syntax in each type of file that you can open (model, data)
is colored differently, according to its type. The color scheme is customizable

• Multiple levels of Undo and Redo: you can undo and redo your modifications
without any limit.

• Automatic indentation: blocks, as delimited by curly brackets {}, are automatically
indented. You can increase or decrease the indentation depth by setting the
Tabulation size.

• Bracket (or brace) matching: when typing], } or), the matching opening bracket
is highlighted for 800 ms. In data files, < and > are also matched.

• Margin symbols: the editor has a left margin that can contain margin symbols,
such as:

• the red dot with an “X” that indicates an error
• the blue circle that indicates a breakpoint (in debugging mode)
• the blue circle with an arrow that indicates that OPL has stopped at the

current breakpoint (in debugging mode)
• the white arrow that indicates current location during debugging

• Reload prompt: if you modify a file with an external editor, you are prompted
to reload the file as soon as the editor in the IDE regains focus.

• Customization: you can set options to customize the editor; chooseWindow
>Preferences and click either Editor in the General category, or Colors in
theOPL category of the navigation tree on the left of the dialog box that opens.

• Version control: The OPL IDE provides a limited form of version control called
Local History that allows you to track and compare different versions of your
files as you edit them over the life span of a project. For example, if you edit the
same model file several times, all versions of the file are still available to you.
You can use the Compare With and Replace With commands to compare
different versions of a file or revert to previous versions of a file or its contents.
These are explained fully in the documentation.

Instructor note
Many of the text editor features above are new or changed from earlier
releases. Note especially the version control feature. You should make a point
of reviewing these features to familiarize yourself with them before presenting

© Copyright IBM Corporation 2009. All rights reserved.336

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 2: Working with projects

this lesson. If you have students who have used older versions of OPL, you
will want to point these differences out to them.

Project settings editor
You can customize the settings of each project – for example, MP, language or optimizer
options – using a settings file. The settings file (with the extension .ops) is a separate
file included in the project set. It is possible to attach multiple settings files to a project,
and apply different settings files to different run configurations (see the explanation of
run configurations later in this lesson). This gives you unprecedented flexibility in
configuring a model and determining how it is going to solve the different problems you
pass to it.

To create a new settings file, right-click anywhere in the OPL Projects Navigator, and
select New >Settings from the context menu.

You can also create a settings file using File >New >Settings in the menu bar.

In both these cases, you set the parent folder and other parameters in the dialog box
that opens.

To edit a settings file, double-click it in the OPL Projects Navigator. The Editing Area
will show settings as in the following screen shot.

To edit the options in the settings file:
1. In the navigation tree at the left, select the item you want to modify.
2. Change the settings in the fields at the right. Options for changing fields include:

• Selecting items from a list box
• Filling in a text field
• Selecting or deselecting a check box

© Copyright IBM Corporation 2009. All rights reserved. 337

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 2: Working with projects

3.

You will notice, to the right of each field, the symbols :
• Place the cursor over the document icon to see a popup explanation of

the field and the options available.
• Click the curved arrow to reset the field to its default value.
• A red exclamation point to the left of a field label indicates a field that

has been changed from its default value.
4. Save your changes by selecting File >Save from the main menu. You can also

simply click the x in the .ops file tab to close the window. You will be prompted
to save the file before the window closes.

© Copyright IBM Corporation 2009. All rights reserved.338

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 2: Working with projects

Managing projects

Learning objective
Learn how to manage and
manipulate OPL projects in the OPL
Projects Navigator.

Key terms
• active project
• run configuration

You can perform the following operations on projects:

• When more than one project is in the OPL Projects
Navigator, you can:

• Set a project as the active project
• Open or close a project

• Add a model, data or settings file to a project
• Delete a model, data or settings file from a project
• Create or remove one or more run configurations for the

project
• Make a copy of a project
• Delete a project

Set the active project
The active project is the one that is currently selected in the OPL Projects Navigator.
No action is required to change active projects other than clicking the project name or
any of the files inside the project folder.

This does NOT mean that clicking in a project and making it the active project
causes its default run configuration to be the active run configuration under
the Run button . The behavior of this button is explained more in detail in the
section on executing projects.

Close or open a project
Projects are either open or closed.

When a project is closed, it is ignored by OPL. It cannot be changed, but its resources
still reside on the local file system. This can reduce build time for the project(s) that
remain open.

How to close or open a project:
• To close an open project, right-click on the project name and choose Close

project from the context menu. The plus sign next to the project name
disappears, but it remains in the OPL Projects Navigator.

• To reopen the project, right-click on the project name and chooseOpen project
from the context menu

Add existing files to a project
You can add existing files to a project by copying them into the selected project in the
OPL Projects Navigator. There are two methods for doing this.

To add an existing file to a project – first method:
1. In the OPL Projects Navigator, select the project into which you want to import

a file.

This is an optional step, you can select the project later if you prefer, in
the Import dialog.

2. In the main menu, select File >Copy Files to Project. The Import dialog box
opens.

3. In the Import dialog box, indicate the source directory for the file in the From
directory field – you can also navigate to it using the Browse button.

4. Select the file or files you want to add in the list that displays. You have buttons
to filter the list and help select all or none of the files.

© Copyright IBM Corporation 2009. All rights reserved. 339

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 3: Managing projects

5. If you have preselected the project you are importing to, the Into folder field
will already be filled in. You can also use theBrowse button to select one of the
project folders in your OPL Projects Navigator.

6. Select any of the Options you need and click Finish. The selected files are
copied into the project and ready to be opened in the editor.

To add an existing file to a project – alternate method:
1. Open a Windows Explorer window to the directory where the file(s) you want

is located.
2. Drag the file to the OPL Projects Navigator and drop the file(s) onto the project

folder where you want to put them. The file(s) are copied into the project and
ready to be opened in the editor.

With either method, the files are copied to the project, and any modifications
are made only to the copy in the OPL project folder, not to the original file.

Delete a file from a project
When you remove a file from a project, you are deleting it from the project folder. This
operation cannot be undone, and any changes you may have made in the file will be
lost.

To delete a file from a project:
1. In the OPL Projects Navigator, right-click the file you want to remove from the

project.
2. Select Delete from the context menu.
3. The file is removed from the project and deleted from the project folder in the

file system.

When you delete a file that is referenced by a run configuration, including a
run configuration in another project, all references to that file will also be deleted
in all run configurations that reference it. See the section on run configurations
in this lesson.

Run configurations
In the OPL IDE, a run configuration is a way of handling model, data, and settings files
within a project. Basically, it is a variation of a given project for execution and testing
purposes. It combines a model file and zero or more data files that differ, regarding
contents and/or settings, from the originalmodel and data of the project, while addressing
the same mathematical problem. It can also contain a settings file that is specific to the
run configuration.

The files listed in a run configuration are not physical files, but references to
those files, regardless of where they are found.

You can define as many run configurations as you need within a given project.

Practically, run configurations appear as sublevels in the Projects tree.

When you create a project, the default run configuration contains only the model file.
You can populate it with one or more data files, and one or more settings file.

To populate a run configuration:
1. The files you want to include must already be in your project, displayed in the

OPL Projects Navigator. If not, add the file to the project first.
2. Drag and drop the file you want to add to the default run configuration (this

will be called Configuration1 unless you have renamed it).

© Copyright IBM Corporation 2009. All rights reserved.340

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 3: Managing projects

3. Youmay rename the run configuration via a right-click on the run configuration
name. Select Properties from the context menu and change the name in the
dialog that opens.

4. Repeat the procedure for as many files as you wish to add to the run
configuration.

If you inadvertently drop the wrong file or drop a file to the wrong place, you
can at any time right-click it and choose Delete, then confirm. This does not
remove the file from the disk.

To create a new run configuration:
1. right-click the Run Configurations folder in the selected project.
2. SelectNewRunConfiguration from the contextmenu. A new run configuration

with the default name Configuration2 is added
3. Populate and rename (optional) the run configuration as outlined above.

To set a run configuration as the default:

1. right-click the run configuration that you want to set as the default run
configuration.

2. Select Set as default from the context menu. The selected run configuration
becomes the default run configuration.

Ordering files in a run configuration

When you execute a run configuration, the order of the data or settings files relative to
each other is important. Since some data in a .dat file may depend on other data in a
different .dat file, if the data files are in the wrong order it may cause an error at
execution time. For this reason, you can reorder references to files inside a run
configuration.

To set the order of files within a run configuration:
1. Right-click on the run configuration name and choose Properties from the

context menu. A properties window appears for the run configuration.
2. Use theUp andDown buttons to rearrange the order of your settings files and

data files. You can also add or remove file references in the run configuration
from this window.

3. ClickOK to close the properties window. The files in the OPL Projects Navigator
are reordered.

Copy a project
You can make a copy of an existing project, and use it as the basis for a new project.

You cannot do this by simply making a copy of the original project folder on the
file system and then opening it in OPL, because even if you rename the model
and data files in the copy folder, the copy will have the same project name as
the original.

To copy a project in the OPL Projects Navigator
1. In OPL Projects Navigator, open the project you want to copy.
2. Right-click on the project name and choose Copy from the context menu. You

could also select the project name and press <Ctrl>+C.
3. Right-click again and choose Paste from the context menu, or press <Ctrl>+V.
4. In the popup window that appears, change the project name to something other

than the original project name or one of the other project names currently open
in OPL, and click OK. The new project appears in the OPL Projects Navigator.

© Copyright IBM Corporation 2009. All rights reserved. 341

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 3: Managing projects

Delete a project
If you are not currently working with a project, you can safely remove it from the OPL
Projects Navigator. You have the possibility to do this without deleting it from the file
system.

To remove a project from the OPL Projects Navigator:
1. Right-click on the project name and choose Delete from the context menu. A

popup dialog appears asking whether you want to delete the project from the
file system or not.

2. Two options are available to you:
• SelectAlso delete contents... to delete the project entirely. The project

will be completely deleted, and cannot later be recovered usingUndo or
the Import >Existing Projects Into Workspace menu command.

• SelectDo not delete contents (the default) to remove the project from
the OPL Projects Navigator but leave it on the file system. The project
is still present on the file system and can be reopened using the Import
>Existing Projects Into Workspace menu command.

© Copyright IBM Corporation 2009. All rights reserved.342

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 3: Managing projects

Problem browsing

Learning objective
Learn to use the Problem browser
and outline views to see details of
model and data structures

Key terms
• problem browser
• outline

Problem browser views
TheOPL IDE provides a problem browser that lets you viewmodel
and data structures in depth. When you first load a project, the
Problem browserwindow is empty of data. It fills automatically
when you run a model. You can also fill it by clicking one of the
options associated with the Browse button in the execution
toolbar. In this case, however, values for decision variables and
other entities that are evaluated during solution will be empty.

You can use the problem browser to:

• navigate through the model file displayed in the text editor (entities selected in
the problem browser are highlighted in the text editor)

• examine the solutions to the problem and display additional views of them after
executing the model

• examine the structure of the model without executing it

Refer to the documentation for details of these possibilities.

The Problem browser lets you visualize the properties of all the items in the model
by category:

• Data structures
• Decision variables and expressions
• Constraints
• Postprocessing

The cursor moves in the source file when you select an item in the Problem browser.
Item definition and values are displayed as tables in the editing area when you
double-click or right-click them.

© Copyright IBM Corporation 2009. All rights reserved. 343

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 4: Problem browsing

Depending on the type of problem and the structures in it, one or more parameters are
shown in the problem browser table views:

Parameters for decision variables:
• Value
• Reduced cost
• Sensitivity range

Parameters for constraints:
• Slack
• Dual values

The Outline
The outline window shows two different views, depending on what is open in the text
editor:

• When a .mod file is open in the workspace, theModel outline window is
displayed.

• When an .ops settings file is open in the workspace, the Settings outline
window is displayed.

• The outline window is blank when a .dat file is opened.

TheModel outline window displays the syntax of the model as a tree structure. For
each type of element in the model, the element type and number of elements in the
model of that type are indicated. To display the outline of a model, just double-click the
.mod file in the project tree.

The following illustration compares the Problem browser andModel outline views
for the same problem:

© Copyright IBM Corporation 2009. All rights reserved.344

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 4: Problem browsing

When editing a settings file, the Settings outline window is automatically displayed.
It shows, in outline format, a summary of all parameters whose values have been
changed from the default.

© Copyright IBM Corporation 2009. All rights reserved. 345

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 4: Problem browsing

Solving and debugging

Learning objective
Learn about the IDE tools used to
run and debug solves of OPL
models

Key terms
• execution
• errors
• infeasibility
• breakpoint

The OPL IDE relies on the CPLEX® and CP Optimizer engines
to solve problems. It displays results from the engines in the
various Output tabs. When errors occur, the OPL IDE allows
you to insert breakpoints to help you examine the state of your
model during different phases of solution and correct the error.

The Run button

The behavior of theRun button in the execution toolbar
depends on your “run history.”

• If you have just launched OPL and no models been run
yet, clicking the Run button may produce an error
message.

• As runs are executed, they are added to a numbered list
that is visible by clicking the arrow to the right of theRun
button, as shown in the following screen shot:

• Once this list is populated, clicking the Run button
launches the most recently launched run configuration in
the list, no matter what project is selected in the OPL
Projects Navigator.

• The default behavior of the Run button is configurable.
See the documentation for details.

It should be obvious that it is not possible to simply select a project in the OPL
Projects Navigator and launch its default run configuration by a single click on
the Run button.

For this reason, many OPL developers prefer the right-click context menus to
launch their OPL solves.

The Run context menus
You can use context menus to launch solves of your projects directly from the OPL
Projects Navigator.

To run projects from the OPL Projects Navigator – first method:
1. right-click on the project folder, or on any resource in the project folder except

an individual run configuration. A context menu appears.
2. Select Run and then choose one of the two options presented:

© Copyright IBM Corporation 2009. All rights reserved.346

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 5: Solving and debugging

• Select Default Run Configuration – this option runs the run
configuration that is currently set as the default for this project.

• Select one of the run configurations shown in the list. All run
configurations for the project are shown here, and you can choose which
one you want to launch, whether it is the current default run
configuration or not.

To run projects from the OPL Projects Navigator – alternate method:
1. right-click the run configuration you wish to use for the solve. A context menu

appears.
2. Select Run this from the context menu. You can only run the selected run

configuration.

Finding a solution
The following diagram shows the steps to execute a model.

Results are displayed in the different tabs of the Output Area, as described earlier in
this lesson.

Errors
There are 4 reasons why an execution does not produce a solution:

• Syntax errors - for example: you forget a ';' after an instruction
• Semantic errors - for example:

• A variable name is misspelled
• Initialization type does not match declaration

• Run time errors - for example: an array initialization list is too long
• Infeasibility - for example: two constraints are incompatible

© Copyright IBM Corporation 2009. All rights reserved. 347

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 5: Solving and debugging

In the case of syntax or semantic errors, the text editor window highlights the source
code line where the error is found dynamically as you edit.

Run time errors are highlighted after running a model. In the Problems tab of the
Output window, details are given about the error(s) found. Once corrected, you can
immediately run the model again.

In the case of infeasibility, the Conflicts tab identifies the constraints in the conflict
and the Relaxations tab and proposes a relaxation that will produce a solution.

Debugging
The IBM ILOG OPL IDE provides three different views for debugging:

• Debug view
• Variable view
• Breakpoint view

When your model contains IBM ILOG Script main or execute blocks, you can set
breakpoints inside them by double-clicking the lefthandmargin in the gray area. A blue
dot appears to indicate the location of the breakpoint.

When you insert a break point in IBM ILOG Script main or execute block, you can
use the Debug button on the execute toolbar to stop execution at the indicated
breakpoint.

You can then inspect the call stack in two views:

• The Debug view shows the nested function calls. Each function called has
information in a stack frame. You can expand and collapse elements by clicking
the + or - signs.

• The Variable view shows the content of the selected call frame.

The following diagram shows the Debug view toolbar buttons and functions. This toolbar
is local to the Debug view.

© Copyright IBM Corporation 2009. All rights reserved.348

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 5: Solving and debugging

The following diagram shows the Variable view toolbar buttons and functions. This
toolbar is local to the Variable view.

© Copyright IBM Corporation 2009. All rights reserved. 349

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 5: Solving and debugging

The following diagram shows the Breakpoints view toolbar buttons and functions. This
toolbar is local to the Variable view.

© Copyright IBM Corporation 2009. All rights reserved.350

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 5: Solving and debugging

© Copyright IBM Corporation 2009. All rights reserved. 351

Lesson 19: Appendix: The OPL IDE Graphical Interface / Topic 5: Solving and debugging

Summary

Review
In this lesson, you learned about the OPL IDE user interface and its functions.

© Copyright IBM Corporation 2009. All rights reserved.352

Lesson 19: Appendix: The OPL IDE Graphical Interface

Conclusion
In this training, you have seen that OPL is a prototyping language for optimization
applications with:

• Support for:
Linear programming•

• Integer and Mixed Integer programming
• Quadratic and Quadratically Constrained Programs
• Constraint programming, including detailed scheduling

• Ability to define and control the search procedures
• Rich and efficient data structures

The OPL IDE is a complete development environment including:

• Project management
• Dynamic display of data
• Several stepping debug modes
• Full data browsing capacity

In addition, the OPL IDE provides a rich set of external links to provide a variety of
deployment options, including:

• IBM® ILOG® ODM, an application-building environment
integrated with OPL that lets business users to directly change
scenarios and perform "what-if" analysis in a user-friendly,
interactive environment.

• The OPL Interfaces, which provide APIs for:
C++•

• JavaTM

• Visual Basic .Net
• Microsoft® Office applications

• Direct communication with leading databases and spreadsheets
to read data and store solutions.

You have successfully used OPL in a simulation of some of your everyday business
practices.

The next step is to look at the documentation that accompanies OPL (if you have not
already). The documentation can be found within the standard help system of the
graphical environment provided in the OPL IDE. To access the Online Help, clickHelp
on the Help menu. Contextual help in the OPL IDE is available via the F1 key.

For more information:

http://www.ilog.com

Technical support pages:

Open service requests:
http://www.ibm.com/support/electronic/uprtransition.wss?category=2locale=en_us.

This is a tool to help clients find the right place to open any problem, hardware or
software, in any country where IBM does business. This is the starting place when it
is not evident where to go to open a service request.

Service Request (SR): http://www.ibm.com/software/support/probsub.html

This page offers Passport Advantage clients for distributed platforms online problem
management to open, edit and track open and closed PMRs by customer number.

© Copyright IBM Corporation 2009. All rights reserved. 353

You can find information about assistance for SR at
http://www.ibm.com/software/support/help-contactus.html

© Copyright IBM Corporation 2009. All rights reserved.354

	Lesson 1: Introduction to Optimization with IBM ILOG OPL
	The big picture: IBM ILOG Optimization Suite
	Inside OPL
	Example: a production planning problem
	Summary

	Lesson 2: Working with the OPL Language
	OPL model structure
	OPL data files
	OPL data structures
	A telephone production problem
	Combining OPL data structures
	General OPL syntax
	Sparsity and slicing
	A pasta production model
	Summary

	Lesson 3: Working with IBM ILOG Script: basic tasks
	About IBM ILOG Script
	IBM ILOG Script basics
	Preprocessing and postprocessing
	Data initialization
	Processing values in the .dat file
	Flow control
	Summary

	Lesson 4: Solving Simple LP Problems
	LP modeling structures
	Supermarket display problem
	Summary

	Lesson 5: Solving Simple CP Problems
	Introduction to CP
	CP models in OPL
	Summary

	Lesson 6: Infeasibility and Unboundedness - When the Problem Can't be Solved
	Solving the infeasible model
	Summary

	Lesson 7: Data Consistency
	Data membership consistency
	Verifying data consistency
	Summary

	Lesson 8: Linking to Spreadsheets and Databases with OPL
	Exchanging data with a spreadsheet
	Connecting to a database
	Reading from a database
	Writing to a database
	Summary

	Lesson 9: Scheduling in OPL with CP Optimizer
	Introduction to scheduling
	A simple scheduling problem
	Scheduling constraints
	Putting everything together - a staff scheduling problem
	Model the staff scheduling problem
	A house building calendar problem
	Matters of State: Understanding State Functions
	A wood cutting problem
	Summary

	Lesson 10: Integer and Mixed Integer Programming
	IP and MIP models in OPL
	A warehouse allocation model
	Summary

	Lesson 11: Piecewise Linear Problems
	Modeling piecewise linear functions
	Summary

	Lesson 12: Network Models
	Product delivery: a network problem
	Summary

	Lesson 13: Portfolio Optimization with Quadratic Programming
	Quadratic programming and OPL
	Summary

	Lesson 14: From Model to Application - The ODM Connection
	What is an ODM application?
	ODM architecture
	Generating a basic ODM application
	Creating an ODM application from a CP Scheduling model
	Extending ODM applications: custom visualizations
	Working with multiple scenarios in ODM Studio
	ODM Requirements
	Copy to Microsoft Office
	Summary

	Lesson 15: Flow Control with IBM ILOG Script
	IBM ILOG Script extensions for OPL
	Flow control and the main block
	Model and data access
	Postprocessing and debugging
	Lab – The Staffing Problem
	Column generation with IBM ILOG Script
	Summary

	Lesson 16: Integrating OPL Models with Applications
	The process of OPL model integration
	The IBM ILOG OPL Interfaces
	OPL extension classes
	The oplrun command
	Summary

	Lesson 17: Optimizing Engines and Algorithms
	Choosing your optimization engine
	CPLEX optimization algorithms
	Controlling optimization
	Summary

	Lesson 18: Performance Tuning
	Prefer declarative syntax
	Use sparse arrays
	Think about data instantiation
	Scripting hints
	Choose your MP optimizer
	Additional performance tuning tips
	Summary

	Lesson 19: Appendix: The OPL IDE Graphical Interface
	The OPL IDE main window
	Working with projects
	Managing projects
	Problem browsing
	Solving and debugging
	Summary

