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Abstract. The infrastructure for mobile distributed tasks is often formed by cel-
lular networks. One of the major issues in such networks is interference. In this
paper we tackle interference reduction by suitable assignment of transmission
power levels to base stations. This task is formalized introducing theMinimum
Membership Set Covercombinatorial optimization problem. On the one hand we
prove that in polynomial time the optimal solution of the problem cannot be ap-
proximated more closely than with a factorln n. On the other hand we present an
algorithm exploiting linear programming relaxation techniques which asymptot-
ically matches this lower bound.

1 Introduction
Cellular networks are heterogeneous networks consisting of two different types of nodes:
base stations and clients. The base stations—acting as servers—are interconnected by
an external fixed backbone network; clients are connected via radio links to base sta-
tions. The totality of the base stations forms the infrastructure for distributed appli-
cations running on the clients, the most prominent of which probably being mobile
telephony. Cellular networks can however more broadly be considered a type of infras-
tructure for mobile distributed tasks in general.

Since communication over the wireless links takes place in a shared medium, in-
terference can occur at a client if it is within transmission range of more than one base
station. In order to prevent such collisions, coordination among the conflicting base
stations is required. Commonly this problem is solved by segmenting the available fre-
quency spectrum into channels to be assigned to the base stations in such a way as
to prevent interference, in particular such that no two base stations with overlapping
transmission range use the same channel.

In this paper we assume a different approach to interference reduction. The basis of
our analysis is formed by the observation that interference effects occurring at a client
depend on the number of base stations by whose transmission ranges it is covered. In
particular for solutions using frequency division multiplexing as described above, the
number of base stations covering a client is a lower bound for the number of channels re-
quired to avoid conflicts; a reduction in the required number of channels, in turn, can be
exploited to broaden the frequency segments and consequently to increase communica-
tion bandwidth. On the other hand, also with systems using code division multiplexing,
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Fig. 1. If the base stations (hollow points) are assigned identical transmission power levels
(dashed circles), clientc experiences high interference, since it is covered by all base stations.
Interference can be reduced by assigning appropriate power values (solid circles), such that all
clients are covered by at most two base stations.

the coding overhead can be reduced if only a small number of base stations cover a
client.

The transmission range of a base station—and consequently the coverage properties
of the clients—depends on its position, obstacles hindering the propagation of electro-
magnetic waves, such as walls, buildings, or mountains, and the base station transmis-
sion power. Since due to legal or architectural constraints the former two factors are
generally difficult to control, we assume a scenario in which the base station positions
are fixed, each base station can however adjust its transmission power. The problem
of minimizing interference then consists in assigning every base station a transmission
power level such that the number of base stations covering any node is minimal (cf.
Figure 1). At the same time however, it has to be guaranteed that every client is covered
by at least one base station in order to maintain availability of the network.

In Figure 1 the area covered by a base stationb transmitting with a given power
level is represented by a disk centered atb and having a radius corresponding to the
chosen transmission power. Practical measurements however show that this idealiza-
tion is far from realistic. Not only mechanical and electronical inaccuracies inevitable
in the construction of antennas, but more importantly the presence of obstacles to the
propagation of electromagnetic signals—such as buildings, mountains, or even weather
conditions—can lead to areas covered by signal transmission that hardly resemble disks
in practice. These considerations motivate that in order to study the described interfer-
ence reduction problem we abstract from network node positions and circular transmis-
sion areas.

In our analysis we formalize the task of reducing interference as a combinatorial op-
timization problem. For this purpose we model the transmission range of a base station
having chosen a specific transmission power level as a set containing exactly all clients
covered thereby. The totality of transmission ranges selectable by all base stations is
consequently modeled as a collection of client sets. More formally, this yields theMin-
imum Membership Set Cover (MMSC)problem: Given a set of elementsU (modeling



clients) and a collectionS of subsets ofU (transmission ranges), choose a solution
S′ ⊆ S such that every element occurs in at least one set inS′ (maintain network
availability) and that themembershipM(u, S′) of any elementu with respect toS′

is minimal, whereM(u, S′) is defined as the number of sets inS′ in which u occurs
(interference).3

Having defined this formalization, we show in this paper—by reduction from the
related Minimum Set Cover problem—that the MMSC problem isNP -complete and
that no polynomial time algorithm exists with approximation ratio less thanln n unless
NP ⊂ TIME (nO(log log n)). In a second part of the paper we present a probabilistic
algorithm based on linear programming relaxation and derandomization asymptotically
matching this lower bound, particularly yielding an approximation ratio inO(ln n).

The paper is organized as follows: Discussing related work in Section 2, we formally
define the MMSC problem in Section 3. Section 4 contains a description of the lower
bound with respect to approximability of the MMSC problem. In the subsequent section
we describe how the MMSC problem can be formulated as a linear program and provide
aO(ln n)-approximation algorithm for the problem. Section 6 concludes the paper.

2 Related Work
Interference issues in cellular networks have been studied since the early 1980s in the
context of frequency division multiplexing: The available network frequency spectrum
is divided into narrow channels assigned to cells in a way to avoid interference con-
flicts. In particular two types of conflicts can occur, adjacent cells using the same chan-
nel (cochannel interference) and insufficient frequency distance between channels used
within the same cell (adjacent channel interference). Maximizing the reuse of channels
respecting these conflicts was generally studied by means of the combinatorial problem
of conflict graph coloring using a minimum number of colors. The settings in which
this problem was considered are numerous and include hexagon graphs, geometric in-
tersection graphs (such as unit disk graphs), and planar graphs, but also (non-geometric)
general graphs. In addition both static and dynamic (or on-line) approaches were stud-
ied [11]. The fact that channel separation constraints can depend on the distance of cells
in the conflict graph was analyzed by means of graph labeling [6]. The problem of fre-
quency assignment was tackled in a different way in [2] exploiting the observation that
in every region of an area covered by the communication network it is sufficient that
exactly one base station with a unique channel can be heard. As mentioned, all these
studied models try to avoid interference conflicts occurring when using frequency divi-
sion multiplexing. In contrast, the problem described in this paper assumes a different
approach in aiming at interference reduction by having the base stations choose suitable
transmission power levels.

The problem of reducing interference is formalized in a combinatorial optimization
problem namedMinimum Membership Set Cover. As suggested by its name, at first
sight its formulation resembles closely the long-known and well-studiedMinimum Set
Cover (MSC)problem, where the number of sets chosen to cover the given elements

3 Note that naturally, for each base station, the client set corresponding to a particular power
level contains all sets corresponding to lower power levels. Thus, we can assume that w.l.o.g.,
only one client set is chosen for each base station.



is to be minimized [7]. That the MMSC and the MSC problems are however of dif-
ferent nature can be concluded from the following observation: For any MSC instance
consisting ofn elements, a greedy algorithm approximates the optimal solution with an
approximation ratio at mostH(n) ≤ ln n+1 [7], which has later been shown to be tight
up to lower order terms unlessNP ⊂ TIME (nO(log log n)) [3,10]. For the MMSC prob-
lem in contrast, there exist instances where the same greedy algorithm fails to achieve
anynontrivial approximation of the optimal solution.

The approximation algorithm for the MMSC problem introduced in this paper is
based on the formulation of a given instance as a linear program. Solving this linear
program yields values subsequently interpreted as probabilities with which to randomly
decide for every set inS whether it should belong to the solution. This technique, com-
monly known as randomized rounding was proposed in [12]. Also derandomization
based on the method of conditional probabilities—the technique exploited to transform
the above probabilistic algorithm into a deterministic one—was introduced in [12] and
extended as well as improved in [13].

In the context of network traffic congestion, [9] considered a problem similar to
our analysis of the MMSC problem in that linear program relaxation was employed to
minimize a maximum value.

3 Minimum Membership Set Cover
As described in the introduction, the problem considered in this paper is to assign to
each base station a transmission power level such that interference is minimized while
all clients are covered. For our analysis we formalize this problem by introducing a
combinatorial optimization problem referred to asMinimum Membership Set Cover. In
particular, clients are modeled as elements and the transmission range of a base station
given a certain power level is represented as the set of thereby covered elements. In the
following, we first define the membership of an element given a collection of sets:

Definition 1 (Membership) Let U be a finite set of elements andS be a collection of
subsets ofU . Then the membershipM(u, S) of an elementu is defined as|{T | u ∈
T, T ∈ S}|.

Informally speaking, MMSC is identical to the MSC problem apart from the min-
imization function. Where MSC minimizes the total number of sets, MMSC tries to
minimize element membership. Particularly, MMSC can be defined as follows:

Definition 2 (Minimum Membership Set Cover) Let U be a finite set of elements
with |U | = n. Furthermore letS = {S1, . . . , Sm} be a collection of subsets ofU
such that

⋃m
i=1 Si = U . Then Minimum Membership Set Cover (MMSC) is the problem

of covering all elements inU with a subsetS′ ⊆ S such thatmaxu∈U M(u, S′) is
minimal.4

4 Besides minimizing themaximalmembership value over all elements, also minimization of the
averagemembership value can be considered a reasonable characterization of the interference
reduction problem. The fact however that—given a solutionS′—the sum of all membership
values equals the sum of the cardinalities of the sets inS′ shows that this min-average variant
is identical to the Weighted Set Cover [1] problem with the set weights corresponding to their
cardinalities.



Note that—as motivated in the introduction—the problem statement does not re-
quire the collection of subsetsS to reflect geometric positions of network nodes. For a
given problem instance to be valid,

⋃m
i=1 Si = U is sufficient.

4 Problem Complexity
In this section we address the complexity of theMinimum Membership Set Coverprob-
lem. We show that MMSC isNP -complete and therefore no polynomial time algorithm
exists that solves MMSC unlessP = NP .

Theorem 1. MMSC isNP -complete.

Proof. We will prove that MMSC isNP -complete by reducing MSC to MMSC. Con-
sider an MSC instance(U, S) consisting of a finite set of elementsU and a collectionS
of subsets ofU . The objective is to choose a subsetS′ with minimum cardinality from
S such that the union of the chosen subsets ofU contains all elements inU .

We now define a set̃U by adding a new elemente to U , construct a new collection
of setsS̃ by insertinge into all sets inS, and consider(Ũ , S̃) as an instance of MMSC.
Since elemente is in every set inS̃, it follows that e is an element with maximum
membership in the solutionS′ of MMSC. Moreover, the membership ofe in S′ is equal
to the number of sets in the solution. Therefore MMSC minimizes the number of sets in
the solution by minimizing the membership ofe. Consequently we obtain the solution
for MSC of the instance(U, S) by solving MMSC for the instance(Ũ , S̃) and extracting
elemente from all sets in the solution.

We have shown a reduction from MSC to MMSC, and therefore the latter isNP -
hard. Since solutions for the decision problem of MMSC are verifiable in polynomial
time, it is inNP , and consequently the MMSC decision problem is alsoNP -complete.

ut
Now that we have proved MMSC to beNP -complete and therefore not to be op-

timally computable within polynomial time unlessP = NP , the question arises, how
closely MMSC can be approximated by a polynomial time algorithm. This is partly
answered with the following lower bound.

Theorem 2. There exists no polynomial time approximation algorithm for MMSC with
an approximation ratio less than(1− o(1)) ln n unlessNP ⊂ TIME (nO(log log n)).

Proof. The reduction from MSC to MMSC in the proof of Theorem 1 is approximation-
preserving, that is, it implies that any lower bound for MSC also holds for MMSC. In
[3] it is shown thatln n is a lower bound for the approximation ratio of MSC unless
NP ⊂ TIME (nO(log log n)). Thus,ln n is also a lower bound for the approximation
ratio of MMSC. ut

5 Approximating MMSC by LP Relaxation
In the previous section a lower bound ofln n for the approximability of the MMSC
problem by means of polynomial time approximation algorithms has been established.
In this section we show how to obtain aO(log n)-approximation using LP relaxation
techniques.



5.1 LP Formulation of MMSC

We first derive the integer linear program which describes the MMSC problem. Let
S′ ⊆ S denote a subset of the collectionS. To eachSi ∈ S we assign a variable
xi ∈ {0, 1} such thatxi = 1 ⇔ Si ∈ S′. ForS′ to be a set cover, it is required that for
each elementui ∈ U , at least one setSj with ui ∈ Sj is in S′. Therefore,S′ is a set
cover ofU if and only if for all i = 1, ..., n it holds that

∑
Sj3ui

xj ≥ 1. ForS′ to be
minimal in the number of sets that cover a particular element, we need a second set of
constraints. Letz be the maximum membership over all elements caused by the sets in
S′. Then for alli = 1, ..., n it follows that

∑
Sj3ui

xj ≤ z. The MMSC problem can
consequently be formulated as the integer programIPMMSC:

minimizez

subject to
∑

Sj3ui

xj ≥ 1 i = 1, ..., n

∑

Sj3ui

xj ≤ z i = 1, ..., n

xj ∈ {0, 1} j = 1, ..., m

By relaxing the constraintsxj ∈ {0, 1} to x′j ≥ 0, we obtain the linear program
LPMMSC. The integer programIPMMSC yields the optimal solutionz∗ for an MMSC
problem. The linear programLPMMSC therefore results in a fractional solutionz′ with
z′ ≤ z∗, since we allow the variablesx′j to be in [0,1].

5.2 Randomized Rounding

In [12] and [13], randomized rounding was introduced for covering and packing prob-
lems. In the following, we show that this technique can also be applied to solveIPMMSC

resulting in an almost optimal algorithm. We present an efficient(1+O(1/
√

z′))(ln(n)+
1)-approximation algorithm for the MMSC problem. Given an MMSC instance(U, S),
we first solve the linear programLPMMSC corresponding to(U, S), yielding a vector
x′ andz′ and then apply randomized rounding in order to obtain an integer solution.
Consider the following “simple” randomized rounding scheme. We compute an integer
solutionx ∈ {0, 1}m by setting

xi :=

{
1 with probabilitypi := min{1, αx′i} for a valueα ≥ 1
0 otherwise

independently for eachi ∈ {1, . . . , m}. LetAi be thebadevent that theith element is
not covered.

Lemma 1. The probability that theith element remains uncovered is

P(Ai) =
∏

Sj3ui

(1− pj) < e−α.



Proof. Let mi be the number of sets containing elementi (mi = |{j|Sj 3 ui}|). By
the “means inequality”, we have

P(Ai) =
∏

Sj3ui

(1− pj) ≤
(

1−
∑

Sj3ui
pj

mi

)mi

≤
(

1− α

mi

)mi

< e−α.

Note that
∑

Sj3ui
pj ≥ α only holds if allpj < 1. We can safely make this assumption

becausepj = 1 for someSj 3 ui makesP(Ai) = 0. ut

Let Bi be thebadevent that theith element is covered bymorethanαβz′ sets for
someβ ≥ 1.

Lemma 2. The probability that theith element is covered more thanαβz′ times is

P(Bi) <
1

βαβz′ ·
∏

Sj3ui

[1 + (β − 1)pj ] ≤
(

eβ−1

ββ

)αz′

.

Proof. We use a Chernoff-type argument. Fort = ln β > 0, we have

P(Bi) = P


 ∑

Sj3ui

xj > αβz′


 = P

(
e
t·PSj3ui

xj > etαβz′
)

<
E

[
e
t·PSj3ui

xj
]

etαβz′ =
1

etαβz′ ·
∏

Sj3ui

[
pje

t + 1− pj

]

=
1

βαβz′ ·
∏

Sj3ui

[1 + (β − 1)pj ] ≤ 1
βαβz′ ·

∏

Sj3ui

e(β−1)pj ≤
(

eβ−1

ββ

)αz′

.

The inequality in the first line results by application of the Markov inequality. The
equations in the second line hold because of the independence of thexi and because
t = ln β, respectively. For the inequalities in the last line, we apply1 + x ≤ ex and∑

Sj3ui
pj ≤ αz′. ut

In the following, we denote the probability upper bounds given by Lemmas 1 and 2
by Ai andBi:

Ai :=
∏

Sj3ui

(1− pj) and Bi :=
1

βαβz′ ·
∏

Sj3ui

[1 + (β − 1)pj ] .

In order to bound the probability for any bad event to occur, we define a functionP
as follows:

P (p1, . . . , pm) := 2−
n∏

i=1

(1−Ai)−
n∏

i=1

(1−Bi).



Lemma 3. The probability that any element is not covered or covered more thanαβz′

times is upper-bounded byP (p1, . . . , pm):

P

(
n⋃

i=1

Ai ∪
n⋃

i=1

Bi

)
< P (p1, . . . , pm).

Proof. It is sufficient to prove that

P

(
n⋃

i=1

Ai

)
≤ 1−

∏
(1− P(Ai)) and P

(
n⋃

i=1

Bi

)
≤ 1−

∏
(1− P(Bi)). (1)

The lemma then follows by Lemmas 1 and 2. If the eventsAi andBi were independent,
the first and second inequality of (1) would hold with equality, respectively. Hence, we
have to show that the dependence of the events can only help us. As shown in [13],
the, the complementary eventsAi are positively correlated, that is, the probability of
Ai (Ai does not occur) increases under the condition that any subset of{A1, . . . ,An}
occurs. This positive correlation follows from Harris-Kleitman inequality [5,8], which
is a special case of the FKG inequality [4]. Hence, the first inequality of (1) follows.
For the eventsBi exactly the same argumentation holds. ut

In the following we show that ifα andβ are chosen appropriately,P (p1, . . . , pm)
is always less than1.

Lemma 4. When settingα = ln(n)+1, then forβ = 1+max{
√

3/z′, 3/z′}, we have
P (p1, . . . , pm) < 4/5.

Proof. By Lemmas 1 and 2, we have

P (p1, . . . , pm) < 2− (
1− e−α

)n −
(

1−
(

eβ−1

ββ

)αz′
)n

.

In order to haveP < 4/5, it therefore suffices to chooseα andβ such that

(
1− e−α

)n ≥ 3
5

and

(
1−

(
eβ−1

ββ

)αz′
)n

≥ 3
5
. (2)

For α ≥ ln n + 1, we get(1 − e−α)n ≥ 3/5 and therefore the first inequality of (2) is
fulfilled. The second inequality of (2) can be transformed into a simpler form using the
following inequalities:

eβ−1

ββ
≤

{
e−(β−1)2/3 for 1 ≤ β ≤ 2,

e−(β−1)/3 for β > 2.
(3)

If we chooseβ = 1 +
√

3/z′, for z′ ≥ 3, we haveβ ≤ 2 and therefore by (3), the
second inequality of (2) simplifies to

(
1−

(
eβ−1

ββ

)αz′
)n

≥
(
1− e−αz′(β−1)2/3

)n

=
(
1− e−α

)n
.



For z′ < 3, we can setβ = 1 + 3/z′ ≥ 2 and proceed analogously using the second
case of (3). ut

Lemmas 1–4 lead to the following randomized algorithm for the MMSC problem.
As a first step, the linear programLPMMSC has to be solved. Then, allx′i are rounded
to integer valuesxi ∈ {0, 1} using the described randomized rounding scheme with
α = ln n + 1. The rounding is repeated until the solution is feasible (all elements
are covered) and the membership of the integer solution deviates from the fractional
membershipz′ by at most a factorαβ for β = 1 + max{3/z′,

√
3/z′}. Each time, the

probability to be successful is at least1/5 and therefore, the probability of not being
successful decreases exponentially in the number of trials.

5.3 Derandomization

We will now show thatP (p1, . . . , pm) is a pessimistic estimator [12,13] and that there-
fore, the algorithm described at the end of the previous section can be derandomized.
That is,P is an upper bound on the probability of obtaining a “bad” solution,P < 1
(P is a probabilistic proof that a “good” solution exists), and thepi can be set to0 or
1 without increasingP . The first two properties follow by Lemmas 3 and 4, the third
property is shown by the following lemma.

Lemma 5. For all i, either settingpi to 0 or settingpi to 1 does not increaseP :

P (p1, . . . , pm) ≥ min{P (. . . , pi−1, 0, pi+1, . . . ), P (. . . , pi−1, 1, pi+1, . . . )}.
Proof. We prove the lemma by showing thatP is a concave function ofpi:

P (p1, . . . , pm) ≥ (1−pi)P (. . . , pi−1, 0, pi+1, . . . )+piP (. . . , pi−1, 1, pi+1, . . . ). (4)

If all probabilities exceptpi are fixed,Aj andBj are functions ofpi. We define

Ak(pi) :=
k∏

j=1

(1−Aj) and Bk(pi) :=
k∏

j=1

(1−Bj).

In order to obtain (4), we prove that

Ak(pi) ≤ (1− pi)Ak(0) + piAk(1) and Bk(pi) ≤ (1− pi)Bk(0) + piBk(1) (5)

for all k ∈ [0, n] by induction overk. Fork = 0, we haveA0(pi) = B0(pi) = 1 and
therefore (5) holds. The induction step fromk to k + 1 depends on whether element
k + 1 is in setSi. If elementk + 1 is not in setSi, Ak+1 andBk+1 do not depend
onpi and (5) follows from the induction hypothesis. It remains to prove the interesting
case where elementk + 1 is contained in setSi. We first consider the inequality for
Ak+1(pi). Whenpi is set to1, Ak+1 becomes0. If pi is set to0, the factor1 − pi in
Ak+1 is replaced by1 and thereforeAk+1 becomes

Ak+1,pi=0 =
∏

Sj∈uk+1\Si

(1− pj) =
Ak+1

1− pi
.



We therefore have

(1− pi)Ak+1(0) + piAk+1(1) = (1− pi)Ak(0) ·
(

1− Ak+1

1− pi

)
+ piAk(1) · 1

= (1− pi)Ak(0) + piAk(1)−Ak(0) ·Ak+1

≥ Ak(pi)(1−Ak+1) = Ak+1(pi).

The inequality in the third line follows from the induction hypothesis and fromAk(0) ≤
Ak(pi). ForBk+1(pi), settingpi to 0 and1 replaces the factor1 + (β − 1)pi in Bk+1

by 1 andβ, respectively:

Bk+1,pi=0 =
Bk+1

1 + (β − 1)pi
and Bk+1,pi=1 =

βBk+1

1 + (β − 1)pi
.

Thus, we get

(1− pi)Bk+1(0) + piBk+1(1)

= (1− pi)Bk(0) ·
(

1− Bk+1

1 + (β − 1)pi

)
+ piBk(1) ·

(
1− βBk+1

1 + (β − 1)pi

)

=
(
(1− pi)Bk(0) + piBk(1)

) ·
(

1− Bk+1

1 + (β − 1)pi

)
− Bk+1pi(β − 1)Bk(1)

1 + (β − 1)pi

≥ Bk(pi) ·
(

1− Bk+1

1 + (β − 1)pi

)
− Bk+1pi(β − 1)Bk(pi)

1 + (β − 1)pi

= Bk(pi)(1−Bk+1) = Bk+1(pi).

The inequality in the fourth line follows from the induction hypothesis and fromBk(1) ≤
Bk(pi). ut

Lemmas 3, 4, and 5 lead to an efficient deterministic approximation algorithm for
the MMSC problem. First, the linear programLPMMSC has to be solved. The proba-
bilites pi are determined as described in the last section. Forα andβ as in Lemma 4,
P (p1, . . . , pm) < 4/5. The probabilitiespi are now set to0 or1 such thatP (p1, . . . , pm)
remains smaller than4/5. This is possible by Lemma 5. When allpi ∈ {0, 1}, we have
an integer solution forIPMMSC. The probability that not all elements are covered or
that the membership is larger thanαβz′ is smaller thanP < 4/5. Because allpi are
0 or 1, this probability must be0. Hence, the computedIPMMSC-solution is anαβ-
approximation for MMSC:

Theorem 3. For any MMSC instance, there exists a deterministic polynomial-time ap-
proximation algorithm with an approximation ratio of(1 + O(1/

√
z′))(ln(n) + 1).

6 Conclusion

Interference reduction in cellular networks is studied in this paper by means of for-
malization with theMinimum Membership Set Coverproblem. Although this combi-
natorial optimization problem appears to be a natural and simply describable problem



in the context of set covering, it has—to the best of our knowledge—not been stud-
ied before. We show using approximation-preserving reduction from the Minimum Set
Cover problem that MMSC is not only NP-hard, but also that no polynomial-time algo-
rithm can approximate the optimal solution more closely than up to a factorln n unless
NP ⊂ TIME (nO(log log n)). In a second part of the paper this lower bound is shown to
be asymptotically matched by an algorithm making use of linear programming relax-
ation techniques.

Finally, the question remains as an open problem, whether there exists a simpler
greedy algorithm—considering interference increase during its execution—with the
same approximation quality.
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