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Overview

Maximal matching Maximal independent set

We will talk about lower bounds for solving these problems in the
distributed setting



Distributed setting

* Entities = nodes
* Communication links = edges
* |nput graph = communication graph
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 Communication links = edge
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Maximal matching problem

Input Output

 Matching: edges in the matching do not share a node

» Maximality: if we add any other edge in the matching, than it is not a
matching anymore

» We say that a node is matched: it is an endpoint of an edge in the matching
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Maximal independent set problem

Input Output

* Independent set: nodes in the IS do not share an edge

» Maximality: if we add any other node to the IS, than it is not
independent anymore
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Two classical graph problems

Maximal matching Maximal independent set

Easy linear-time centralized algorithm:
add edges/nodes until stuck
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Two classical graph problems

Maximal matching Maximal independent set

Can be verified locally: if it looks correct everywhere locally, it is
also feasible globally

Can these problems be solved locally?
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Locality = how far do I need to see to
produce my own part of the solution?
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Warmup: toy example

Bipartite graphs & port-numbering model




computer output:. o
network with %1 2? maximal
port numbering 3 3 matching
bipartite,

2-colored
graph

A-regular
(here A = 3)
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Very simple algorithm

unmatched white nodes:
send proposal to port 1
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Very simple algorithm

unmatched white nodes:
send proposal to port 1

black nodes:

accept the first proposal you
get, reject everything else
(break ties with port numbers)
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Very simple algorithm

unmatched white nodes:
send proposal to port 2
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unmatched white nodes:
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Very simple algorithm

unmatched white nodes:
send proposal to port 2

black nodes:

accept the first proposal you
get, reject everything else
(break ties with port numbers)
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Very simple algorithm

unmatched white nodes:
send proposal to port 3
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Very simple algorithm

unmatched white nodes:
send proposal to port 3

black nodes:

accept the first proposal you
get, reject everything else
(break ties with port numbers)
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Very simple algorithm

unmatched white nodes:
send proposal to port 3

black nodes:

accept the first proposal you
get, reject everything else
(break ties with port numbers)
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Very simple algorithm

Finds a maximal matching in
O(A) communication rounds

Note: running time does
not depend on n
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Bipartite maximal matching

» Maximal matching in very large 2-colored A-regular graphs
 Simple algorithm: O(A) rounds, independently of n

* Is this optimal?
* 0(A) rounds?
* O(log A) rounds?
* 4 rounds??
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Big picture

Bounded-degree graphs & LOCAL model
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LOCAL model

» Each node has a unique identifier

f ] | O
rom 1 to poly(n) . .‘@ .
* No bounds on the computational ©« =

power O

e Synchronous model

3 (35)
No bounds on the bandwidth .@\
* O pounas on e DANawiIl (24) (36) (13) (18,
R
(1)

» Everything can be solved in
Diameter time

Strong model — lower bounds widely applicable
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g(n)

f(A)

Maximal matching,

LOCAL model,
O(f(A) + g(n))

Algorithms:

O deterministic
@ randomized

Lower bounds:

deterministic

randomized
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Israeli & Itai (1986)

O(log n) randomized

o(log* n) impossible

Maximal matching,

LOCAL model,
O(f(A) + g(n))

Algorithms:

O deterministic
@ randomized

Lower bounds:

deterministic

randomized

Linial (1987, 1992), Naor (1991)
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log? n

Fischer (2017)

Israeli & Itai (1986)

polylog(n) deterministic

Hanckowiak et al. (1998)

Hanckowiak et al. (2001)

LOCAL model,
O(f(A) + g(n))

Algorithms:

O deterministic
@ randomized

Lower bounds:

deterministic

randomized

Maximal matching,

Linial (1987, 1992), Naor (1991)
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Hanckowiak et al. (2001) LOCAL model,
O(f(A) + g(n))

log? n

Fischer (2017)

Israeli & Itai (1986) Algorithms:

O deterministic
@ randomized

deterministic

randomized
O(A + log* n) deterministic

C|>Panc:onesi & Rizzi (2001)

Lower bounds:

Hanckowiak et al. (1998) Maximal matching

|
/ A Linial (1987, 1992), Naor (1991)
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log? n

Hanckowiak et al. (1998) Maximal matching,
Hanckowiak et al. (2001) LOCAL model,
| O(f(2) + g(n))
Fischer (2017)
Israeli & Itai (1986) Algorithms:

O deterministic
@ randomized

Lower bounds:

deterministic

randomized
Kuhn et al.
(2004, 2016) |
| Panconesi & Rizzi (2001)
7
g o A Linial (1987, 1992), Naor (1991)
log log A
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log™ n

log? n

logn
log logn

Fischer (2017)

Israeli & Itai (1986)

Barenboim et al.

Hanckowiak et al. (1998)

Hanckowiak et al. (2001)

O(log A + polylog log n)

LOCAL model,
O(f(A) + g(n))

Algorithms:

O deterministic
@ randomized

deterministic

Lower bounds:

Maximal matching,

.

4
log log’n// ® (2012 2016) randomized
log® log n @ Fischer (2017)
(Kuhn et al.)
2004, 2016
| Panconesi & Rizzi (2001)
e
logA  logA A Linial (1987, 1992), Naor (1991)
log log A
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log™ n

log® log n

log? logn//

log? n

logn
log logn

‘_

Kuhn et al.
(2004, 2016)

‘_

Fischer (2017)

Israeli & Itai (1986)

Barenboim et al.
(2012, 2016)

Fischer (2017)

Hanckowiak et al. (1998)

Hanckowiak et al. (2001)

LOCAL model,
O(f(A) + g(n))

Algorithms:

O deterministic
@ randomized

Lower bounds:

deterministic

randomized

O(log A + log* n) ???

C|>Panc:onesi & Rizzi (2001)

Maximal matching,

Yy

log A

loglog A

log A

A Linial (1987, 1992), Naor (1991)

37



log™ n

log? log n

log? logn//

log? n

logn
log logn

Kuhn et al.
(2004, 2016)

\
\

® Barenboim et al.
(201 2,201 6) randomized

scher (2017)

IR

Hanckowiak et al. (1998) Maximal matching,

Hanckowiak et al. (2001) LOCAL model,

| O(f(A) + g(n))
Fischer (2017)

Israeli & Itai (1986) Algorithms:

O deterministic
@ randomized

Lower bounds:
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logn
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Fischer (2017)
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Algorithms:
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Lower bounds:
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Maximal matching,
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log? n

logn

logn

Fischer (2017)

Israeli & Itai (1986)

Hanckowiak et al. (1998) Maximal matching,

Hanckowiak et al. (2001) LOCAL model,

O(f(3) + g(n))

Algorithms:
O deterministic

loglogn
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(2012, 2016)
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Lower bounds:
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Main results

Maximal Matching and Maximal Independent Set
cannot be solved in

* o(A + log log n / log log log n) rounds
with randomized algorithms, in the LOCAL model

« o(A +logn /loglog n) rounds
with deterministic algorithms, in the LOCAL model

Upper bound:

O(A +log* n)
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Very simple algorithm

unmatched white nodes:
send proposal to port 1

black nodes:

accept the first proposal you
get, reject everything else
(break ties with port numbers)
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Lower bound for MM 1mplies
lower bound for MIS

An algorithm for MIS implies an algorithm for MV
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lower bound for MIS

An algorithm for MIS implies an algorithm for MV
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Lower bound for MM 1mplies
lower bound for MIS

An algorithm for MIS implies an algorithm for MV
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Lower bound for MM 1mplies
lower bound for MIS

An algorithm for MIS implies an algorithm for MV

If we cannot solve MM in o(A), then we cannot solve MIS in o(A)
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Proof techniques

Round elimination



Round elimination technique

 Given:
» algorithm Aq solves problem Py in T rounds

 We construct:
» algorithm A, solves problem P, in T = 1 rounds

» algorithm A, solves problem P, in T = 2 rounds
» algorithm Aj solves problem P5; in T - 3 rounds

» algorithm Ay solves problem P+ in 0 rounds

« But P+ is nontrivial, so Ag cannot exist
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Linial (1987, 1992):
coloring cycles

* Given:
» algorithm Ag solves 3-coloring in T = o(log* n) rounds

* We construct:
« algorithm A, solves 23-coloring in T - 1 rounds

o algorithm A, solves 2%°-coloring in T = 2 rounds
» algorithm Az solves 22%°-coloring in T = 3 rounds

- algorithm A7 solves o(n)-coloring in 0 rounds

» But o(n)-coloring is nontrivial, so Ay cannot exist
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Linial (1987, 1992):
coloring cycles

* Given:
» algorithm Aq solves 3-coloring in T = o(log* n) rounds

* We construct:
o algorithm A, solves 23-coloring in 7 - 1 rounds

» algorithm A, solves 22°-coloring in T = 2 rounds :
» algorithm Aj solves 22?°-coloring in T = 3 rounds discover P,

Challenge:

» algorithm A+ solves o(n)-coloring in 0 rounds

» But o(n)-coloring is nontrivial, so Ay cannot exist
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Round elimination technique

e Given:

» algorithm Aq solves problem Py in T rounds
Given any Pj, 1t 1s

* We construct: possible to find Pi+
o algorithm A solves problem P, in T - 1 rounds automatically, but

» algorithm A, solves problem P, in T = 2 rounds the description of

. algorithm A3 solves problem P5 in T - 3 rounds the problem may
grow exponentially

e algorithm At solves problem P+ in O rounds [Brandt, 2019]

» But P+ is nontrivial, so Ag cannot exist
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Round elimination technique

 Given:
» algorithm Aq solves problem Py in T rounds

 We construct:
o algorithm A solves problem P, in T - 1 rounds

» algorithm A, solves problem P, in T = 2 rounds
. algorithm A5 solves problem P; in T - 3 rounds keep P;small

Challenge:

» algorithm Ay solves problem P+ in 0 rounds

» But P+ is nontrivial, so Ag cannot exist
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Round elimination technique for MM

e Given:

» algorithm Ay solves problem Py = maximal matching in T rounds

 We construct:
o algorithm A solves problem P, in T - 1 rounds

» algorithm A, solves problem P, in T = 2 rounds
» algorithm Aj solves problem P5; in T - 3 rounds

» algorithm Ay solves problem P+ in 0 rounds

» But P+ is nontrivial, so Ag cannot exist

What are
these

problems
P; here?
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General approach What we really

care about

Maximal matching in o(A) rounds
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General approach What we really

care about

Maximal matching in o(A) rounds
) R k-matching:
— “A12 matching” in o(A7/2) rounds

select at most
k edges per node
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General approach What we really
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Maximal matching in o(A) rounds
) R k-matching:
— “A12 matching” in o(A7/2) rounds
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General approach What we really

care about

Maximal matching in o(A) rounds
k-matching:

select at most
— P(A"2,0) in o(A"2) rounds k edges per node

— “A12 matching” in o(A7/2) rounds

Apply round

elimination
o(AY2) times
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General approach What we really

care about

Maximal matching in o(A) rounds

— “AV2matching” in o(A7/2) rounds Sléi?cﬁt:th;l()g;t
— P(A"2,0) in o(A"2) rounds k edges per node
— P(0(A"/2), 0o(A)) in 0 rounds Apply round
— contradiction elimination

o(AV2) times

58



M = "matched”
P = "pointer to matched”
O = “other”

Representation for
maximal matchings

white nodes “active” black nodes “passive”

accept one of these:
-1 x M and (A-1) x {P, O}
-Ax0

output one of these:
-1xMand (A-1)x0
-AxP

W =MO~"1 | P2 B =M[PO]>"! | O~
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Parametrized problem family
W =MO>"" | P2,
B = M[PO]*' | 0%

maximal matching

Wa(z.y) (Mod—l Pd) ovX”. weak” matching

Ba(z,y) = (MX][POX]"~* | [0X]*)[POX]*[MPOX]*.
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Parametrized problem family

B A—1 | pA - -
W = MO P, maximal matching

B =M[PO]~"' | 02

Wa(z,y) = (MO | pTYOUx®, weak” matching

A node v can be matched with at most x neighbours

If v 1s not matched, at most y neighbours can be unmatched
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Main Lemma

* Given: A solves P(x, y) in T rounds

« We can construct: A’solves P(x + 1,y + x)in T = 1 rounds

Walx,y) = (I\/I()d_1 Pd) Oy X",

Ba(z,y) = (MX][POX]"~* | [0X]*)[POX]*[MPOX]*.
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Proof technique does

Putting things together not work directly

with unique IDs

e Basic version:
 deterministic lower bound, port-numbering model

* Analyze what happens to local failure probability:
» randomized lower bound, port-numbering model

« With randomness you can construct unique identifiers w.h.p.:
 randomized lower bound, LOCAL model

» Fast deterministic — very fast randomized
 stronger deterministic lower bound, LOCAL model
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Summary

* Linear-in-A lower bounds for maximal matchings and maximal
independent sets

» Old: can be solved in O(A + log* n) rounds

« New: cannot be solved in
* o(A + log log n / log log log n) rounds with randomized algorithms
* o(A + log n / log log n) rounds with deterministic algorithms

e Technique: round elimination
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Active

MOOO
PPPP

Passive

M OP OP OP
O0O0O0




Some open questions

« Complexity of (A+1)-vertex coloring?
» can be solved in O(A/2) + O(log* n) rounds [Fraigniaud et al., 2016]

» cannot be solved in o(log* n) rounds [Linial, 1987}

« example: is it solvable in O(log A + log* n) time?

 Better understanding of the round elimination technique
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« Complexity of (A+1)-vertex coloring?
» can be solved in O(A/2) + O(log* n) rounds [Fraigniaud et al., 2016]

» cannot be solved in o(log* n) rounds [Linial, 1987}

« example: is it solvable in O(log A + log* n) time?

 Better understanding of the round elimination technique

Thank you!
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