Combinatorial Optimization

Exercise 1 (Fractional Knapsack)

Let $c, w \in \mathbb{R}^n$ be non-negative vectors with $c_1/w_1 \ge c_2/w_2 \ge \cdots \ge c_n/w_n$. The FRACTIONAL KNAPSACK problem is the following LP:

maximize
$$\sum_{j=1}^{n} c_j x_j,$$

subject to
$$\sum_{j=1}^{n} w_j x_j \le W,$$

$$0 \le x_j \le 1 \quad j = 1, \dots, n.$$

Let $k = \min\left\{j \in \{1, \ldots, n\}: \sum_{i=1}^{j} w_i > W\right\}$. Show that an optimum solution for the FRAC-TIONAL KNAPSACK problem is given by the vector x with

$$x_{j} = 1$$
 for $j = 1, \dots, k - 1$,

$$x_{j} = \frac{W - \sum_{i=1}^{k-1} w_{i}}{w_{k}}$$
 for $j = k$, and

$$x_{j} = 0$$
 for $j = k + 1, \dots, n$.

Exercise 2 (Fractional Multi-Knapsack)

In the MULTI-KNAPSACK problem, we are given m knapsacks, each having a capacity W_i for i = 1, ..., m, n items each having weight w_j for j = 1, ..., n, and costs c_{ij} when item i is packed into knapsack j. We may assume that $\sum_{i=1}^{m} W_i \ge \sum_{j=1}^{n} w_j$. The task is to pack *all* items into knapsacks such that all knapsack capacities are obeyed and the total cost is minimized.

Give an ILP for this problem. Relax it to an LP and give a combinatorial polynomial-time algorithm that solves the relaxation (without using linear programming). *Hint.* Reduction to MINIMUM COST FLOW.

Programming 3 (Multi-Knapsack)

Give OPL models for both, the FRACTIONAL MULTI-KNAPSACK and the MULTI-KNAPSACK problem with ILOG CPLEX. Notice that the latter is an ILP.