Combinatorial Optimization

Exercise 1 (Running Time)

Suppose we are given a graph G = (V, E) on n vertices and m edges with a weight function $w: E \to \mathbb{N}$, where we assume that this function is given as a vector $w = (w(e_1), \ldots, w(e_m))$. We are further given an algorithm that solves a certain problem and takes running time proportional to n^2W , where $W = \sum_{e \in E} w(e)$. Is this a polynomial time algorithm?

Exercise 2 (Factional Job Assignment)

Consider the following job assignment problem: Given m identical machines and n jobs with processing times p_j and sets $S_j \subseteq \{1, \ldots, m\}$, for $j = 1, \ldots, n$, distribute (fractionally) the computation of the jobs onto the machines such that job j runs only on machines from S_j and the maximal completion time of all machines is minimized. More formally,

minimize
$$\max_{i=1,\dots,m} \sum_{j=1}^{n} x_{ij}$$
subject to
$$\sum_{i \in S_j} x_{ij} = p_j \quad j = 1,\dots,n$$
$$x_{ij} \ge 0 \qquad i = 1,\dots,m, \ j = 1,\dots,n.$$

This formulation is almost an LP, except that "max" appears in the objective function. Formulate the problem as an LP.

Exercise 3 (Guest Shuffle)

Suppose you are organizing a dinner and lay n tables. You invite m families to join the dinner and family i has a_i members. Furthermore table j has b_j seats. In order to boost the inter-family-communication you want to make sure that no two members of the same family are at the same table (if this is possible). Formulate this seating arrangement problem as a maximum flow problem.

Programming 4 (First Steps with CPLEX)

Download ILOG CPLEX from our website. Follow the instructions for installation provided there. Also download and read the tutorial.