Chapter 2

Network Flows

Flow problems are among the best-understood problems in combinatorial optimization.
They are rather important because of their numerous applications.

2.1 Maximum Flows and Minimum Cuts

A network is a (simple) digraph G = (V, A) where each edge has a capacity ¢ : A — R*
and we have two distinguished vertices, the source s and the sink t. We often write
N = (G,e¢,s,t).

For any vertex v, let 6~ (v) be the set of incoming edges of v, i.e., 6~ (v) = {uv € A :
u € V} and 61 (v) the set of outgoing edges of v, i.e., 67 (v) = {vu € A:u € V}. Let
f A — RY be any function on the edges. Define the balance baly(v) of vertex v with

respect to f by
bal(w) = 3 fle— 3 fle)

e€dt(v) ecd—(v)

The function f is called conserving at a vertex v if balg(v) = 0.

The MAXIMUM FLOW problem asks to transport as many units from the source to the
sink without violating the edge capacities. More precisely, a function f : A — R™ is called
an s-t-flow if:

(1) edge capacities are respected, i.e.,

0< f(e) <c(e) for all e € A, and

(2) f is conserving, i.e.,

balf(v) =0 for v € V — {s,t}, bals(s) >0, and bals(t) <O0.

Its value is defined by val(f) = balf(s). See Figure 2.1.

Problem 2.1 MAxiMUuM FLow
Instance. A network N = (G, ¢, s,1).

Task. Find an s — ¢t-flow of maximum value in V.

source sink

Figure 2.1: A network with source s and sink t¢.

We can formulate the maximum flow problem as an LP in the variables f, for e € A.

maximize Z fe— Z fe,

ecdt(s) ecd—(s)
subject to Z fe— Z fe=0 veV —{st},
ecdt(v) ecd=(v)
fe<cle) ecA,
fe>0.

Since the flow f = 0 is feasible for this LP, and the LP is obviously bounded (by
D ces+(s) c(e)) we have that the MAXIMUM FLOW problem always has an optimum so-
lution. Of course, we can solve the problem by using any algorithm for solving LLPs but we
are not satisfied with this — we want a combinatorial algorithm (without solving an LP)
with guaranteed polynomial running time.

Let S be a subset of the vertices, called a cut. The induced cut-edges is the set of
outgoing edges 67(S) = {uv € A:u € S,v € V — S} and incoming edges 6~ (S) = {vu €
A:ue S;veV — S} Define its capacity by cap(S) = Zee5+(5) c(e). An s —t-cut is a
cut so that s € S and t € V — 5. A minimum cut refers to one with minimal capacity
among all s — t-cuts. We extend the definition of balance also for any cut S:

balp(S)= > fle)= > fle).

ecdt(S) ecd—(S)

The following result tells us that the value of a flow can be expressed through the
incoming and outcoming flow of an arbitrary cut. Furthermore, the value of any flow
(including the maximum one) is bounded from above by the capacity of any cut. We will
see soon that the value of a maximum flow equals the capacity of a minimum cut.

Lemma 2.1. For any s — t-cut S and any s — t-flow f we have that
(1) val(f) = bals(S),
(2) val(f) < cap(5).

Proof. We use the flow conservation property, i.e., balg(v) = 0 for all v € S — {s} to find

val(f) = baly(s) = Y bals(v

veS
=2 | X e Z C
veS \e€dt(v) e€d™ (v)
= 2 fo- X O
ecdt(S) ecd—(S)
— bal;(S).
Furthermore we have val(f) < }_.cs+(g) c(e) = cap(5) since 0 < f(e) < c(e). O

The following definitions and structural result are the basis for an algorithm. A path
P =eq,...,e4is a sequence of pairwise disjoint edges with common vertices, that ise; € A
such that v;v;41 € Aor vipv; € Afori =1,...0—1,¢ #e¢jfor 1 <i<j <L The
number ¢ of edges in P is called its length. A v-w-path P has the form e; = v- and ey = -w,
i.e., it starts at v and ends at w. An edge e = vw in a path is called foreward edge if
vw € A; backward edge if wv € A. (A v-v-path is called a cycle.)

An s-v-path P is called f-augmenting with respect to a flow f if

(1) f(e) < c(e) for every forward edge e € P,
(2) f(e) > 0 for every backward edge e € P.

O<070=0—0,0

forward edges backward edges

By how much can we increase the current flow value using a particular augmenting path
P? Define the quantity

a =min{c(e) — f(e) : e foreward edge in P} U {f(e) : e backward edge in P}.

The following construction of a new flow f’ is called augmenting f by « along P. Set
f'(e) = f(e) + « if e is foreward edge in P, f'(e) = f(e) — « if e is backward edge in P,
and f’(e) = f(e) otherwise.

Observation 2.2. The function f’ defines a flow.

Proof. By definition of the quantity o and because each edge occurs at most once in P, we
have that 0 < f/(e) < ¢(e) for all e € A. It remains to show that f’ is flow conserving. It
is clear that baly (s) > bals(s) > 0 and consequently bal (t) < baly(t) < 0. Consider an
augmentation along edges e;e;+1 with e; = v;v;11 and e€;11 = Vi1 1vi40 fori=1,...,0—1.
Call v = v;41 and distinguish four cases:

+a +a +a -
B — : — > : R —
(a) foreward/foreward (b) foreward/backward
—a +a —« o

—> <

(c) backward/foreward (d) backward/backward

10

Algorithm 2.1 FORD-FULKERSON
Input. Network N = (G, ¢, s,t) with ¢c: A — R*.

Output. s — t-flow f of maximum value.

Step 1. Set f(e) =0 for all e € A.
Step 2. Find an f-augmenting path P. If none exists then return f.
Step 3. Compute
a =min{c(e) — f(e) : e foreward edge in P} U{f(e) : e backward edge in P}.

and augment f by « along P. Go to Step 2.

This yields the claim. O

Theorem 2.3. In a network N, the mazximum value of an s — t-flow equals the minimum
capacity of an s — t-cut.

Proof. We show that an s — t-flow f has maximum value if and only if there is no f-
augmenting path from s to ¢. In that case we will be able to find a minimum cut R with
equal capacity.

Let there be an f-augementing path P from s to ¢, let a be as above and obtain f’ by
augmenting f by a along P. Observe that val(f’) > val(f), i.e., that f is not maximal.

Now let there be no f-augmenting path from s to t. Consider the set S of vertices with
augmenting paths from s, i.e., S = {v € V : there is an f-augmenting path from s to v}
and t € S. Thus S is an s — t-cut. By definition of augmenting paths, we must have
f(e) =c(e) for all e € §%(S) and f(e) =0 for all e € 6~ (5). Hence, using Lemma 2.1 (1),
we have val(f) = > cs+(s) c(e) = cap(5). By Lemma 2.1 (2) f must be a maximum flow
and S be a minimum cut. O

If all capacities are integers then « is an integer and the algorithm terminates after a
finite number of iterations. Thus we obtain the following important consequence:

Corollary 2.4. If the capacities of a network N are integers, then there is an integral
mazimum flow.

If the capacities are not integers, then FORD-FULKERSON might not even terminate.
Especially, we have not yet specified how we actually choose the augmenting paths men-
tioned in Step 2 of the algorithm. This must be done carefully in order to obtain a
polynomial time algorithm as the following instance illustrates. It turns out that choosing
shortest augmenting paths guarantee termination after a polynomial number of augmen-
tations; see the EDMONDS-KARP algorithm.

Example 2.5. To show that FORD-FULKERSON is not a polynomial time algorithm con-
sider the following network. Here M is a large number.

11

Alternatingly augmenting one unit of flow along the paths s-a-b-t and s-b-a-t requires 2M
augmentations. This is already exponential because the (binary) input size of the graph
is O (log M). In contrast the augmenting paths s-a-t and s-b-t already give a maximum
flow after two augmentations.

It is an exercise to show the following flow decomposition result, which provides another
structural insight into flows.

Theorem 2.6. Given a network N = (G, ¢, s,t) and an s—t-flow f then there is a familiy
P of simple paths, a familily C of simple cycles and positive numbers h : PUC — RT such
that

(1) f(e) = > repucect MT) for all e € A,
(2) val(f) = > pep B(T), and
(3) |P|+|C| < |A|.

2.2 Edmonds-Karp Algorithm

Example 2.5 suggests that it may be a good idea to always choose shortest augmenting
paths, i.e., with minimum number edges. Indeed, the algorithm EDMONDS-KARP below
uses this strategy and yields polynomial running time.

Algorithm 2.2 EDMONDS-KARP

Input. Network N = (G, ¢,s,t) with c: A — RT.
Output. s — t-flow f of maximum value.

Step 1. Set f(e) =0 for all e € A.

Step 2. Find a shortest f-augmenting path P w.r.t. the number of edges. If none exists
then return f.

Step 3. Compute « as above and augment f by «a along P. Go to Step 2.

Theorem 2.7. The algorithm EDMONDS-KARP computes a mazximum s —t-flow f in any
network N with n vertices and m edges in time O (an)

The following lemma is crucial for the proof of the worst-case running time. Let
fo, f1, fo,... be the flows constructed by the algorithm. Denote the shortest length of an
augmenting path from s to a vertex v with respect to fi by x,(k) and respectively from v
to t by yy (k).

12

Lemma 2.8. We have that
(1) xp(k+ 1) > xy(k) for all k and v,
(2) yu(k+1) > yy(k) for all k and v.

Proof. Suppose for the sake of contradiction that (1) is violated for some pair (v, k). We
may assume that x,(k + 1) is minimal among the x,,(k + 1) for which (1) does not hold.

Let e be the last edge in a shortest augmenting path from s to v with respect to fri1.
Suppose e = wv is a forward edge. Hence fyi1(e) < c(e), zy(k + 1) = xy(k + 1) + 1,and
Zy(k + 1) > (k) by our choice of x,(k + 1). Thus z,(k+ 1) > z,(k) + 1. Suppose that
fr(e) < c(e) which yields x, (k) < xy(k) + 1 and thus z,(k + 1) > x,(k), a contradiction.

Hence we must have fi(e) = c(e) which implies that e was a backward edge when
fr was changed to fr+1. As we used an augmenting path of shortest length we have
2y (k) = zy(k) + 1 and thus a,(k +1) — 1 = a2, (k+ 1) > zu(k) > x,(k) + 1. Hence
Zy(k + 1) > xy(k) + 2 yields a contradiction.

Similarly when e is a backward edge. The proof of (2) is analogous to (1). O

Proof of Theorem 2.7. When we increase the flow, the augmenting path always contains
a critical edge, i.e., an edge where the flow is either increased to meet the capacity or
reduced to zero.

Let e = uv be critical in the augmenting path w.r.t. fi. This path has x, (k) +y, (k) =
oy (k) + yu(k) edges. If e is used the next time in an augmenting path w.r.t. fy, say, then
it must be used in the opposite direction as w.r.t. fg.

Suppose that e = uv was a forward edge w.r.t. fiy. Then z,(k) = z,(k) + 1 and
Zy(h) = x4y (h)+1. By Lemma 2.8 x,(h) > z,(k) and y,(h) > y, (k). Hence z,(h)+y,(h) =
zy(h) + 14+ yyu(h) > zy(k) + 1 4+ yu(k) > x4(k) + yu(k) + 2. Thus the augmenting path
w.r.t. fp is at least two edges longer than the augmenting path w.r.t. fr. Similarly if e is
a backward edge.

No shortest augmenting path can contain more than n — 1 edges and hence each edge
can be critical at most (n — 1)/2 times. As each augmenting path contains at least one
critical edge, there can be at most O (nm) augmentations and each one takes time O (m).
This yields the running time of O(nm?). O

There are further algorithms that solve the MAXIMUM FLOW problem in less time. For
example the GOLDBERG-TARJAN algorithm runs in time O (n?y/m); with sophisticated
implementations O (nmlog(n?/m)) and O (min{m1/2, n?/3Ymlog(n?/m) log Cmax) can be
reached.

2.3 Minimum Cost Flows

In this section we treat a more general problem than the MAXiMUM FLOW problem,
namely the MINIMUM COST FLOW problem. We are again given a digraph G = (V, A)
with edge capacities ¢ : A — R™ and in addition to that a weight function w : A — R*
indicating the cost of an edge. Thus a network is denoted N = (G, ¢, w,b).

Now we define a modified notion of a flow. For any mapping b : V — R with
Y vey b(v) = 0 the value b(v) is called the balance of a vertex v. If b(v) > 0 then v
is called a source, if b(v) < 0 a sink. A b-flow in N is a function f: A — R such that

(1) 0< f(e) < c(e) for all e € A and

13

(2) b(U) = balf(”) = Ze€5+(v) f(e> - 2665_(1}) f(e)

A 0-flow is called a circulation.
The cost of any flow f is

val(f) =Y fle)w(e).

ecA

Now the problem is to find a b-flow with minimum cost.

Problem 2.2 MINIMUM CoOsT FLOW
Instance. A network N = (G, ¢, w,b).

Task. Find an b-flow of minimum cost in N or decide that none exists.

The second part of our task is easy. Given a network N = (G, ¢, w,b) with balance
vector b, we can decide if a b-flow exists by solving a MAXIMUM FLOW problem: Add
two vertices s and t and edges sv, vt with capacities ¢(sv) = max{0,b(v)} and c(vt) =
max{0, —b(v)} for all v € V to N. Then any s — t-flow with value) i c(sv) in the
resulting network corresponds to a b-flow in the original network V.

For the remainder of the section we give an optimality criterion which leads directly
to an algorithm similar to the FORD-FULKERSON method. But here we augment along
cycles instead of paths. Again, the choice of the augmenting cycles must be done carefully.
But we omit this here and state the following theorem which refers to ORLIN’s algorithm
without proof.

Theorem 2.9. There is an algorithm which solves the MINIMUM COST FLOW problem
on any network with n vertices and m edges in time O (mlogm(m + nlogn)).

We begin our discussion of an optimality criterion with a definition. Given a digraph
G = (V, A) with capacities ¢, weights w, and a flow f in G, construct the graph R = (V, A+
ApR) with Ap = {wv : vw € A}, where r € Ap is called a reverse edge. (The notation
“+” here means that we actually allow parallel edges in R). The residual capacities
cr : A+ Arp — RT are cr(vw) = c(vw) — f(vw) for vw € A and cgr(wv) = f(vw)
for wv € Agi. The residual weight wr : A — R is wr(vw) = w(vw) for vw € A and
wr(wv) = —w(vw) for wv € Ag. Finally define the residual graph Gy = (V, Ay) with
Af = {66 A+AR:CR(€) > 0}.

Now, given a digraph G with capacities ¢ and a b-flow f, an f-augmenting cycle is
a simple cycle in Gy. The following theorem is an optimality criterion for the MINIMUM
Cost FLow problem.

Theorem 2.10. Let N = (G, c,w,b) be an instance of the MINIMUM COST FLOW problem.
A b-flow f is of minimum cost if and only if there is no f-augmenting cycle with negative
total weight.

We prove the theorem in two steps. First we show that the difference between any two
b-flows gives rise to a circulation and second that this circulation can be decomposed into
circulations on simple cycles.

Lemma 2.11. Let G be a digraph with capacities ¢ and let f and f' be b-flows in (G, c).
Construct R and Gy as above and define g : A+ Ar — RT by g(e) = max{0, f'(e) — f(e)}
for e € A and g(e) = max{0, f(¢/) — f'(¢)} for all e € AR with corresponding €' € A.
Then g is a circulation in R, g(e) =0 for all e ¢ Af and val(g) = val(f’) — val(f).

14

Proof. At each vertex v € R we have

Yoogla= D gley= > (fe)-fle)— Y (fe)—fle)

eE&E(v) e€dp (v) eeég(v) e€dg (v)
=D flo-) fl-| > fleo- > fe
eeég(v) e€d (v) eeég(v) e€d (v)
= b(v) — b(v) = 0.

so g is a circulation in R.
For e ¢ Ay consider two cases: If e € A then f(e) = c(e) and hence f’(e) < f(e) which
gives g(e) = 0. If e = wv € Ap then ¢/ = vw € A and f(e’) = 0 which yields g(e) = 0.
We verify the last statement

wllg) = 3 we)gle) = S wle)f(e) = 3 wle)f(e) = val(f') — val(f)

e€A+AR ecA ecA
and the proof is complete.]

Lemma 2.12. For any circulation f in a digraph G = (V, A) there is a familiy C of
at most |A| simple cycles in G and for each C' € C a positive number h(C) such that

fle) = 2 cecieec MO).-
Proof. Follows from Theorem 2.6. O

Proof of Theorem 2.10. If there is an f-augmenting cycle C' with weight v < 0, we can
augment f along C' by some a > 0 and get a b-flow f’ with cost decreased by —ya. So f
is not a minimum cost flow.

If f is not a minimum cost b-flow, there is another b-flow f’ with smaller cost. Consider
g as defined in Lemma 2.11 and observe that g is a circulation with val(g) < 0. By
Lemma 2.12, g can be decomposed into flows on simple cycles. Since g(e) = 0 for all
e & Ay, all these cycles are f-augmenting and one of them must have negative total
weight. O

2.4 Assignment Problem

A graph G = (V, E) with vertex set V = LU R (“left” and “right”) is called bipartite if
the edge set satisfies E C {¢r: ¢ € L,r € R}. An assignment (also called a matching) is a
subset M C E such that for every v € V in the graph H = (V, M) we have degy(v) < 1. A
matching is called perfect if degy (v) = 1 for every v € V. Of course, a necessary condition
for the existence of a perfect matching in a bipartite graph is |L| = |R|.

The AsSIGNMENT Problem has numerous applications and refers to the following. We
are given a bipartite graph G = (L U R, E') and a weight function w : E — R. We are
asked to find a subset M C E with minimum total weight, i.e.,

val(M) =)~ w(e),

eeM
such that M is a perfect matching or to conclude that no such matching exists.

Theorem 2.13. The ASSIGNMENT problem is a MINIMUM COST FLOW problem.

15

Problem 2.3 ASSIGNMENT
Instance. Bipartite graph G = (L U R, F) and a weight function w : £ — R.

Task. Find perfect matching M with minimum weight val(M) = >__.,, w(e) or con-
clude that no such matching exists.

Proof. Let G = (V, E) be a bipartite graph with V' = LU R and |L| = |R| = n. Now
we construct a network N for the MINIMUM CoST FLOW problem. We start with the
vertices V', add a vertex s and connect it with every vertex ¢ € L with directed edges sf.
Further add a vertex ¢t and introduce the directed edges rt for every r € R. Further add
directed versions of all edges e € F, i.e., a directed edge ¢r is added for every undirected
edge fr. The capacities of all these edges is one. The weights of the sf edges and the 7t
edges are zero — the weights of the /r edges are equal to their weights in G. Now every
integral b-flow f in N with b = (b(s),b(v1),...,b(v,),b(t)) = (n,0,...,0,—n) corresponds
to a perfect matching in G with the same weight, and vice versa. O

Below we give several applications of the ASSIGNMENT problem. In most applications
the requirement |L| = |R| is disturbing, but can usually be handeled by adding artificial
vertices and edges.

Bipartite Cardinality Matching

In the BIPARTITE CARDINALITY MATCHING problem we are given a bipartite graph G =
(V,E) with V.= LU R, where |L| < |R|. Our task is to find a matching with maximum
number of edges. We construct a network similarly as before: we add vertices s and ¢ and
the directed edges sf and rt for all £ € L and r € R. All these edges have capacity equal
to one. Any integral s — t-flow of value k corresponds to a matching with k edges. Thus
we have to solve a MAXIMUM FLOW problem.

Internet Dating

An internet dating website has ¢ females and r males in its pool. Furthermore, there is
a preference system, where each person describes her/himself and her/his ideal partner.
This system produces for each female 7 and each male j a value w;; > 0. We seek to find
an assignment of females to males with maximum total value. By adding dummy vertices
with zero-weight edges to the appropriate side, and defining weights —w;; we arrive at an
ASSIGNMENT problem as defined above.

Scheduling on Parallel Machines

In the SCHEDULING ON PARALLEL MACHINES problem we are given m machines and n
jobs, where job j takes time p;; if assigned to machine i. The jobs assigned to any machine
are scheduled in a certain order. The completion time of job j is denoted c; and refers
to the following: If job j is assigned to machine ¢ then the times p;; of the jobs k also
assigned to machine ¢ but scheduled before job j contribute to the completion time of j,
e, ¢ =2 konik < j Pik (where “k < 57 means that job k is scheduled before job j). The
objective is to minimize the total completion time ;G-

This problem can be formulated as an ASSIGNMENT problem as follows: First consider
the case that we have exactly one machine, i.e., all jobs have to be assigned to it. Consider

16

a permutation 7 of 1,2,...,n, where 7(j) gives the position of job j, and observe that we

can write
n

Y=Y (n—w(j)+1) py
j=1

j=1

because the contribution pi; of job j in position 7(j) is counted n — 7(j) + 1 many times

in ;¢

For multiple machines, the crucial observation is that the contribution of any job j

can be described by p;; times one of the multipliers n,n — 1,...,1. Hence we create
the following graph: A source s, a sink ¢, for each job a vertex v; for j = 1,...,n, and
for each machine i exactly n slots, i.e., vertices s;, for K = 1,...,n. We add edges sv;

with zero weight and unit capacity. Furthermore, we add the edges v;s;, with weight
(n—k+1)-p;j. Finally we add edges s;;t with zero weight and unit capacity. Any b-flow
with b = (b(s),b(v1),...,b(vn),b(s11),---,b0(Smn),b(t)) = (n,0,...,0,—n) with minimum
cost corresponds to an optimal job-machine-assignment and vice versa.

17

