
Chapter 4

Knapsack

This chapter is concerned with the Knapsack problem. This problem is of interest in
its own right because it formalizes the natural problem of selecting items so that a given
budget is not exceeded but profit is as large as possible. Questions like that often also
arise as subproblems of other problems. Typical applications include: option-selection in
finance, cutting, and packing problems.

In the Knapsack problem we are given a budget W and n items. Each item j comes
along with a profit cj and a weight wj . We are asked to choose a subset of the items as to
maximize total profit but the total weight not exceeding W .

Example 4.1. We are given an amount of W and we wish to buy a subset of n items
and sell those later on. Each such item j has cost wj but yields profit cj . The goal is to
maximize the total profit. Consider W = 100 and the following profit-weight table:

j cj wj

1 150 100
2 2 1
3 55 50
4 100 50

Our choice of purchased items must not exceed our capital W . Thus the feasible solu-
tions are {1}, {2}, {3}, {4}, {2, 3}, {2, 4}, {3, 4}. Which is the best solution? Evaluating all
possibilities yields that {3, 4} gives 155 altogether which maximizes our profit.

Problem 4.1 Knapsack

Instance. Non-negative integral vectors c ∈ N
n, w ∈ N

n, and an integer W .

Task. Solve the problem

maximize val(x) =
n

∑

j=1

cjxj ,

subject to

n
∑

j=1

wjxj ≤ W,

xj ∈ {0, 1} j = 1, . . . n.

29



For an item j the quantity cj is called its profit. The profit of a vector x ∈ {0, 1}n is
val(x) =

∑n
j=1

cjxj .
The number wj is called the weight of item j. The weight of a vector x ∈ {0, 1}n

is given by weight(x) =
∑n

j=1
wjxj . In order to obtain a non-trivial problem we assume

wj ≤ W for all j = 1, . . . , n and
∑n

j=1
wj > W throughout.

Knapsack is NP-hard which means that “most probably”, there is no polynomial
time optimization algorithm for it. However, in Section 4.1 we derive a simple 1/2-
approximation algorithm. In Section 4.3 we can even improve on this by giving a polynomial-
time 1− ε-approximation algorithm (for every fixed ε > 0).

4.1 Fractional Knapsack and Greedy

A direct relaxation of Knapsack as an LP is often referred to as the Fractional Knap-

sack problem:

maximize val(x) =
n

∑

j=1

cjxj ,

subject to

n
∑

j=1

wjxj ≤ W,

0 ≤ xj ≤ 1 j = 1, . . . , n.

This problem is solvable in polynomial time quite easily. The proof of the observation
below is left as an exercise.

Observation 4.2. Let c, w ∈ N
n be non-negative integral vectors with

c1

w1

≥
c2

w2

≥ · · · ≥
cn

wn

and let

k = min

{

j ∈ {1, . . . , n} :

j
∑

i=1

wi > W

}

.

Then an optimum solution for the Fractional Knapsack problem is given by

xj = 1 for j = 1, . . . , k − 1,

xj =
W −

∑k−1

i=1
wi

wk

for j = k, and

xj = 0 for j = k + 1, . . . , n.

The ratio cj/wj is called the efficiency of item j. The item number k, as defined above,
is called the break item.

Now we turn our attention back to the original Knapsack problem. We may assume
that the items are given in non-increasing order of efficiency. Observation 4.2 suggests the
following simple algorithm: xj = 1 for j = 1, . . . , k − 1, xj = 0 for j = k, . . . , n.

Unfortunately, the approximation ratio of this algorithm can be arbitrarily bad as the
example below shows. The problem is that more efficient items can “block” more profitable
ones.

30



Example 4.3. Consider the following instance, where W is a sufficiently large integer.

j cj wj cj/wj

1 1 1 1
2 W − 1 W 1− 1/W

The algorithm chooses item 1, i.e., the solution x = (1, 0) and hence val(x) = 1. The
optimum solution is x∗ = (0, 1) and thus val(x∗) = W − 1. The approximation ratio of
the algorithm is 1/(W − 1), i.e., arbitrarily bad. However, this natural algorithm can be
turned into a 1/2-approximation.

Algorithm 4.1 Greedy

Input. Integer W , vectors c, w ∈ N
n with wj ≤ W ,

∑

j wj > W , and c1/w1 ≥ · · · ≥
cn/wn.

Output. Vector x ∈ {0, 1}n such that weight(x) ≤ W .

Step 1. Define k = min{j ∈ {1, . . . , n} :
∑j

i=1
wi > W}.

Step 2. Let x and y be the following two vectors: xj = 1 for j = 1, . . . , k − 1, xj = 0 for
j = k, . . . , n, and yj = 1 for j = k, yj = 0 for j 6= k.

Step 3. If val(x) ≥ val(y) return x otherwise return y.

Theorem 4.4. The algorithm Greedy is a 1/2-approximation for Knapsack.

Proof. The value obtained by the Greedy algorithm is equal to max{val(x), val(y)}.
Let x∗ be an optimum solution for the Knapsack instance. Since every solution

that is feasible for the Knapsack instance is also feasible for the respective Fractional

Knapsack instance we have that

val(x∗) ≤ val(z∗),

where z∗ is the respective optimum solution for Fractional Knapsack. Observe that it
has the structure z∗ = (1, . . . , 1, α, 0, . . . , 0), where α ∈ [0, 1) is at the break item k. The
solutions x and y are x = (1, . . . , 1, 0, 0, . . . , 0) and y = (0, . . . , 0, 1, 0, . . . , 0).

In total we have

val(x∗) ≤ val(z∗) = val(x) + αck ≤ val(x) + val(y) ≤ 2 max{val(x), val(y)}

which implies the approximation ratio of 1/2.

4.2 Pseudo-Polynomial Time Algorithm

Here we give a pseudo-polynomial time algorithm that solves Knapsack optimally by
using dynamic programming. The term pseudo-polynomial means polynomial if the input
is given in unary encoding (and thus exponential if the input is given in binary encoding).

The idea is the following: Suppose you restrict yourself to choose only among the
first j items, for some integer j ∈ {0, . . . , n}. So all the solutions x you consider have
the form xi ∈ {0, 1} for i = 1, . . . , j and xi = 0 for i = j + 1, . . . , n. With abuse of

31



notation write x ∈ {0, 1}j0n−j . Now the variable mj,k equals the minimum total weight
of such a solution x with weight(x) ≤ W and val(x) = k. That is, after defining the set
Wj,k = {weight(x) : weight(x) ≤W, val(x) = k, x ∈ {0, 1}j0n−j} we require

mj,k = inf Wj,k.

(Recall that for any finite set S of integers inf S = minS if S 6= ∅ and inf S = ∞,
otherwise.)

Let C be any upper bound on the optimum profit, for example C =
∑

i ci. Clearly, the
value of an optimum solution for Knapsack is the largest value k ∈ {0, . . . , C} such that
mn,k < ∞. The algorithm Dynamic Programming Knapsack recursively computes the
values for mj,k and then returns the optimum value for the given Knapsack instance. In
the algorithm below, the variables x(j, k) are n-dimensional vectors that store the solutions
corresponding to mj,k, i.e., with weight equal to mj,k and value k.

Algorithm 4.2 Dynamic Programming Knapsack

Input. Integers W,C, vectors w, c ∈ N
n.

Output. Vector x ∈ {0, 1}n such that weight(x) ≤ W .

Step 1. Set m0,0 = 0, m0,k =∞ for k = 1, . . . , C, and x(0, 0) = 0.

Step 2. For j = 1, . . . , n and k = 0, . . . , C do

mj,k =

{

mj−1,k−cj
+ wj if cj ≤ k and mj−1,k−cj

+ wj ≤ min{W,mj−1,k},

mj−1,k otherwise.

If the first case applied set x(j, k)i = x(j − 1, k − cj)i for i 6= j and x(j, k)j = 1.
Otherwise set x(j, k) = x(j − 1, k).

Step 3. Determine the largest k ∈ {0, . . . , C} such that mn,k < ∞. Return x(n, k).

Theorem 4.5. The Dynamic Programming Knapsack algorithm computes the op-

timum value of the Knapsack instance W , w, c ∈ N
n in time O (nC), where C is an

arbitrary upper bound on this optimum value.

Proof. The running time is obvious. For the correctness we prove that the values mj,k

computed by the algorithm satisfy

mj,k = inf Wj,k

by induction on j. Here Wj,k = {weight(x) : weight(x) ≤ W, val(x) = k, x ∈ {0, 1}j0n−j}
by definition.

The base case j = 0 is clear. For the inductive case first consider a situation when the
algorithm sets

mj,k = mj−1,k−cj
+ wj ,

i.e. we “take” the j-th item. Let y = x(j − 1, k − cj) be the solution that corresponds to
mj−1,k−cj

. The solution x = x(j, k) that corresponds to mj,k is obtained from y by setting
xi = yi for i 6= j and xj = 1. The value of x is val(x) = k. By definition of the algorithm
we have weight(x) = weight(y) + wj = mj−1,k−cj

+ wj ≤ W and thus x ∈Wj,k.

32



By construction of the algorithm and induction hypothesis we have weight(x) ≤
inf Wj−1,k and weight(x) = wj + inf Wj−1,k−cj

. That is, the weight of x is at most the
weight of any solution without the j-th item and at most the weight of any solution
including the j-th item. Hence mj,k = inf Wj,k.

In the other situation, when the algorithm sets

mj,k = mj−1,k,

then either cj > k and hence no solution with value equal to k can contain the j-th item,
or mj−1,k + wj > W , i.e., adding the j-th item is infeasible, or mj−1,k + wj > inf Wj−1,k,
i.e., there is a solution with less weight and still value equal to k.

4.3 Fully Polynomial-Time Approximation Scheme

Here we give a fully polynomial time approximation scheme (FPTAS), i.e., we show that for
every fixed ε > 0 there is an 1− ε-approximation algorithm that runs in time polynomial
in the input size and 1/ε. From a complexity-theoretic point of view this is the best that
can be hoped for: Assuming P 6= NP there is no polynomial time algorithm that solves
Knapsack optimally on every instance, but the FPTAS delivers solutions with arbitrarily
good approximation guarantees in polynomial time. (Unfortunately not many problems
admit an FPTAS.)

A common theme in constructing FPTASs is the following: First find an algorithm
that solves the problem exactly (mostly using the dynamic programming paradigm). This
algorithm usually has pseudo-polynomial or even exponential running time. Second con-
struct an algorithm for “rounding” input-instances, i.e., reducing the input-size. This
modification reduces the running time but may lead to inaccurate solutions.

The running time of Dynamic Programming Knapsack is O (nC). If we divide we
profit cj of each item by a number t and round the result down, then this improves the
running time of Dynamic Programming Knapsack by a factor of t to O (nC/t) but
may yield suboptimal solutions.

Algorithm 4.3 Knapsack FPTAS

Input. Integer W , vectors w, c ∈ N
n, a number ε > 0.

Output. Vector x ∈ {0, 1}n such that weight(x) ≤ W .

Step 1. Run Greedy on the instance W,w, c and let x be the solution. If val(x) = 0 then
return x.

Step 2. Set t = max{1, εval(x)/n} and set

c′j =
⌊cj

t

⌋

for j = 1, . . . , n.

Step 3. Set C = 2val(x)/t and apply the Dynamic Programming Knapsack algorithm
on the instance W,C,w, c′ and let y be the solution obtained.

Step 4. If val(x) ≥ val(y) return x otherwise y.

33



Theorem 4.6. For every fixed ε > 0, the Knapsack FPTAS algorithm is a 1 − ε-
approximation algorithm with running time O

(

n2/ε
)

.

Proof. The value of the solution returned by the algorithm is equal to max{val(x), val(y)}.
Let x∗ be an optimum solution for the instance W,w, c. By Theorem 4.4 we have 2val(x) ≥
val(x∗) and hence the choice C = 2val(x)/t is a legal upper bound for the optimum value of
the rounded instance W,w, c′. By Theorem 4.5 y is an optimum solution for this instance
and we have

val(y) =
n

∑

j=1

cjyj ≥
n

∑

j=1

tc′jyj = t
n

∑

j=1

c′jyj

≥ t

n
∑

j=1

c′jx
∗

j =

n
∑

j=1

tc′jx
∗

j >

n
∑

j=1

(cj − t)x∗j ≥ val(x∗)− nt.

If t = 1 then y is optimal by Theorem 4.5. Otherwise the above inequality and the choice
of t yields val(y) ≥ val(x∗)− εval(x) and hence

val(x∗) ≤ val(y) + εval(x) ≤ (1 + ε) max{val(x), val(y)}

which yields the approximation guarantee 1− ε/(1 + ε).
The running time of Dynamic Programming Knapsack on the rounded instance is

O (nC) = O

(

nval(x)

t

)

= O

(

n2

ε

)

,

where we have used the definition of t: If t = 1 then val(x) ≤ n/ε and otherwise t =
εval(x)/n. This running time dominates the time needed for the other steps.

34


