
Chapter 1

Introduction

1.1 Examples

We start with some examples of combinatorial optimization problems.

Example 1.1. The following problem is called the Knapsack problem. We are given an
amount of C Euro and wish to invest it among a set of n options. Each such option i has
cost ci and profit pi. The goal is to maximize the total profit.

Consider C = 100 and the following cost-profit table:

Option Cost Profit

1 100 150
2 1 2
3 50 55
4 50 100

Our choice of purchased options must not exceed our capital C. Thus the feasible solutions
are {1}, {2}, {3}, {4}, {2, 3}, {2, 4}, {3, 4}. Which is the best solution? We evaluate all
possibilities and find that {3, 4} give 155 altogether which maximizes our profit.

Example 1.2. Another example is a Load Balancing problem: We have m employees,
where each one has certain qualifications. Furthermore, we have a set of n jobs that need
to be done and each job j has a processing time pj . However, maybe not every employee is
qualified to work on a certain job j. For each job j we introduce a set Sj of the employees
that are eligible to work on that particular job. The following diagramm visualizes the
sets Sj : for each job j (on the left hand side) we see which employee (on the right hand
side) is able to work on that job.

1

2

3

4

1

2

3

Employee iJob j

4



We can formulate our problem with the following mathematical program. We use the
variables xi,j ∈ {0, 1} that indicate if employee i is assigned to job j. We want to minimize
the time until all jobs are finished.

minimize max
i=1,...,m

n
∑

j=1

pjxi,j “minimize finishing time”

subject to
∑

i∈Sj

xi,j = 1 j = 1, . . . , n “each job gets done”

xi,j ∈ {0, 1} i = 1, . . . ,m, j = 1, . . . , n “assignment”

Example 1.3. Many combinatorial optimization problems, like the ones above can be for-
mulated in terms of a Integer Linear Program (ILP). Let A = (ai,j)i=1,...,m,j=1,...,n ∈
R

m,n be a matrix and let b = (bi)i=1,...,m ∈ R
m and c = (cj)j=1,...,n ∈ R

n be vectors.
Further let x = (xj)j=1,...,n ∈ Z

n be variables that are allowed to take integral values, only.
Our objective function is to minimize c⊤x subject to Ax ≤ b. More explicitly

minimize
n

∑

j=1

cjxj “objective function”

subject to
n

∑

j=1

ai,jxj ≤ bi i = 1, . . . ,m “constraints”

xj ∈ Z j = 1, . . . , n, j = 1, . . . , n “integrality”

Solving an ILP is in general NP-hard. However, we will often replace the constraints
xj ∈ Z with xj ∈ R. This is then called a relaxation as a Linear Program (LP) and
can be solved in polynomial time. Of course, such a solution is in general not feasible for
the ILP, but we can sometimes “turn” it into a feasible solution, which is not “too bad”.

1.2 Combinatorial Optimization Problems

An instance of a combinatorial optimization problem (COP) can formally be defined as a
tuple I = (U,P, val, extr) with the following meaning:

U the solution space (on which val and S are defined),
P the feasibility predicate,
val the objective function val : U → R,
extr the extremum (usually max or min).

The feasibility predicate P induces a set:

S the set of feasible solutions: S = {X ∈ U : X satisfies P}.

Our goal is to find a feasible solution where the desired extremum of val is attained. Any
such solution is called an optimum solution, or simply an optimum. U and S are usually
not given explicitly, but implicitly.

5



Let us investigate the problem in Example 1.1 in with this formalism.

U = 2{1,2,3,4},

P = “total cost is at most C”, i.e., X ∈ S if
∑

i∈X

ci ≤ C

S = {{1}, {2}, {3}, {4}, {2, 3}, {2, 4}, {3, 4}},

val =

{

U → R

X 7→
∑

i∈X pi,

extr = max .

The optimum solution here is {3, 4} with value 155.
A central problem around combinatorial optimization is that it is often in principle

possible to find an optimum solution by enumerating the set of feasible solutions, but
this set mostly contains “too many” elements. This phenomenon is called combinatorial

explosion.

1.3 Algorithms and Approximation

Many problems in combinatorial optimization can be solved by using an appropriate algo-
rithm. Informally, an algorithm is given a (valid) input, i.e., a description of an instance
of a problem and computes a solution after a finite number of “elementary steps”. The
number of bits used to describe an input I is called the (binary) length or size of the input
and denoted size(I).

Let t : N → R be a function. We say that an algorithm runs in time O (t) if there is
a constant α such that the algorithm uses at most αt(size(I)) many elementary steps to
compute a solution given any input I. An algorithm is called polynomoial time if t : n 7→ nc

for some constant c. This contrasts exponential time algorithms where t : n 7→ cn for some
constant c > 1.

Because the running times of exponential time algorithms grow rather rapidly as the
input size grows, we are mostly interested in polynomial time algorithms. Of course, we
desire to find an optimum solution for any given COP in polynomial time. Unfortunately
this is not always possible as many COPs are NP-hard. (It is widely believed that no poly-
nomial time algorithm exists that solves some NP-hard COP optimally on every instance.)
Thus our goal is a find “good” solutions in polynomial time.

Let Π = {I1, I2, . . . } be a set of instances of a COP, where each I ∈ Π is of the form
I = (U,P, S, val, extr). For any I ∈ Π, let opt(I) = extrX∈S(I)val(X) denote the respective
optimum value. An approximation algorithm alg for Π is a polynomial time algorithm
that computes some solution X ∈ S(I) for every instance I ∈ Π. The respective value
obtained is denoted alg(I) = val(X). The approximation ratio of alg on an instance I

is defined by

ρalg(I) =
alg(I)

opt(I)
.

The algorithm alg is a ρ-approximation algorithm if

ρalg(I) ≤ ρ for all I ∈ Π and extr = min,

ρalg(I) ≥ ρ for all I ∈ Π and extr = max.

6


