New Classes of Distributed Time Complexity

Alkida Balliu, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Dennis Olivetti, Jukka Suomela Aalto University, Finland

Context and Goals

- Study locally checkable labelling (LCL) problems in the LOCAL model
- Understanding the complexity landscape of LCL problems on general graphs

The LOCAL Model

Synchronous model

LCLs on General Graphs

- There are problems with complexity $\Theta(\log n)$
- Any $o(\log \log^* n)$ rounds algorithm can be converted to an O(1) rounds algorithm (same techniques of [2])
- Any $o(\log n)$ rounds algorithm can be converted to an $O(\log^* n)$ rounds algorithm [5]
- Many problems require $\Omega(\log n)$ and $O(\operatorname{poly} \log n)$ rounds

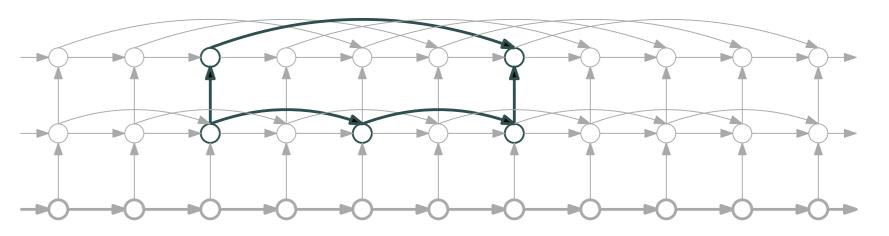
Landscape of Complexities on General Graphs

 d_1 1 1 * 1 * 1 d_1 1/2 1/2

A Valid LCL

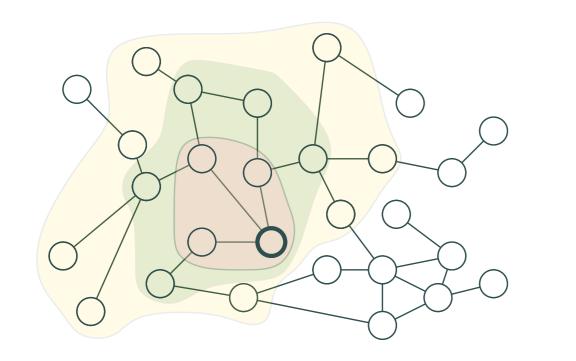
An LCL problem must be defined on any graph, not just on some "relevant" instances

Local Checkability of the Input Graph



• Nodes have IDs

• No limits on bandwidth or computational power

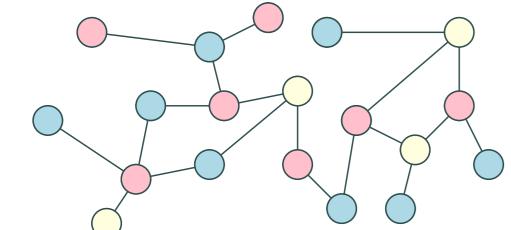


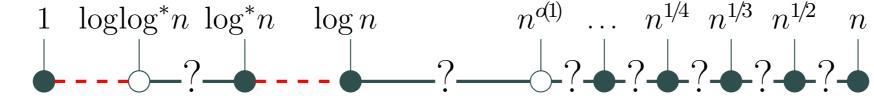
Locally Checkable Labellings

• Introduced by Naor and Stockmeyer in 1995 [2] • Δ -bounded degree graphs (where Δ is a constant)

- Constant-size input and output labels
- Validity of the output is locally checkable

Example: Vertex Colouring





Conjectures 1 $\log \log^* n \, \log^* n \, \log n$ $n^{o(1)} \dots n^{1/4} n^{1/3} n^{1/2} n$

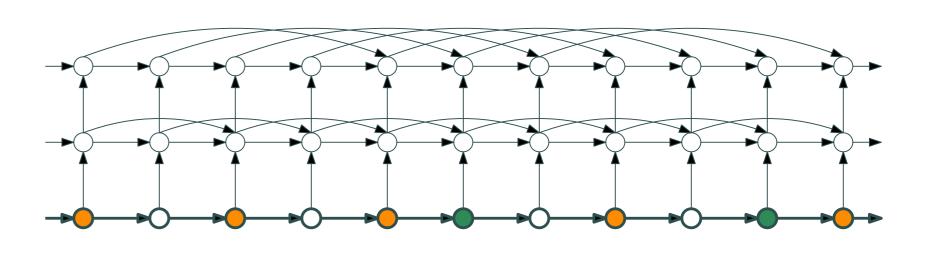
A Motivating Example

- Δ -colouring in general graphs can be done in O(polylog n) rounds
- 4-colouring a 2-dimensional balanced grid can be done in O(polylog n) rounds
- In 2-dimensional grids, there is a gap between $\omega(\log^* n)$ and $o(\sqrt{n})$ [6]
- *Implication*: 4–colouring a 2–dimensional balanced grid can be done in $O(\log^* n)$ rounds

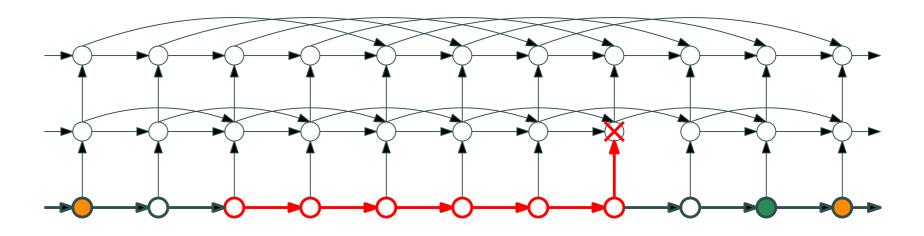
Our Results

On Correct Instances

- $T(n) = \Theta(\log^* n)$ for 3-vertex colouring on cycles
- $T(n) = \Theta(n)$ for 2-vertex colouring on cycles
- Problem Π can be solved in o(T(n)) rounds using the shortcuts



On Incorrect Instances



Hardness Balance

• On incorrect instances, it should be easy to prove that there is an error

LCLs on Cycles and Paths

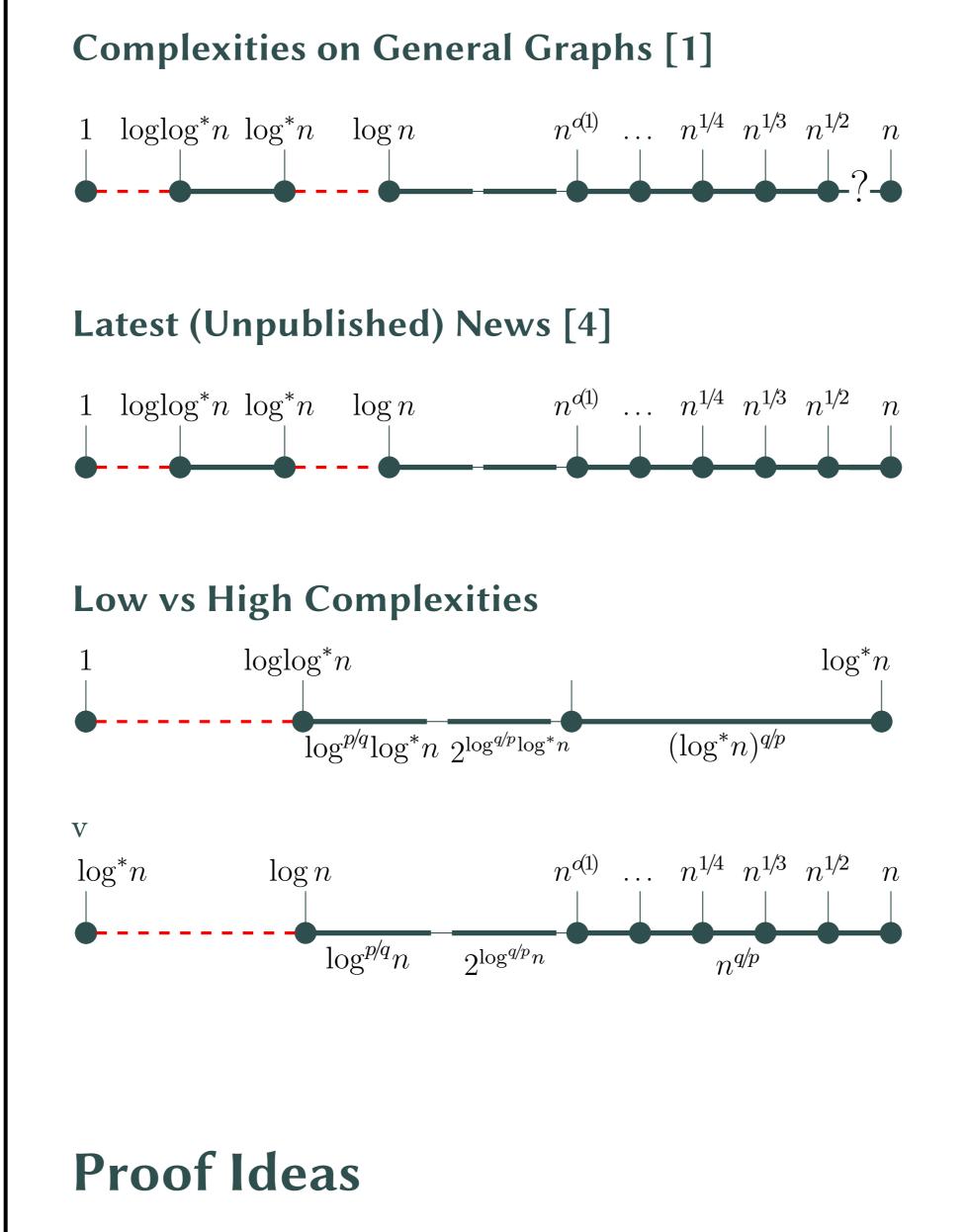
Θ(1): trivial problems
Θ(log* n): local problems (symmetry breaking)

• $\Theta(n)$: global problems

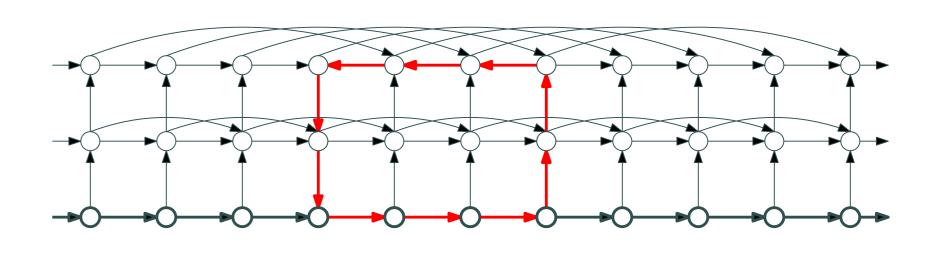
Landscape of Complexities on Cycles and Paths1 $\log^* n$ n

LCLs on Trees

Any n^{o(1)} rounds algorithm can be converted to an O(log n) rounds algorithm [3]
There are problems of complexity Θ(n^{1/k}) [3]



• On correct instances, it should be impossible, or hard, to prove that there is an error



Open Problems

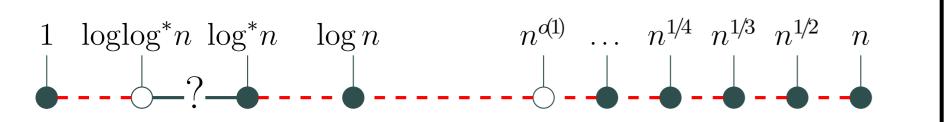
- What happens between $\Omega(\log \log^* n)$ and $O(\log^* n)$ on trees?
- What are meaningful subclasses of LCL problems worth studying?

References

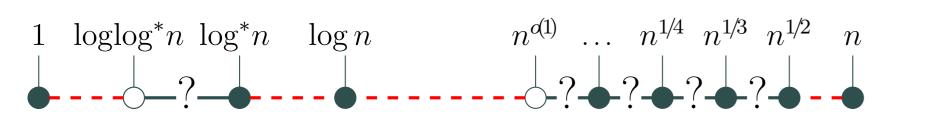
[1] A. Balliu, J. Hirvonen, J. H. Korhonen, T. Lempiäinen, D. Olivetti, and J. Suomela, "New classes of distributed time

Landscape of Complexities on Trees

Conjecture on Trees

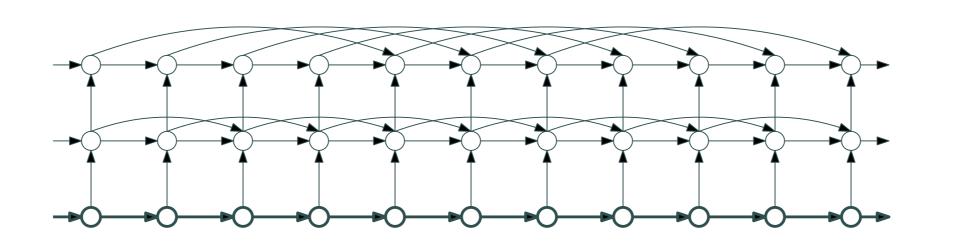


Towards Proving the Conjecture on Trees [4]



• Start from an LCL problem Π on cycles

- Build a speed-up construction
- Example: exponential speed-up function (2^{ℓ}, where ℓ is the level of the grid-like structure)



complexity," in *STOC 2018 (to appear)*.

- [2] M. Naor and L. Stockmeyer, "What can be computed locally?," *SIAM Journal on Computing*, 1995.
- [3] Y. Chang and S. Pettie, "A time hierarchy theorem for the LOCAL model," in *FOCS 2017*.
- [4] A. Balliu, S. Brandt, D. Olivetti, and J. Suomela, "Almost global problems in the LOCAL model," 2018 (unpublished). https://arxiv.org/abs/1805.04776.
- [5] Y. Chang, T. Kopelowitz, and S. Pettie, "An exponential separation between randomized and deterministic complexity in the LOCAL model," in *FOCS 2016*.
- [6] S. Brandt, J. Hirvonen, J. H. Korhonen, T. Lempiäinen, P. R. Östergård, C. Purcell, J. Rybicki, J. Suomela, and P. Uznański, "LCL problems on grids," in *PODC 2017*.