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Abstract. The infrastructure for mobile distributed tasks is often formed by cel-
lular networks. One of the major issues in such networks is interference. In this
paper we tackle interference reduction by suitable assignment of transmission
power levels to base stations. This task is formalized introducindvinenum
Membership Set Coveombinatorial optimization problem. On the one hand we
prove that in polynomial time the optimal solution of the problem cannot be ap-
proximated more closely than with a factarn. On the other hand we present an
algorithm exploiting linear programming relaxation techniques which asymptot-
ically matches this lower bound.

1 Introduction

Cellular networks are heterogeneous networks consisting of two different types of nodes:
base stations and clients. The base stations—acting as servers—are interconnected by
an external fixed backbone network; clients are connected via radio links to base sta-
tions. The totality of the base stations forms the infrastructure for distributed appli-
cations running on the clients, the most prominent of which probably being mobile
telephony. Cellular networks can however more broadly be considered a type of infras-
tructure for mobile distributed tasks in general.

Since communication over the wireless links takes place in a shared medium, in-
terference can occur at a client if it is within transmission range of more than one base
station. In order to prevent such collisions, coordination among the conflicting base
stations is required. Commonly this problem is solved by segmenting the available fre-
quency spectrum into channels to be assigned to the base stations in such a way as
to prevent interference, in particular such that no two base stations with overlapping
transmission range use the same channel.

In this paper we assume a different approach to interference reduction. The basis of
our analysis is formed by the observation that interference effects occurring at a client
depend on the number of base stations by whose transmission ranges it is covered. In
particular for solutions using frequency division multiplexing as described above, the
number of base stations covering a client is a lower bound for the number of channels re-
quired to avoid conflicts; a reduction in the required number of channels, in turn, can be
exploited to broaden the frequency segments and consequently to increase communica-
tion bandwidth. On the other hand, also with systems using code division multiplexing,



Fig. 1. If the base stations (hollow points) are assigned identical transmission power levels
(dashed circles), client experiences high interference, since it is covered by all base stations.
Interference can be reduced by assigning appropriate power values (solid circles), such that all
clients are covered by at most two base stations.

the coding overhead can be reduced if only a small number of base stations cover a
client.

The transmission range of a base station—and consequently the coverage properties
of the clients—depends on its position, obstacles hindering the propagation of electro-
magnetic waves, such as walls, buildings, or mountains, and the base station transmis-
sion power. Since due to legal or architectural constraints the former two factors are
generally difficult to control, we assume a scenario in which the base station positions
are fixed, each base station can however adjust its transmission power. The problem
of minimizing interference then consists in assigning every base station a transmission
power level such that the number of base stations covering any node is minimal (cf.
Figure 1). At the same time however, it has to be guaranteed that every client is covered
by at least one base station in order to maintain availability of the network.

In Figure 1 the area covered by a base statidransmitting with a given power
level is represented by a disk centered @nd having a radius corresponding to the
chosen transmission power. Practical measurements however show that this idealiza-
tion is far from realistic. Not only mechanical and electronical inaccuracies inevitable
in the construction of antennas, but more importantly the presence of obstacles to the
propagation of electromagnetic signals—such as buildings, mountains, or even weather
conditions—can lead to areas covered by signal transmission that hardly resemble disks
in practice. These considerations motivate that in order to study the described interfer-
ence reduction problem we abstract from network node positions and circular transmis-
sion areas.

In our analysis we formalize the task of reducing interference as a combinatorial op-
timization problem. For this purpose we model the transmission range of a base station
having chosen a specific transmission power level as a set containing exactly all clients
covered thereby. The totality of transmission ranges selectable by all base stations is
consequently modeled as a collection of client sets. More formally, this yieldditie
imum Membership Set Cover (MMS@pblem: Given a set of elements(modeling



clients) and a collectiory’ of subsets ofU (transmission ranges), choose a solution
S’ C S such that every element occurs in at least one se&t’ itmaintain network
availability) and that thenembership\/ (u,.S”) of any element: with respect taS’

is minimal, whereM (u, S’) is defined as the number of setsShin which « occurs
(interference}.

Having defined this formalization, we show in this paper—by reduction from the
related Minimum Set Cover problem—that the MMSC problenViB-complete and
that no polynomial time algorithm exists with approximation ratio less thanunless
NP C TIME(n®°gle™) In a second part of the paper we present a probabilistic
algorithm based on linear programming relaxation and derandomization asymptotically
matching this lower bound, particularly yielding an approximation ratiO {in n).

The paper is organized as follows: Discussing related work in Section 2, we formally
define the MMSC problem in Section 3. Section 4 contains a description of the lower
bound with respect to approximability of the MMSC problem. In the subsequent section
we describe how the MMSC problem can be formulated as a linear program and provide
aO(Inn)-approximation algorithm for the problem. Section 6 concludes the paper.

2 Related Work

Interference issues in cellular networks have been studied since the early 1980s in the
context of frequency division multiplexing: The available network frequency spectrum

is divided into narrow channels assigned to cells in a way to avoid interference con-
flicts. In particular two types of conflicts can occur, adjacent cells using the same chan-
nel (cochannel interference) and insufficient frequency distance between channels used
within the same cell (adjacent channel interference). Maximizing the reuse of channels
respecting these conflicts was generally studied by means of the combinatorial problem
of conflict graph coloring using a minimum number of colors. The settings in which
this problem was considered are numerous and include hexagon graphs, geometric in-
tersection graphs (such as unit disk graphs), and planar graphs, but also (hon-geometric)
general graphs. In addition both static and dynamic (or on-line) approaches were stud-
ied [11]. The fact that channel separation constraints can depend on the distance of cells
in the conflict graph was analyzed by means of graph labeling [6]. The problem of fre-
guency assignment was tackled in a different way in [2] exploiting the observation that
in every region of an area covered by the communication network it is sufficient that
exactly one base station with a unigue channel can be heard. As mentioned, all these
studied models try to avoid interference conflicts occurring when using frequency divi-
sion multiplexing. In contrast, the problem described in this paper assumes a different
approach in aiming at interference reduction by having the base stations choose suitable
transmission power levels.

The problem of reducing interference is formalized in a combinatorial optimization
problem namedvinimum Membership Set Coveks suggested by its name, at first
sight its formulation resembles closely the long-known and well-stulliE@mum Set
Cover (MSC)problem, where the number of sets chosen to cover the given elements

% Note that naturally, for each base station, the client set corresponding to a particular power
level contains all sets corresponding to lower power levels. Thus, we can assume that w.l.0.g.,
only one client set is chosen for each base station.



is to be minimized [7]. That the MMSC and the MSC problems are however of dif-
ferent nature can be concluded from the following observation: For any MSC instance
consisting ofz elements, a greedy algorithm approximates the optimal solution with an
approximation ratio at most (n) < Inn+1 [7], which has later been shown to be tight

up to lower order terms unle$&P ¢ TIME (n™°g1°2)) [3,10]. For the MMSC prob-

lem in contrast, there exist instances where the same greedy algorithm fails to achieve
anynontrivial approximation of the optimal solution.

The approximation algorithm for the MMSC problem introduced in this paper is
based on the formulation of a given instance as a linear program. Solving this linear
program yields values subsequently interpreted as probabilities with which to randomly
decide for every set i§ whether it should belong to the solution. This technique, com-
monly known as randomized rounding was proposed in [12]. Also derandomization
based on the method of conditional probabilities—the technique exploited to transform
the above probabilistic algorithm into a deterministic one—was introduced in [12] and
extended as well as improved in [13].

In the context of network traffic congestion, [9] considered a problem similar to
our analysis of the MMSC problem in that linear program relaxation was employed to
minimize a maximum value.

3 Minimum Membership Set Cover

As described in the introduction, the problem considered in this paper is to assign to
each base station a transmission power level such that interference is minimized while
all clients are covered. For our analysis we formalize this problem by introducing a
combinatorial optimization problem referred toMsmimum Membership Set Covén
particular, clients are modeled as elements and the transmission range of a base station
given a certain power level is represented as the set of thereby covered elements. In the
following, we first define the membership of an element given a collection of sets:

Definition 1 (Membership) LetU be a finite set of elements asdbe a collection of
subsets ot/. Then the membershilff (u, S) of an element. is defined a${7 | v €
T,T € S}|.

Informally speaking, MMSC is identical to the MSC problem apart from the min-
imization function. Where MSC minimizes the total number of sets, MMSC tries to
minimize element membership. Particularly, MMSC can be defined as follows:

Definition 2 (Minimum Membership Set Cover) Let U be a finite set of elements
with |U| = n. Furthermore letS = {Si,...,S,,} be a collection of subsets &f
such that J;" , S; = U. Then Minimum Membership Set Cover (MMSC) is the problem
of covering all elements iV with a subsetS’ C S such thatmax,cy M (u, S’) is
minimal*

4 Besides minimizing thenaximalmembership value over all elements, also minimization of the
averagemembership value can be considered a reasonable characterization of the interference
reduction problem. The fact however that—given a soluféa-the sum of all membership
values equals the sum of the cardinalities of the sef& ishows that this min-average variant
is identical to the Weighted Set Cover [1] problem with the set weights corresponding to their
cardinalities.



Note that—as motivated in the introduction—the problem statement does not re-
quire the collection of subsefsto reflect geometric positions of network nodes. For a
given problem instance to be valid;;" , S; = U is sufficient.

4 Problem Complexity

In this section we address the complexity of Mmimum Membership Set Coverob-
lem. We show that MMSC i&/P-complete and therefore no polynomial time algorithm
exists that solves MMSC unlegs= NP.

Theorem 1. MMSC isNP-complete.

Proof. We will prove that MMSC isNP-complete by reducing MSC to MMSC. Con-
sider an MSC instancd/, .S) consisting of a finite set of elemeritsand a collectiort

of subsets ot/. The objective is to choose a subsétwith minimum cardinality from
S such that the union of the chosen subsets abntains all elements i@.

We now define a sdtf by adding a new elemeatto U, construct a new collection
of setsS by insertinge into all sets inS, and considefU, S) as an instance of MMSC.
Since element is in every set inS, it follows thate is an element with maximum
membership in the solutioff’ of MMSC. Moreover, the membership efn S’ is equal
to the number of sets in the solution. Therefore MMSC minimizes the number of sets in
the solution by minimizing the membership @fConsequently we obtain the solution
for MSC of the instancél, S) by solving MMSC for the instancd/, S) and extracting
element from all sets in the solution.

We have shown a reduction from MSC to MMSC, and therefore the latt®Pis
hard. Since solutions for the decision problem of MMSC are verifiable in polynomial
time, it is in NP, and consequently the MMSC decision problem is &¥g&-complete.

O

Now that we have proved MMSC to h€P-complete and therefore not to be op-
timally computable within polynomial time unle$3 = NP, the question arises, how
closely MMSC can be approximated by a polynomial time algorithm. This is partly
answered with the following lower bound.

Theorem 2. There exists no polynomial time approximation algorithm for MMSC with
an approximation ratio less thafi — o(1)) Inn unlessNP C TIME (n™loglogn)),

Proof. The reduction from MSC to MMSC in the proof of Theorem 1 is approximation-
preserving, that is, it implies that any lower bound for MSC also holds for MMSC. In
[3] it is shown thatln n is a lower bound for the approximation ratio of MSC unless
NP C TIME(n™°glosn)) Thus,Inn is also a lower bound for the approximation
ratio of MMSC. O

5 Approximating MMSC by LP Relaxation

In the previous section a lower bound lafn for the approximability of the MMSC
problem by means of polynomial time approximation algorithms has been established.
In this section we show how to obtain(¥log n)-approximation using LP relaxation
techniques.



5.1 LP Formulation of MMSC

We first derive the integer linear program which describes the MMSC problem. Let
S’ C S denote a subset of the collectich To eachS; € S we assign a variable

x; € {0,1} such thaty; = 1 & S; € S’. For S’ to be a set cover, it is required that for
each element; € U, at least one sef; with u; € S; is in .S’. Therefore,S’ is a set

cover ofU if and only if for all i = 1, .., n it holds that) s ., x; > 1. ForS’ to be
minimal in the number of sets that cover a particular element, we need a second set of
constraints. Let be the maximum membership over all elements caused by the sets in
S'. Thenfor alli = 1,..., n it follows that} g -, x; < z. The MMSC problem can
consequently be formulated as the integer progiBgaisc:

minimize z

subject to Z x;>1 1=1,..,n
S,-aui
ijgz 1=1,...,n
SJ‘BUi

z; €{0,1} j=1,...,m

By relaxing the constraints; € {0,1} to 2, > 0, we obtain the linear program
LPymumsc- The integer prografiPyvsc Yields the optimal solution* for an MMSC
problem. The linear prograhP, ;s sc therefore results in a fractional solutiehwith

2 < z*, since we allow the variables; to be in [0,1].

5.2 Randomized Rounding

In [12] and [13], randomized rounding was introduced for covering and packing prob-
lems. In the following, we show that this technique can also be applied toBlywesc
resulting in an almost optimal algorithm. We present an effidienO(1/v/2)) (In(n)+
1)-approximation algorithm for the MMSC problem. Given an MMSC instafi¢es),

we first solve the linear prografPy\sc corresponding tgU, S), yielding a vector

2’ andz’ and then apply randomized rounding in order to obtain an integer solution.
Consider the following “simple” randomized rounding scheme. We compute an integer
solutionz € {0, 1}™ by setting

1 with probabilityp; := min{1, ez} for a valuea > 1
€X; = .
0 otherwise

independently for eache {1,...,m}. Let A; be thebad event that theé" element is
notcovered.

Lemma 1. The probability that theé’” element remains uncovered is

PA) = J[ A-p) <e

SJ'Bui



Proof. Let m; be the number of sets containing elemefity; = |{j]S; > u;}|). By
the “means inequality”, we have

PA)= [[ 1-p) < <1 Zsﬁ"%)m < <1O‘)mi <e°.

m m;
SjBUi v v

Note thaty ¢ -, p; > a only holds if allp; < 1. We can safely make this assumption
because, = 1 for someS; > u; makesP(A4;) = 0. O

Let B; be thebad event that theé*” element is covered byorethana3z’ sets for
somes > 1.

Lemma 2. The probability that thé*" element is covered more thaisz’ times is

g1y @'
P<6i><b,jﬁz,-ﬂu+<ﬁ—1>pj1g( ) |

€
B
Sjou; ﬁ

Proof. We use a Chernoff-type argument. Foe= In 3 > 0, we have

P(Bl> - P Z .%‘j > Ogﬁzl — P(et.ZSJ‘Sui Zj > etaﬁzl)
Sj3’u.,;
t
< etoéﬁz' = etaﬁzl . SH [pje +1-— pj]
jOU;

1 1 (B—1)p; 6671 az

= —= [[0+0B-p] < —7- []e < (S5 .
ﬁ Sjdu; ﬁ S 5
Ui FEY

The inequality in the first line results by application of the Markov inequality. The
equations in the second line hold because of the independence of &mel because
t = In f3, respectively. For the inequalities in the last line, we apply = < ¢* and

!
Zsjau,ipj < az. m|

In the following, we denote the probability upper bounds given by Lemmas 1 and 2
by A; andB;:

Az: H(l—p]) and quﬁ H[I‘F(ﬂ_l)pj]

Sjaui Sj Su;

In order to bound the probability for any bad event to occur, we define a funetion
as follows:

n

P(p1,...,pm) = 2—[J(1—4) - JJ(1 - By).

i=1 =1



Lemma 3. The probability that any element is not covered or covered moredian
times is upper-bounded Y(p1, . .., pm):

P(U AzU UBZ> < P(p1,,pm)
i=1 i=1

Proof. It is sufficient to prove that

]P’(U Ai> <1-JJ1-P(A;)) and ]P’(U Bi> <1-JJa-P®)). @

=1 =1

The lemma then follows by Lemmas 1 and 2. If the evetitand5; were independent,

the first and second inequality of (1) would hold with equality, respectively. Hence, we
have to show that the dependence of the events can only help us. As shown in [13],
the, the complementary eventg are positively correlated, that is, the probability of

Aj; (A; does not occur) increases under the condition that any subget;of .., A, }
occurs. This positive correlation follows from Harris-Kleitman inequality [5,8], which

is a special case of the FKG inequality [4]. Hence, the first inequality of (1) follows.
For the event$3; exactly the same argumentation holds. O

In the following we show that ifv and 3 are chosen appropriatel®,(p1, . .., pm)
is always less thah.

Lemma 4. When settinge = In(n) + 1, then for3 = 1+ max{+/3/%’,3/2'}, we have
P(pla" 7pm) < 4/5

Proof. By Lemmas 1 and 2, we have

Pp1y..ypm) <2—(1—e )" - (1_ (e;;)az/)n

In order to haveP < 4/5, it therefore suffices to choogeand such that

(1—e*a)”2§ and <1<egﬁl> ) Zg. 2

Fora > Inn+ 1, we get(1 — e~*)™ > 3/5 and therefore the first inequality of (2) is
fulfilled. The second inequality of (2) can be transformed into a simpler form using the
following inequalities:

ef~1 {e_(5_1)2/3 for1 < <2,

— < ) 3
B = e B-D/3  forp > 2. @)

If we chooses = 1 + /3/%/, for 2/ > 3, we haveg < 2 and therefore by (3), the
second inequality of (2) simplifies to

p-1 az’\ " , n
(1 — (eﬁﬁ) > > (]_ — e ** (5*1)2/3) — (1 _ efa)n )



Forz' < 3, we cansefl = 1+ 3/z" > 2 and proceed analogously using the second
case of (3). ad

Lemmas 1-4 lead to the following randomized algorithm for the MMSC problem.
As a first step, the linear prograbPyvsc has to be solved. Then, alf are rounded
to integer values:; € {0,1} using the described randomized rounding scheme with
a = Inn + 1. The rounding is repeated until the solution is feasible (all elements
are covered) and the membership of the integer solution deviates from the fractional
membership’ by at most a factong for 5 = 1 + max{3/z’, 1/3/z'}. Each time, the
probability to be successful is at ledsts and therefore, the probability of not being
successful decreases exponentially in the number of trials.

5.3 Derandomization

We will now show thatP(p1, . . ., p,,) is @ pessimistic estimator [12,13] and that there-
fore, the algorithm described at the end of the previous section can be derandomized.
That is, P is an upper bound on the probability of obtaining a “bad” solutiBng 1

(P is a probabilistic proof that a “good” solution exists), and thean be set t® or

1 without increasingP. The first two properties follow by Lemmas 3 and 4, the third
property is shown by the following lemma.

Lemma 5. For all 4, either settingy; to 0 or settingp; to 1 does not increase’:

P(plv'”vpm) 2 min{P('"7pi—1aoapi+17~-')7p("'7pi—1717pi+17"')}'

Proof. We prove the lemma by showing thBtis a concave function qf;:

P(p17~'~7pm) > (1_pi)P(""pi—1707pi+1a"')+pip('"7pi—171’pi+1a"')' (4)

If all probabilities excepp; are fixed,A; andB; are functions op;. We define

k k
Ap(pi) = [J(0—A4;) and By(p:) = [[(1-By).
j=1

j=1
In order to obtain (4), we prove that
Ap(pi) < (1= pi)Ar(0) +p;Ax(1) and Bi(pi) < (1 —pi)Bi(0) +p;Br(1) (5)

for all £ € [0, n] by induction overk. Fork = 0, we haveAy(p;) = Bo(p;) = 1 and
therefore (5) holds. The induction step frafrto k£ + 1 depends on whether element

k + 1isin setS;. If elementk + 1 is not in setS;, Ax+1 and Bx,; do not depend
onp; and (5) follows from the induction hypothesis. It remains to prove the interesting
case where element+ 1 is contained in seb,;. We first consider the inequality for
Ary1(pi). Whenp; is set tol, A, becomes). If p; is set to0, the factorl — p; in
Ay is replaced byl and therefored,; becomes

Akt
Ak41,p,=0 = H (1-pj) = 1= p
SjeukJrl\Si v




We therefore have

(1= 5B 0+ s (1) = (1= p)Ae(0)- (1= 1221 ) 4 py(1) 1

= (1 = pi)Ar(0) + pi A (1) — Ak (0) - Aptr
> Ap(pi)(1 = Apy1) = Agya(pi)-
The inequality in the third line follows from the induction hypothesis and feb0) <

Ay (pi). For By 1(p;:), settingp; to 0 and1 replaces the factar + (3 — 1)p; in Byy1
by 1 andg, respectively:

__ Brn S
Biy1,p,=0 = 1+ (B-1p and Biy1,pi=1 = 1+ 1)}%.
Thus, we get
(1 = pi)Bi+1(0) + piBj41(1)

_ By (1 — Bt Ny (1o BB

- (-0 (1- )+ B (1- )

B = = s Byt1 ~ Bipi(B - 1) By (1)

= ((1_pz)Bk(0)+szk(1)) (1 1+(ﬁ_1)Pi> 1+(ﬁ_1)pi

_ z. B Bk+1 . Bk+1pi(ﬁ - 1)§k(p7)
> By(pi) <1 H(g_l)pi) 1+ (68— Dp;

= By(p;)(1 — Br41) = Bprs1(pi)-

The inequality in the fourth line follows from the induction hypothesis and fiytil) <
Ek (pl) O

Lemmas 3, 4, and 5 lead to an efficient deterministic approximation algorithm for
the MMSC problem. First, the linear progran®y\sc has to be solved. The proba-
bilites p; are determined as described in the last sectionaFand 3 as in Lemma 4,
P(p1,...,pm) < 4/5. The probabilitiep; are now sett0 or 1 such thaP(py, ..., pm)
remains smaller tha#y/5. This is possible by Lemma 5. When gjl € {0, 1}, we have
an integer solution fofPyvsc. The probability that not all elements are covered or
that the membership is larger tham$z’ is smaller thanP < 4/5. Because alp; are
0 or 1, this probability must b&. Hence, the computel\sc-solution is anaS-
approximation for MMSC:

Theorem 3. For any MMSC instance, there exists a deterministic polynomial-time ap-
proximation algorithm with an approximation ratio 6f + O(1/v/2'))(In(n) + 1).

6 Conclusion

Interference reduction in cellular networks is studied in this paper by means of for-
malization with theMinimum Membership Set Covproblem. Although this combi-
natorial optimization problem appears to be a natural and simply describable problem



in the context of set covering, it has—to the best of our knowledge—not been stud-
ied before. We show using approximation-preserving reduction from the Minimum Set
Cover problem that MMSC is not only NP-hard, but also that no polynomial-time algo-
rithm can approximate the optimal solution more closely than up to a factounless
NP C TIME(n®°&!°en) In a second part of the paper this lower bound is shown to
be asymptotically matched by an algorithm making use of linear programming relax-
ation techniques.

Finally, the question remains as an open problem, whether there exists a simpler
greedy algorithm—considering interference increase during its execution—with the
same approximation quality.
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