
Chapter 5

Set Cover

The Set Cover problem this chapter deals with is again a very simple to state – yet quite
general – NP-hard combinatorial problem. It is widely applicable in sometimes unexpected
ways. The problem is the following: We are given a set U (called universe) of n elements,
a collection of sets S = {S1, . . . , Sk} where Si ⊆ U , and a cost function c : S → R

+.
The task is to find a minimum cost subcollection S ′ ⊆ S that covers U , i.e., such that
∪S∈S′S = U .

Example 5.1. Consider this instance: U = {1, 2, 3}, S = {S1, S2, S3} with S1 = {1, 2},
S2 = {2, 3}, S3 = {1, 2, 3} and cost c(S1) = 10, c(S2) = 50, and c(S3) = 100. These
collections cover U : {S1, S2}, {S3}, {S1, S3}, {S2, S3}, {S1, S2, S3}. The cheapest one is
{S1, S2} with cost equal to 60.

For each set S, we associate a variable xS ∈ {0, 1} that indicates of we want to choose
S or not. We may thus write solutions for Set Cover as a vector x ∈ {0, 1}k. With this,
we write Set Cover as a mathematical program.

Problem 5.1 Set Cover

Instance. Universe U with n elements, collection S = {S1, . . . , Sk}, Si ⊆ U , a cost
function c : S → R.

Task. Solve the problem

minimize val(x) =
∑

S∈S

c(S)xS ,

subject to
∑

S:e∈S

xS ≥ 1 e ∈ U,

xS ∈ {0, 1} S ∈ S.

Define the frequency of an element to be the number of sets it is contained in. Let
f denote the frequency of the most frequent element. In this chapter we present several
algorithms that either achieve approximation ratio O (log n) or f . Why are we interested
in a variety algorithms? Is one algorithm not sufficient? Yes, but here the focus is on the
techniques that yield these algorithms.

35

5.1 Greedy Algorithm

The Greedy algorithm follows the natural approach of iteratively choosing the most
cost-effective set and remove all the covered elements until all elements are covered. Let
C be the set of elements already covered at the beginning of an iteration. During this
iteration define the cost-effectiveness of a set S as c(S)/|S − C|, i.e., the average cost at
which it covers new elements. For later reference, the algorithm sets the price at which it
covered an element equal to the cost-effectiveness of the covering set. Further recall that
Hn =

∑n
i=1 1/i is called the n-th Harmonic number and that log n ≤ Hn ≤ log n + 1.

Algorithm 5.1 Greedy

Input. Universe U with n elements, collection S = {S1, . . . , Sk}, Si ⊆ U , a cost function
c : S → R.

Output. Vector x ∈ {0, 1}k

Step 1. C = ∅, x = 0.

Step 2. While C 6= U do the following:

(a) Find the most cost-effective set in the current iteration, say S.

(b) Set xS = 1 and for each e ∈ S − C set price(e) = c(S)/|S − C|.

(c) C = C ∪ S.

Step 3. Return x.

Theorem 5.2. The Greedy algorithm is an Hn-approximation algorithm for the Set

Cover problem.

It is an exercise to show that this bound is tight.

Direct Analysis

The following lemma is crucial for the proof of the approximation-guarantee. Number the
elements of U in the order in which they were covered by the algorithm, say e1, . . . , en.
Let x∗ be an optimum solution.

Lemma 5.3. For each i ∈ {1, . . . , n}, price(ei) ≤ val(x∗)/(n− i + 1).

Proof. In any iteration, the leftover sets of the optimal solution x∗ can cover the remaining
elements at a cost of at most val(x∗). Therefore, among these, there must be one set
having cost-effectiveness of at most val(x∗)/|U − C|. In the iteration in which element ei

was covered, U −C contained at least n− i+1 elements. Since ei was covered by the most
cost-effective set in this iteration, we have that

price(ei) ≤
val(x∗)

|U − C|
≤

val(x∗)

n− i + 1

which was claimed.

36

Proof of Theorem 5.2. Since the cost of each set is distributed evenly among the new
elements covered, the total cost of the set cover picked is

val(x) =
n
∑

i=1

price(ei) ≤ val(x∗)Hn,

where we have used Lemma 5.3.

Dual-Fitting Analysis

Here we will give an alternative analysis of the Greedy algorithm for Set Cover. We
will use the dual fitting method, which is quite general and helps to analyze a broad variety
of combinatorial algorithms.

For sake of exposition we consider a minimization problem, but the technique works
similarly for maximization. Consider an algorithm Alg which does the following:

(1) Let (P) be an integer programming formulation of the problem of interest. We are
interested in its optimal solution x∗, respectively its objective value val(x∗). Let (D)
be the dual of a linear programming relaxation of (P).

(2) The algorithm Alg computes a feasible solution x for (P) and a “solution” y for (D),
where we allow that y is infeasible for (D). But the algorithm has to ensure that

val(x) ≤ val(y),

where val is the objective function of (P) and val is the objective function of (D).

(3) Now divide the entries of y by a certain quantity α until y′ = y/α is feasible for (D).
(The method of dual fitting is applicable only if this property can be ensured.) Then
val(y′) is a lower bound for val(x∗) by weak duality, i.e.,

val(y′) ≤ val(x∗)

by Lemma 3.8.

(4) Putting these things together, we obtain the approximation guarantee of α by

val(x) ≤ val(y) = val(αy′) = αval(y′) ≤ αval(x∗).

Now we apply this recipe to Set Cover and consider the Greedy algorithm. For
property (1) we use our usual formulation

minimize
∑

S∈S

c(S)xS , (P)

subject to
∑

S:e∈S

xS ≥ 1 e ∈ U,

xS ∈ {0, 1} S ∈ S.

When we relax the constraints xS ∈ {0, 1} to 0 ≤ xS ≤ 1 and dualize the corresponding
linear program we find

maximize
∑

e∈U

ye, (D)

subject to
∑

e∈S

ye ≤ c(S) S ∈ S,

ye ≥ 0.

37

This dual can be derived purely mechanically (by applying the primal-dual-definition and
rewriting constraints if needed), but this program also has an intuitive interpretation. The
constraints of (D) state that we want to “pack stuff” into each set S such that the cost
c(S) of each set is not exceeded, i.e., the sets are not overpacked. We seek to maximize
the total amount packed.

How about property (2)? The algorithm Greedy computes a certain feasible solution
x for (P), i.e., a solution xS = 1 if the algorithm picks set S and xS = 0 otherwise. What
about the vector y? Define the following vector: For each e ∈ U set ye = price(e), where
price(e) is the value computed during the execution of the algorithm.

By construction of the algorithm we have

val(x) =
∑

S∈S

c(S)xS =
∑

e∈U

price(e) =
∑

e∈U

ye = val(y),

i.e., Greedy satisfies property (2) of the dual fitting method (even with equality).
For property (3) the following result is useful.

Lemma 5.4. For every S ∈ S we have that

∑

e∈S

ye ≤ Hnc(S).

Proof. Let S ∈ S with, say, m elements. Consider these in the ordering the algorithm
covered them, say, e1, . . . , em. At the iteration when ei gets covered S contains m− i + 1
uncovered elements. Since Greedy chooses the most cost-effective set we have that

price(ei) ≤
c(S)

m− i + 1
,

i.e., the cost-effectiveness of the set the algorithm chooses can only be smaller than the
cost-effectiveness of S. (Be aware that “smaller” is “better” here.)

Summing over all elements gives

∑

e∈S

ye =

m
∑

i=1

price(ei) ≤ c(S)

m
∑

i=1

1

m− i + 1
= c(S)Hm ≤ c(S)Hn

as claimed.

Now we are in position to finalize the dual-fitting analysis using property (4).

Proof of Theorem 5.2. Define the vector y′ = y/Hn, where y is defined above. Observe
that for each set S ∈ S we have

∑

e∈S

y′e =
∑

e∈S

ye

Hn

=
1

Hn

∑

e∈S

ye ≤ c(S)

using Lemma 5.4. That means y′ is feasible for (D). Using the property (4) of the dual
fitting method proves the approximation guarantee of at most Hn.

38

5.2 Primal-Dual Algorithm

The primal-dual schema introduced here is the method of choice for designing approxi-
mation algorithms because it often gives algorithms with good approximation guarantees
and good running times. After introducing the ideas behind the method, we will use it to
design a simple factor f algorithm, where f is the frequency of the most frequent element.

The general idea is to work with an LP-relaxation of an NP-hard problem and its dual.
Then the algorithm iteratively changes a primal and a dual solution until the relaxed
primal-dual complementary slackness conditions are satisfied.

Primal-Dual Schema

Consider the following primal program:

minimize val(x) =

n
∑

j=1

cjxj ,

subject to

n
∑

j=1

aijxj ≥ bi i = 1, . . . ,m,

xj ≥ 0 j = 1, . . . , n.

The dual program is:

maximize val(y) =

m
∑

i=1

biyi,

subject to

m
∑

i=1

aijyi ≤ cj j = 1, . . . , n,

yi ≥ 0 i = 1, . . . ,m.

Most known approximation algorithms using the primal-dual schema run by ensuring one
set of conditions and suitably relaxing the other. We will capture both situations by
relaxing both conditions. If primal conditions are to be ensured, we set α = 1 below, and
if dual conditions are to be ensured, we set β = 1.

Primal Complementary Slackness Conditions. Let α ≥ 1. For each 1 ≤ j ≤ n:

either xj = 0 or cj/α ≤
m
∑

i=1

aijyi ≤ cj .

Dual Complementary Slackness Conditions. Let β ≥ 1. For each 1 ≤ i ≤ m:

either yi = 0 or bi ≤
n
∑

j=1

aijxj ≤ βbi.

Lemma 5.5. If x and y are primal and dual feasible solutions respectively satisfying the

complementary slackness conditions stated above, then

val(x) ≤ αβval(y).

39

Proof. We calculate directly using the slackness conditions and obtain

val(x) =

n
∑

j=1

cjxj ≤ α

n
∑

j=1

(

m
∑

i=1

aijyi

)

xj

= α
m
∑

i=1





n
∑

j=1

aijxj



 yi ≤ αβ
m
∑

i=1

biyi = val(y)

which was claimed.

The algorithm starts with a primal infeasible solution and a dual feasible solution;
usually these are x = 0 and y = 0 initially. It iteratively improves the feasibility of the
primal solution and the optimality of the dual solution ensuring that in the end a primal
feasible solution is obtained and all conditions stated above, with a suitable choice for α
and β, are satisfied. The primal solution is always extended integrally, thus ensuring that
the final solution is integral. The improvements to the primal and the dual go hand-in-
hand: the current primal solution is used to determine the improvement to the dual, and
vice versa. Finally, the cost of the dual solution is used as a lower bound on the optimum
value, and by Lemma 5.5, the approximation guarantee of the algorithm is αβ.

Primal-Dual Algorithm

Here we derive a factor f approximation algorithm for Set Cover using the primal-dual
schema. For this algorithm we will choose α = 1 and β = f . We will work with the
following primal LP for Set Cover

minimize val(x) =
∑

S∈S

c(S)xS ,

subject to
∑

S:e∈S

xS ≥ 1 e ∈ U,

xS ≥ 0 S ∈ S.

and its dual

maximize val(y) =
∑

e∈U

ye,

subject to
∑

e∈S

ye ≤ c(S) S ∈ S,

ye ≥ 0 e ∈ U.

For these LPs the primal and dual complementary slackness conditions are:

Primal Complementary Slackness Conditions. For each S ∈ S:

either xS = 0 or
∑

e∈S

ye = c(S).

A set S will be said to be tight if
∑

e∈S ye = c(S). So, this condition states that:
“Pick only tight sets into the cover.”

40

Dual Complementary Slackness Conditions. For each e ∈ U :

either ye = 0 or
∑

S:e∈S

xS ≤ f.

Since we will find a 0/1 solution for x, these conditions are equivalent to: “Each
element having non-zero dual value can be covered at most f times.” Since each
element is in at most f sets, this condition is trivially satisfied for all elements.

These conditions suggest the following algorithm:

Algorithm 5.2 Primal-Dual Set Cover

Input. Universe U with n elements, collection S = {S1, . . . , Sk}, Si ⊆ U , a cost function
c : S → R.

Output. Vector x ∈ {0, 1}k

Step 1. x = 0, y = 0. Declare all elements uncovered.

Step 2. Unless all elements are covered, do:

(a) Pick an uncovered element, say e, and raise ye until some set goes tight.

(b) Pick all tight sets S in the cover, i.e., set xS = 1.

(c) Declare all the elements occuring in these sets as covered.

Step 3. Return x.

Theorem 5.6. The algorithm Primal-Dual Set Cover is a f-approximation algorithm

for Set Cover.

Proof. At the end of the algorithm, there will be no uncovered elements. Further no dual
constraint is violated since we pick only tight sets S into the cover and no element e ∈ S
will later on be a candidate for increasing ye. Thus, the primal and dual solutions will both
be feasible. Since they satisfy the primal and dual complementary slackness conditions
with α = 1 and β = f , by Lemma 5.5, the approximation guarantee is f .

Example 5.7. A tight example for this algorithm is provided by the following set system.
The universe is U = {e1, . . . , en+1} and S consists of n− 1 sets {e1, en}, . . . , {en−1, en} of
cost 1 and one set {e1, . . . , en+1} of cost 1 + ε for some small ε > 0. Since en appears in
all n sets, this system has f = n.

Suppose the algorithm raises yen
in the first iteration. When yen

is raised to 1, all
sets {ei, en}, i = 1, . . . , n− 1 go tight. They are all picked in the cover, thus covering the
elements e1, . . . , en. In the second iteration yen+1

is raised to ε and the set {e1, . . . , en+1}
goes tight. The resulting set cover has cost n + ε, whereas the optimum cover has cost
1 + ε.

5.3 LP-Rounding Algorithms

The central idea behind algorithms that make use of the LP-rounding technique is as
follows: Suppose you have an LP-relaxation of a certain NP-hard problem. Then you can
solve this optimally and try to “round” the optimal fractional solution to an integral one.

41

Here we derive a factor f approximation algorithm for Set Cover but this time by
rounding the fractional solution of an LP to an integral solution (instead of the primal-dual
schema). We consider our usual LP relaxation for Set Cover

minimize val(x) =
∑

s∈S

c(S)xS ,

subject to
∑

S:e∈S

xS ≥ 1 e ∈ U,

xS ≥ 0 S ∈ S.

Simple Rounding Algorithm

The idea of the algorithm below is to include those sets S into the cover for which the
corresponding value zS in the optimal solution z of the LP is “large enough”.

Algorithm 5.3 Simple Rounding Set Cover

Input. Universe U with n elements, collection S = {S1, . . . , Sk}, Si ⊆ U , a cost function
c : S → R.

Output. Vector x ∈ {0, 1}k

Step 1. Set x = 0, solve the LP relaxation below, and call the optimal solution z.

minimize val(x) =
∑

S∈S

c(S)xS ,

subject to
∑

S:e∈S

xS ≥ 1 e ∈ U,

xS ≥ 0 S ∈ S.

Step 2. For each set S set xS = 1 if zS ≥ 1/f .

Step 3. Return x.

Theorem 5.8. The algorithm Simple Rounding Set Cover is an f-approximation

algorithm for Set Cover.

Proof. Let x be the solution returned by the algorithm and z be the optimal solution of
the LP. Consider an arbitrary element e ∈ U . Since e is in at most f sets, one of these
sets must be picked to the extent of at least 1/f in the fractional solution z. If this were
not the case then

∑

S:e∈S zS <
∑

S:e∈S 1/f ≤ f · 1/f = 1 yields a contradiction to the
feasibility of z. Thus e is covered due to the definition of the algorithm and x is hence a
feasible cover. We further have xS ≤ fzS and thus

val(x) ≤ fval(z) ≤ fval(x∗)

where x∗ is an optimal solution for the Set Cover problem.

42

Randomized Rounding

Another natural idea for rounding fractional solutions is to use randomization: For exam-
ple, for the above relaxation, observe that the values zS are between zero and one. We
may thus interpret these values as probabilities for choosing a certain set S.

Here is the idea of the following algorithm: Solve the LP-relaxation optimally and call
the solution z. With probability zS include the set S into the cover.

This basic procedure yields a vector x with expected value equal to the optimal frac-
tional solution value but might not cover all the elements. We thus repeat the procedure
“sufficiently many” times and include a set into our cover if it was included in any of
the iterations. We will show that O (log n) many iterations suffice yielding an O (log n)-
approximation algorithm.

Algorithm 5.4 Randomized Rounding Set Cover

Input. Universe U with n elements, collection S = {S1, . . . , Sk}, Si ⊆ U , a cost function
c : S → R.

Output. Vector x ∈ {0, 1}k

Step 1. Set x = 0, solve the LP relaxation below, and call the optimal solution z.

minimize val(x) =
∑

S∈S

c(S)xS ,

subject to
∑

S:e∈S

xS ≥ 1 e ∈ U,

xS ≥ 0 S ∈ S.

Step 2. Repeat ⌈3 log n⌉ times: For each set S set xS = 1 with probability zS .

Step 3. Return x.

Theorem 5.9. With probability at least 1− 1/n2 the algorithm Randomized Rounding

Set Cover returns a feasible solution, which is expected ⌈3 log n⌉-approximate for Set

Cover.

Proof. Let z be an optimal solution for the LP. We estimate the probability that an
element e ∈ U is covered in one iteration in Step 2. Let e be contained in m sets and
let z1, . . . , zm be the probabilities given in the solution z. Since e is fractionally covered
we have z1 + · · · + zm ≥ 1. With easy but tedious calculus we see that – under this
condition – the probability for e being covered is minimized when the zi are all equal, i.e.,
z1 = · · · = zm = 1/m:

Pr [xS = 1] = 1− (1− z1) · · · · · (1− zm) ≥ 1−

(

1−
1

m

)m

≥ 1−
1

e
.

Each element is covered with probability at least 1− 1/e. But maybe we have not covered
all elements after ⌈3 log n⌉ iterations. The probability that the element e is not covered at
the end of the algorithm, i.e., after ⌈3 log n⌉ iterations is

Pr [e is not covered] ≤

(

1

e

)⌈3 log n⌉

≤
1

n3
.

43

Thus the probability that there is an uncovered element is at most

∑

e∈U

Pr [e is not covered] ≤ n ·
1

n3
≤

1

n2
.

Hence the retured solution x is feasible with probability at least 1− 1/n2.
Consider a single iteration in Step 2 and let y ∈ {0, 1}k be the vector that indicates

which sets are included in this particular iteration. For each set S let yS = 1 with
probability zS . Then we have

E [val(y)] =
∑

S∈S

E [c(S)yS] =
∑

S∈S

c(S)Pr [yS = 1] =
∑

S∈S

c(S)zS = val(z).

Now we consider all iterations in Step 2 and clearly have

E [val(x)] ≤ ⌈3 log n⌉ · E [val(y)] ≤ ⌈3 log n⌉ · val(z) ≤ ⌈3 log n⌉ · val(x∗),

where x∗ is an optimal solution for Set Cover. So, the algorithm returns a feasible
solution, with probability at least 1−1/n2, whose expected value is ⌈3 log n⌉-approximate.

The proof above shows that the algorithm is a ⌈3 log n⌉-approximation in expectation.
But we can actually state that the approximation ratio is 4 · ⌈3 log n⌉ with probability
around 3/4. Use Markov’s inequality Pr [X > t] ≤ E [X] /t to show

Pr [val(x) > 4 · ⌈3 log n⌉ · val(z)] ≤
E [val(x)]

4 · ⌈3 log n⌉ · val(z)
≤

1

4

The probability that either not all elements are covered or the obtained solution has value
larger than 4 · ⌈3 log n⌉ times the optimal value is at most 1/n2 + 1/4 ≤ 1/2 for all n ≥ 2.
Thus we have to run the whole algorithm at most two times in expectation to actually get
a 4 · ⌈3 log n⌉-approximate solution.

44

