The distributed complexity of locally checkable problems on paths is decidable

Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Mikaël Rabie, Jukka Suomela
Given a graph problem, can we decide its distributed time complexity?
LOCAL model

- Entities = nodes
- Communication links = edges
- Input graph = communication graph
LOCAL model

- Each node has a **unique identifier** from 1 to $\text{poly}(n)$
- **No bounds** on the computational power of the entities
- **No bounds** on the bandwidth
LOCAL model

• Round 0
LOCAL model

- Round 1
LOCAL model

- Round 2
LOCAL model

• After t rounds: knowledge of the graph up to distance t
• Focus on locality
Locally Checkable Labelings (LCLs)

- **Input**
 - Graph of **constant** maximum degree Δ
 - Node labels from a **constant-size** set X

[Naor and Stockmeyer, 1995]
Locally Checkable Labelings (LCLs)

• **Input**
 • Graph of *constant* maximum degree Δ
 • Node labels from a *constant-size* set X

• **Output**
 • Node labels from a *constant-size* set Y, such that each node satisfies some *local constraints*

[Naor and Stockmeyer, 1995]
Locally Checkable Labelings (LCLs)

- **Input**
 - Graph of constant maximum degree Δ
 - Node labels from a constant-size set X

- **Output**
 - Node labels from a constant-size set Y, such that each node satisfies some local constraints

- **Correctness**
 - A solution is globally correct if it is correct in all constant-radius neighborhoods

[Naor and Stockmeyer, 1995]
Example: weak 2-coloring

- **Output**: color nodes from a palette of 2 colors
- **Constraint**: each node must have a different color from at least 1 neighbor
Objective of this work

Given an LCL $\Pi = (\text{input}, \text{output}, \text{constraints})$ we want to:

- **Decide** the distributed complexity of Π
- **Synthesize** an asymptotically optimal algorithm for Π
State of the art
State of the art

• Paths/Cycles with **NO** input:
 • the time complexity is always decidable, and
 • it can be either \(O(1)\), \(\Theta(\log^* n)\), or \(\Theta(n)\)

[Naor and Stockmeyer 1995] [Chang et al. 2016] [Brandt et al. 2017]
State of the art

• Paths/Cycles with NO input:
 • the time complexity is always decidable, and
 • it can be either $O(1)$, $\Theta(\log* n)$, or $\Theta(n)$

 [Naor and Stockmeyer 1995] [Chang et al. 2016] [Brandt et al. 2017]

• $\sqrt{n} \times \sqrt{n}$ Grids:
 • the time complexity is undecidable, but
 • if the grid has no input, it can be either $O(1)$, $\Theta(\log* n)$, or $\Theta(\sqrt{n})$
 • if the grid has no input and is toroidal, it is decidable if there is a $O(1)$ algorithm

 [Naor and Stockmeyer 1995] [Brandt et al. 2017]
State of the art

• **Paths/Cycles with NO input:**
 - the time complexity is always decidable, and
 - it can be either $O(1)$, $\Theta(\log^* n)$, or $\Theta(n)$

 [Naor and Stockmeyer 1995] [Chang et al. 2016] [Brandt et al. 2017]

• $\sqrt{n} \times \sqrt{n}$ Grids:
 - the time complexity is undecidable, but
 - if the grid has no input, it can be either $O(1)$, $\Theta(\log^* n)$, or $\Theta(\sqrt{n})$
 - if the grid has no input and is toroidal, it is decidable if there is a $O(1)$ algorithm

 [Naor and Stockmeyer 1995] [Brandt et al. 2017]

• **Trees:**
 - it is decidable if the LCL requires $O(\log n)$ or $n^{\Omega(1)}$

 [Chang and Pettie 2017]
Unlabeled Directed Cycles

Independent Set

[Brandt et al. 2017]
Unlabeled Directed Cycles

Independent Set

[Brandt et al. 2017]
Unlabeled Directed Cycles

Independent Set

[Brandt et al. 2017]
Unlabeled Directed Cycles

[Brandt et al. 2017]
Unlabeled Directed Cycles

Independent Set

[Brandt et al. 2017]
Unlabeled Directed Cycles

[Brandt et al. 2017]
Unlabeled Directed Cycles

Independent Set

[Brandt et al. 2017]
Unlabeled Directed Cycles

Independent Set

[Brandt et al. 2017]
Unlabeled Directed Cycles

Independent Set

Self loop: $O(1)$

[Brandt et al. 2017]
Unlabeled Directed Cycles

Independent Set

Maximal Independent Set

Self loop: $O(1)$

[Brandt et al. 2017]
Unlabeled Directed Cycles

Independent Set

Self loop: $O(1)$

Maximal Independent Set

Flexible state: $\Theta(\log^* n)$

"1 0" is flexible:

\[\forall k \geq 3, \exists \text{ cycle of length } k \text{ that starts and ends at "1 0"} \]

[Brandt et al. 2017]
Unlabeled Directed Cycles

Independent Set

Self loop: $O(1)$

Maximal Independent Set

Flexible state: $\Theta(\log^* n)$

"1 0" is flexible:
\[\forall k \geq 3, \exists \text{ cycle of length } k \text{ that starts and ends at } "1 0" \]

[Brandt et al. 2017]
Unlabeled Directed Cycles

Independent Set

- 10 → 01
- Self loop: $O(1)$

Maximal Independent Set

- 10 → 01
- Flexible state: $\Theta(\log^* n)$

"1 0" is flexible:

$\forall k \geq 3, \exists$ cycle of length k that starts and ends at "1 0"

[Brandt et al. 2017]
Unlabeled Directed Cycles

Independent Set

Maximal Independent Set

2-Coloring

Self loop: $O(1)$

Flexible state: $\Theta(\log^* n)$

"1 0" is flexible:
\[\forall k \geq 3, \exists \text{ cycle of length } k \text{ that starts and ends at } "1 0" \]

Otherwise: $\Omega(n)$

[Brandt et al. 2017]
Grids

[Naor and Stockmeyer 1995]
Grids

• Define an LCL that requires to output the execution of a Turing machine

• If the machine *terminates*, the LCL can be solved in $O(1)$

• If the machine *does not terminate*, the LCL requires $\Omega(\sqrt{n})$

[Naor and Stockmeyer 1995]
General Picture
General Picture

- Grids allow to propagate too much information
General Picture

• Grids allow to propagate too much information

• On trees/bounded treewidth graphs it should not be possible
General Picture

• Grids allow to propagate too much information

• On trees/bounded treewidth graphs it should not be possible

• Let us prove that the complexity of LCLs is decidable on trees!
General Picture

- Grids allow to propagate too much information
- On trees/bounded treewidth graphs it should not be possible
- Let us prove that the complexity of LCLs is decidable on trees!
 - It seems too hard, let us try with trees with NO input
General Picture

- Grids allow to propagate too much information
- On trees/bounded treewidth graphs it should not be possible
- Let us prove that the complexity of LCLs is decidable on trees!
 - It seems too hard, let us try with trees with NO input
 - The tree structure can be used to encode inputs!
General Picture

• Grids allow to propagate too much information

• On trees/bounded treewidth graphs it should not be possible

• Let us prove that the complexity of LCLs is decidable on trees!
 ‣ It seems too hard, let us try with trees with NO input
 ‣ The tree structure can be used to encode inputs!
 ‣ Let us just try to understand inputs, on cycles
Given an LCL Π on cycles/path with input, it is possible to decide its distributed time complexity, and synthesize an asymptotically optimal algorithm for Π.
Results

It is PSPACE-hard to distinguish whether an LCL \(\Pi \) on cycles/paths with input labels can be solved in \(O(1) \) time or it needs \(\Omega(n) \) time.

\[\Pi \]
Input = \{0,1\}
Output = \{0,1,2\}
Constraints = {...}

PSPACE hard

Complexity of \(\Pi \)
Algorithm for \(\Pi \)
Hardness

Time

Tape

Hardness
Hardness

Tape

Time
Hardness
Hardness

Input:

Locally checkable proof
Hardness

Input:

Copy the special symbol

OR

Prove that there is an error in the locally checkable proof

Output:
Hardness

The obtained LCL has binary input and it is radius 1 checkable.
Conclusions
Conclusions

• We can automatically obtain the complexity of any LCL on paths with input
Conclusions

• We can automatically obtain the complexity of any LCL on paths with input
• We can automatically obtain an optimal algorithm
Conclusions

• We can automatically obtain the complexity of any LCL on paths with input

• We can automatically obtain an optimal algorithm

• What about trees?
Conclusions

• We can automatically obtain the complexity of any LCL on paths with input

• We can automatically obtain an optimal algorithm

• What about trees?

 • Can we decide if an LCL is $O(\log^* n)$ or $\Omega(\log n)$?
Conclusions

• We can automatically obtain the complexity of any LCL on paths with input

• We can automatically obtain an optimal algorithm

• What about trees?
 • Can we decide if an LCL is $O(\log^* n)$ or $\Omega(\log n)$?
 • What about regular balanced trees with no input?
Conclusions

• We can automatically obtain the complexity of any LCL on paths with input

• We can automatically obtain an optimal algorithm

• What about trees?

 • Can we decide if an LCL is $O(\log^* n)$ or $\Omega(\log n)$?

 • What about regular balanced trees with no input?

Thank you!