
Decomposing Broadcast Algorithms
Using Abstract MAC Layers

Majid Khabbazian∗†

Department of Applied Computer Science
University of Winnipeg, Canada

m.khabbazian@uwinnipeg.ca

Dariusz R. Kowalski‡
Department of Computer Science

University of Liverpool, United Kingdom
d.kowalski@liverpool.ac.uk

Fabian Kuhn∗

Faculty of Informatics
University of Lugano (USI), Switzerland

fabian.kuhn@usi.ch

Nancy Lynch∗

Computer Science and Artificial Intelligence Lab
MIT, USA

lynch@csail.mit.edu

ABSTRACT
In much of the theoretical literature on wireless algorithms,
issues of message dissemination are considered together with
issues of contention management. This combination leads to
complicated algorithms and analysis, and makes it difficult
to extend the work to harder communication problems. In
this paper, we present results of a current project aimed at
simplifying such algorithms and analysis by decomposing the
treatment into two levels, using abstract “MAC layer” spec-
ifications to encapsulate the contention management. We
use two different abstract MAC layers: the basic one of [14,
15] and a new probabilistic layer.
We first present a typical randomized contention-manageent
algorithm for a standard graph-based radio network model
We show that it implements both abstract MAC layers. We
combine this algorithm with greedy algorithms for single-
message and multi-message global broadcast and analyze the
combination, using both abstract MAC layers as intermedi-
ate layers. Using the basic MAC layer, we prove a bound of
O(D log(n

ε
) log ∆) for the time to deliver a single message

everywhere with probability 1 − ε, where D is the network
diameter, n is the number of nodes, and ∆ is the maxi-
mum node degree. Using the probabilistic layer, we prove
a bound of O((D + log(n

ε
)) log ∆), which matches the best

previously-known bound for single-message broadcast over
the physical network model. For multi-message broadcast,
we obtain bounds of O((D + k∆) log(n

ε
) log ∆) using the

∗Research supported by AFOSR contract FA9550-08-1-0159
and NSF grants CCF-0726514, CNS-0715397 and CCF-
0937274.
†The work of this author was supported by the NSERC post-
doctoral fellowship.
‡The work of this author was supported by the Engineer-
ing and Physical Sciences Research Council [grant numbers
EP/G023018/1, EP/H018816/1].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DIALM-POMC’10, September 16, 2010, Cambridge, MA, USA.
Copyright 2010 ACM 978-1-4503-0413-9/10/09 ...$10.00.

basic layer and O((D + k∆ log(n
ε
)) log ∆) using the proba-

bilistic layer, for the time to deliver a message everywhere
in the presence of at most k concurrent messages.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures;
C.2.2 [Computer-Communication Networks]: Network
Architecture and Design—wireless communication;
G.2.2 [Discrete Mathematics]: Graph Theory—network
problems

General Terms
Algorithms, Theory

Keywords
multi-message broadcast, MAC layer, contention manage-
ment, wireless network algorithms

1. INTRODUCTION
The last few years have seen a rapid growth in analytical
work on algorithms for wireless ad hoc networks. This work
has generally followed one of two approaches. The first, rep-
resented by [19], analyzes algorithms using standard message-
passing models, and ignores interference and other low-level
communication issues, assuming that they are handled by a
separate Medium Access Control (MAC) layer. The second
approach, represented by [2], uses models that are close to
the actual physical network and requires algorithms to han-
dle basic communication issues as well as high-level issues.
Ignoring MAC layer issues and working with high-level com-
munication models makes it possible to design and analyze
interesting algorithms for high-level problems. However,
such analysis may not be realistic: in wireless networks, all
nodes share the same wireless medium, which means that, in
reality, only a limited amount of information can be trans-
mitted per time unit in a local region. Consequently, analyz-
ing algorithms using classical message-passing models often
yields time bounds that are far too optimistic. Designing al-
gorithms directly for the physical network avoids these prob-
lems, but requires the algorithm designer to cope with phys-
ical layer issues such as message loss due to interference and

collisions. This leads to complicated algorithms and analy-
sis even for simple tasks, and makes it prohibitively difficult
to study algorithms for complex high-level problems. More-
over, there are a variety of wireless communication models
[18, 8, 17], requiring algorithms to be redesigned and rean-
alyzed for each new model.
Recently, Kuhn et al. [14, 15] proposed a new approach with
the goal of combining the advantages of both previous ap-
proaches, while avoiding their major problems. Namely, they
defined an Abstract MAC Layer service that expresses the
key guarantees of real MAC layers with respect to local broad-
cast. This service accepts message transmission requests
from nodes and guarantees delivery to nearby nodes within
time that depends on the amount of current local contention.
The abstract MAC layer is intended to decompose the effort
of designing and analyzing wireless network algorithms into
two independent and manageable pieces, one that imple-
ments the MAC layer over a physical network, and one that
uses the MAC layer to solve higher-level problems. More-
over, the abstract MAC layer provides flexibility, in that it
allows different implementations of the layer to be combined
easily with different high-level algorithms that use the layer.
To illustrate the approach, Kuhn et al. analyzed a greedy
multi-message global broadcast protocol in terms of the ab-
stract MAC layer.
Kuhn et al. focused on high-level issues of designing and
analyzing algorithms over the MAC layer. They did not ad-
dress in detail the low-level issues of implementing the ab-
stract MAC layer over a physical network nor issues of com-
bining high-level and low-level algorithms. They also did not
consider the probabilistic nature of many MAC layer algo-
rithms. Typical algorithms use techniques such as random
backoff, which introduce a small probability that abstract
MAC assumptions will be violated. To obtain accurate re-
sults for higher-level algorithms, one should also take such
probabilities into account.

In this paper: We present a case study that shows how one
can combine results about high-level protocols based on an
abstract MAC layer with results about algorithms that im-
plement an abstract MAC layer over a physical network, and
thereby obtain good overall results for the high-level proto-
cols over the physical network. Specifically, we develop and
analyze simple greedy protocols for broadcasting single mes-
sages and multiple messages throughout a network, using a
slot-based physical network model that includes message col-
lisions without collision detection. Each of our protocols is
split formally into a high-level broadcast protocol and a low-
level contention-management algorithm. We use abstract
MAC layers to encapsulate the contention management. We
use two different layers: the basic (non-probabilistic) one
of [14, 15] and a new probabilistic layer. For contention
management, we use a randomized algorithm DMAC that
is similar to those in [2, 10]. We show that DMAC imple-
ments the basic abstract MAC layer with high probability,
and that it implements the probabilistic layer precisely.
We then combine DMAC with a greedy algorithm for single-
message global broadcast and analyze the combination twice,
using both abstract MAC layers as intermediate layers. Us-
ing the basic MAC layer, we prove that the combined algo-
rithm takes time O(D log(n

ε
) log ∆) to deliver the message

everywhere with probability 1 − ε, where D is the network
diameter, n is the number of nodes, and ∆ is the maximum
node degree. Using the probabilistic MAC layer, we prove
a bound of O((D +log(n

ε
)) log ∆), matching the best bound

previously obtained without such a split [2]. Our combined
algorithm is similar to that of [2]; the key difference is that
we decompose the algorithm and analysis into two pieces
that can be used and understood independently.
We then present an algorithm for multi-message broadcast,
obtaining new bounds of O((D + k′∆) log(nk

ε
) log ∆) using

the basic layer and O((D + k′∆ log(nk
ε

)) log ∆) using the
probabilistic layer, for the time to deliver a message every-
where in the presence of at most k′ concurrent messages,
with at most k messages overall. If k is polynomial in n,
these bounds reduce to simply O((D + k′∆) log(n

ε
) log ∆)

and O((D+k′∆ log(n
ε
)) log ∆). Our analysis for multi-message

broadcast over the probabilistic layer is not easy; in fact, it
seems infeasible without such a decomposition.
Thus, for both broadcast algorithms, we obtain better bounds
using the new probabilistic MAC layer than we do using the
basic MAC layer. We first considered just the basic layer,
and obtained our bounds for broadcast as easy corollaries
of results already proved in [14, 15]. However, the bound
we obtained for single-message broadcast was not quite as
good as the best known bound, which led us to define the
probabilistic layer and reanalyze the high-level broadcast al-
gorithms using that layer.

Discussion: The contributions of this paper are: (1) the
definition of the new probabilistic abstract MAC layer, (2)
the clean decomposition of a single-message broadcast algo-
rithm similar to that of Bar-Yehuda et al. [2] into two pieces,
a greedy high-level algorithm and the DMAC contention-
management algorithm, that can be used and analyzed in-
dependently, and (3) the design and analysis of a multi-
message broadcast algorithm based on the broadcast algo-
rithm of [14, 15] combined with DMAC . This work demon-
strates that it is feasible to design and analyze high-level
algorithms for collision-prone physical networks using ab-
stract MAC layers.
More evidence for the value of this approach appears in other
recent work: Cornejo et al. [4, 5] have developed new Neigh-
bor Discovery algorithms over the basic abstract MAC layer.
These enable the construction of a high-level dynamic graph
model like the one used in [19] over an abstract MAC layer,
which in turn supports the analysis of many already-existing
algorithms based on dynamic graphs, in terms of abstract
MAC layers and so in terms of physical network models.
Dolev et al. [7] have recently developed three new imple-
mentations of our probabilistic layer based on physical net-
work models with multiple channels and adversarial interfer-
ence; by combining these with our high-level broadcast al-
gorithms, they automatically obtain algorithms and bounds
for global broadcast for all three models. Khabbazian et
al. [12] are currently studying implementations of abstract
MAC layers based on network coding techniques like Zig-Zag
decoding [9].

Related work: This work relies on [14, 15] for the general
idea of decomposing wireless network algorithms using an
abstract MAC layer, as well as the basic layer specification
and the greedy multi-message global broadcast algorithm.
Adler and Scheideler [1] also analyzed high-level wireless
network protocols in terms of an abstract MAC layer. They
considered the problem of point-to-point message routing,
and used a different MAC layer model, which relates mes-
sage delivery to signal strength.
The problem of single-message global broadcast in an ad hoc
radio network was introduced in [2]. That paper contains a
randomized algorithm that accomplishes the task in O((D+

log(n/ε)) log ∆) steps with probability ≥ 1 − ε. Our single-
message broadcast algorithm was inspired directly by this
algorithm; essentially, we split the algorithm and its anal-
ysis into two parts, while retaining the time bound. Sub-
sequently, numerous papers have addressed this problem,
e.g., [13, 6] obtain a bound of O((D + log(n/ε)) log(n/D)),
which improves upon [2] for dense networks with large di-
ameters.
The problem of multi-message global broadcast has not been
widely studied. A randomized algorithm for delivering k
messages was given in [3]; it relies on a BFS tree built in a
set-up phase prior to the broadcast requests, and routes all
messages through the root of the tree. The overall cost is
O((n + (k + D) log(n/ε)) log ∆), with probability 1− ε. Our
algorithm is faster for cases where k′∆ < k + D. Our algo-
rithm does not require any precomputation and is much sim-
pler (the high-level algorithm is a trivial greedy algorithm)
and more robust (the algorithm is symmetric and does not
have a single point of failure). The paper [6] contains a ran-
domized algorithm for n simultaneous broadcasts working
in time O(n log(n/ε) log n) with probability ≥ 1 − ε. This
algorithm differs from ours and that of [3] in that it allows
intermediate nodes to combine an arbitrary amount of infor-
mation into a single message, thus reducing high-level con-
tention. In this prior work on broadcast, the issues involving
broadcast and contention management are intermingled.
A full version of this work, including fully detailed proofs,
appears in [11].

2. MATHEMATICAL PRELIMINARIES

2.1 Graph Theory
Throughout, we fix a (static) connected undirected commu-
nication graph G = (V, E). Let n = |V | be the number of
nodes in G, and let ∆ ≥ 1 be the maximum node degree. Fix
σ = (dlog(∆ + 1)e). Let dist(i, j) denote the distance (the
length, in hops, of a shortest path) between nodes i and j.
Let D be the diameter of G, that is, the maximum distance
between any two nodes in G. If i ∈ V , then let Γ(i) be the
set of nodes consisting of i and all of its neighbors in G. If
I ⊆ V , then we define Γ(I) =

S
i∈I Γ(i). For every i, j ∈ V ,

we fix a shortest path Pi,j from i to j in G. We assume that
these paths are consistent, that is, for every i, j, i′, j′ ∈ V ,
if nodes i′ and j′ appear, in that order, on path Pi,j , then
path Pi′,j′ is a subpath of Pi,j .

2.2 Probability
We formalize our results in terms of Probabilistic Timed I/O
Automata (PTIOAs), as defined by Mitra [16]. PTIOAs
include mechanisms (local schedulers and task schedulers)
to resolve nondeterminism. We consider probabilistic ex-
ecutions of systems modeled as PTIOAs. We analyze the
probabilities of events, which are sets of time-unbounded
executions. These probabilities are taken with respect to
the probability distribution that arises by considering the
entire probabilistic execution, starting from the initial sys-
tem state. We also consider probabilities with respect to
a “cone” in the full probabilistic execution following a par-
ticular closed finite execution β. More precisely, we con-
sider the conditional probability distribution on the set Aβ

of time-unbounded executions that extend β. We denote
this probability distribution by Prβ .
The following lemma encapsulates a Chernoff bound analysis
that we use twice in the paper.

Lemma 2.1. Let Yq, q = 1, ... be a collection of indepen-
dent {0, 1}-valued random variables, each equal to 1 with
probability p > 0. Let d and τ be nonnegative reals, d ≥ 1.

Let r =
j

1
p
(3d + 2τ)

k
. Then Pr

“Pr
q=1 Yq < d

”
≤ e−τ .

3. THE PHYSICAL MODEL
We assume a collection of n probabilistic processes. We
assume that time is divided into slots, each of real-time du-
ration 1. Processes have synchronized clocks, and so can
detect when each slot begins and ends. Processes commu-
nicate only on slot boundaries. All processes awaken at the
same time 0, which is the beginning of slot 1. We assume
that each process has both transmitter and receiver hard-
ware. The receivers operate at every slot, and processes
decide when to transmit.
We assume that the n processes reside at the nodes of com-
munication graph G, one per node. Processes know n and
∆, but nothing else about the graph. We assume a physi-
cal network, Net , with collisions but no collision detection.
When a process transmits in some slot, its message reaches
exactly itself and all G-neighbors. What process j receives
is defined as follows: If j is reached by its own message, then
it receives just its own message, regardless of whether it is
reached by any other messages. Otherwise, if j is reached
by exactly one message (from another process), then it re-
ceives that message, and if it is reached by no messages or by
two or more messages, it receives silence, represented as ⊥.
Thus, processes cannot distinguish collisions from silence.

4. ABSTRACT MAC LAYERS
We specify the two abstract MAC layers, a special case of
the basic layer of [14, 15], and a new probabilistic layer. Our
layers are defined for a single, static, undirected communica-
tion graph G = (V, E) with maximum node degree ∆. Both
specifications are implicitly parameterized by three positive
reals, frcv, fack, and fprog. These bound delays for a specific
message to arrive at a particular receiver, for an acknowl-
edgement to arrive at a sender, and for some message from
among many competing messages to arrive at a receiver, re-
spectively.∗ In typical MAC implementations, fprog will be
notably smaller than frcv and fack, as the time for delivering
some message to a receiver is typically substantially shorter
than the upper bounds for delivering every message and for
getting an acknowledgement. Both specifications also use a
(small) nonnegative real parameter tabort, which bounds the
amount of time after a sender aborts a sending attempt when
the message could still arrive at some receiver. Both spec-
ifications present an interface to higher layers with inputs
bcast(m)i and abort(m)i and outputs rcv(m)i and ack(m)i,
for every m in a given message alphabet M and every i ∈ V .
We model a MAC layer formally as a PTIOA Mac. To im-
plement either of our specifications, Mac must guarantee
several conditions whenever it is composed with any proba-
bilistic environment Env and the physical network Net (also
modeled as PTIOAs). The composition Mac‖Env‖Net (also
a PTIOA) yields a unique probabilistic execution, that is,
a unique probability distribution on executions. To define
the guarantees of the MAC layers, we assume some “well-
formedness” constraints on the environment Env : An execu-
tion α of Mac‖Env‖Net is well-formed if (a) it contains at

∗Since our bounds do not depend on the actual contention,
but only on maximum node degree, we do not express these
bounds as functions of the contention as in [14, 15].

most one bcast event for each m ∈ M (all messages are
unique), (b) any abort(m)i event in α is preceded by a
bcast(m)i but not by an ack(m)i or another abort(m)i, and
(c) any two bcasti events in α have an intervening acki or
aborti.

4.1 The Basic Abstract MAC Layer
Our Basic Abstract MAC Layer specifies worst-case bounds
for receive, acknowledgement, and progress delays. The
specification says that the Mac automaton guarantees the
following, for any well-formed execution α of Mac‖Env‖Net :
There exists a cause function that maps every rcv(m)j event
in α to a preceding bcast(m)i event, where i 6= j, and
that also maps each ack(m)i and abort(m)i to a preceding
bcast(m)i. This must satisfy:

1. Receive restrictions: If a bcast(m)i event π causes
rcv(m)j event π′, then (a) Proximity: (i, j) ∈ E. (b)
No duplicate receives: No other rcv(m)j caused by π
precedes π′. (c) No receives after acknowledgements:
No ack(m)i caused by π precedes π′.

2. Acknowledgement restrictions: If bcast(m)i event π
causes ack(m)i event π′, then (a) Guaranteed commu-
nication: If (i, j) ∈ E then a rcv(m)j caused by π
precedes π′. (b) No duplicate acknowledgements: No
other ack(m)i caused by π precedes π′. (c) No ac-
knowledgements after aborts: No abort(m)i caused by
π precedes π.

3. Temination: Every bcast(m)i causes either an ack(m)i

or an abort(m)i.

A message instance in α is a matched pair of bcast/ack or
bcast/abort events. The specification also says that the Mac
automaton guarantees the following three upper bounds on
message delays. Here, frcv bounds the time for a specific
message to arrive at a particular receiver, fack bounds the
time for an acknowledgement to arrive at a sender, and fprog

bounds the time for some message to arrive at a receiver.

1. Receive delay bound: If a bcast(m)i event π causes a
rcv(m)j event π′, then the time between π and π′ is at
most frcv. Furthermore, if there exists an abort(m)i

event π′′ such that π causes π′′, then π′ does not occur
more than tabort time after π′′.

2. Acknowledgement delay bound: If a bcast(m)i event π
causes an ack(m)j event π′, then the time between π
and π′ is at most fack.

3. Progress bound: If α′ is a closed execution fragment
within α and j is any node, then it is not the case that
all three of the following conditions hold: (a) The du-
ration for α′ is strictly greater than fprog. (b) At least
one message instance from a neighbor of j completely
contains α′. (c) No rcvj event of a message instance
that overlaps α′ occurs by the end of α′.

4.2 The Probabilistic Abstract MAC Layer
Our Probabilistic Abstract MAC Layer specifies probabilis-
tic bounds for the three kinds of delays. In addition to the
four parameters above, this specification uses parameters
εprog, εrcv, and εack, representing error probabilities for at-
taining the delay bounds. This specification says that, for

every well-formed execution α of Mac‖Env‖Net , there ex-
ists a cause function as before, satisfying the following non-
probabilistic properties defined in Section 4.1: all the Re-
ceive restrictions, No duplicate acknowledgements, and No
acknowledgements after aborts. Moreover, no rcv happens
more than tabort time after a corresponding abort. Note
that we have omitted the Guaranteed communication and
Termination properties from this list; we fold these into the
acknowledgement delay bound, below.
The specification also says that the Mac automaton must
guarantee the following probabilistic upper bounds on mes-
sage delays. If β is a closed execution, then we say that a
bcast event in β is active at the end of β provided that it is
not terminated with an ack or abort in β. Assume i, j ∈ V ,
and t is a nonnegative real.

1. Receive delay bound: Let j be a neighbor of i. Let β
be a closed execution that ends with a bcast(m)i at
time t.
Define the following sets of time-unbounded executions
that extend β: A, the executions in which no abort(m)i

occurs, and B, the executions in which rcv(m)j occurs
by time t + frcv.
If Prβ(A) > 0, then Prβ(B|A) ≥ 1− εrcv.

2. Acknowledgement delay bound: Let β be a closed exe-
cution that ends with a bcast(m)i at time t.
Define the following sets of time-unbounded executions
that extend β: A, the executions in which no abort(m)i

occurs, and B, the executions in which ack(m)j occurs
by time t + fack and is preceded by rcv(m)j for every
neighbor j of i.
If Prβ(A) > 0, then Prβ(B|A) ≥ 1− εack.

3. Progress bound: Let β be a closed execution that ends
at time t. Let I be the set of neighbors of j that have
active bcasts at the end of β, where bcast(mi)i is the
bcast at i. Suppose that I is nonempty. Suppose that
no rcv(mi)j occurs in β, for any i ∈ I.
Define the following sets of time-unbounded execu-
tions that extend β: A, the executions in which no
abort(mi)i occurs for any i ∈ I, and B, the executions
in which, by time t + fprog, at least one of the follow-
ing occurs: an ack(mi)i for every i ∈ I, a rcv(mi)j for
some i ∈ I, or a rcvj for some message whose bcast
occurs after β.
If Prβ(A) > 0, then Prβ(B|A) ≥ 1− εprog.

The progress bound says that, if a nonempty set of j’s neigh-
bors have active bcasts at some point, and none of these
messages has yet been received by j, then with probability
at least 1− εprog, within time fprog, either j receives one of
these or something newer, or else all of these end with acks.
This is all conditioned on the absence of aborts.

5. CONTENTION MANAGEMENT
We implement our abstract MAC layers using a contention
management algorithm DMAC . DMAC uses a probabilistic
retransmission strategy similar to the Decay strategy of [2]
and the Probability-Increase strategy of [10]. We prove two
results: Theorem 5.7 says that DMAC implements the prob-
abilistic abstract MAC layer (exactly), and Theorem 5.8 says
that it implements the basic abstract MAC layer with high
probability.

5.1 The DMAC Algorithm
Our retransmission strategy differs slightly from the one
in [2] in that the processes successively increase their trans-
mission probabilities in a Decay phase rather than decrease
them. Also, our processes choose randomly whether to trans-
mit in each individual slot, whereas in [2], they choose ran-
domly whether to drop out of the current Decay phase. We
give a lower bound on the success probability for our algo-
rithm. The algorithm uses knowledge of ∆, the maximum
degree in G.

Decay: This algorithm runs for exactly σ = dlog(∆+1)e
slots. A set I of processes, |I| ≤ ∆, plus another distin-
guished process j, participate. We assume that at least
one process in I participates in all slots. Other pro-
cesses in I, and also j, may participate in some slots,
but once they stop participating, they do not partici-
pate in later slots. At each slot s = 1, . . . , σ, each par-
ticipating process transmits with probability ps, where
pσ = 1

2
, pσ−1 = 1

22 , . . . , pσ−s = 1
2s+1 , . . . , p1 = 1

2σ .

Lemma 5.1. In Decay, with probability at least 1
8
, at some

slot, some process in I transmits alone (that is, without any
other process in I transmitting and without j transmitting).

Proof. We first show that, at some slot s, the number of
participants cs satisfies 1

2cs
≤ ps ≤ 1

cs
. Then, using a case

analysis based on whether or not j participates in this slot
s, we show that, in either case, the probability that some
process in I transmits alone at slot s is at least 1

8
.

Our MAC algorithm is DMAC (φ), where φ indicates the
number of Decay phases that are executed.

DMAC (φ): We group slots into Decay phases, each con-
sisting of σ slots. Each MAC layer process i that receives
a message from its environment, via a bcast(m)i event,
starts executing Decay with message m (and a unique
message identifier) at the beginning of the next Decay
phase. Process i executes exactly φ Decay phases, and
then outputs ack(m)i at the end of the final phase. How-
ever, if process i receives an abort(m)i from the environ-
ment before it performs ack(m)i, it performs no further
transmission on behalf of message m and does not per-
form ack(m)i.
Meanwhile, process i tries to receive, in every slot. When
it receives any message m′ from a neighbor (not from it-
self) for the first time on the physical network, it delivers
that to its environment with a rcv(m′)i event, at a real
time before the ending time of the slot.

Note that, in DMAC (φ), no process starts participating in
a Decay phase part-way through the phase, but it may stop
participating at any time as a result of an abort. Define
DMAC (φ) to be the composition of DMAC (φ)i processes for
all i. We prove five lemmas giving properties of DMAC (φ).
Lemma 5.2 asserts that DMAC (φ) satisfies all of the non-
probabilistic guarantees, and Lemma 5.3 asserts an absolute
bound on acknowledgement time.

Lemma 5.2. In every time-unbounded execution, the Prox-
imity, No duplicate receives, No receives after acknowledge-
ments, No duplicate acknowledgements, and No acknowl-
edgements after aborts conditions are satisfied. Also, no
rcv happens more than time 1 after a corresponding abort.

Lemma 5.3. In every time-unbounded execution α, the
following holds. Consider any bcast(m)i event in α, and
suppose that α contains no abort(m)i. Then an ack(m)i

occurs after exactly φ Decay phases, starting with the next
phase that begins after the bcast(m)i.

For the remaining three lemmas, we fix any probabilistic en-
vironment Env , and consider the unique probabilistic execu-
tion of DMAC (φ)‖Env‖Net . The lemmas give probabilistic
delay bounds for progress and receives, and a probabilistic
guarantee that acknowledgements are preceded by receives.
In these lemmas, ε is a real, 0 < ε ≤ 1; φ, the parameter for
DMAC (φ), is equal to d8∆ ln(1

ε
)e; and g and h are positive

integers. The proofs use standard probabilistic arguments
and Lemma 5.1.

Lemma 5.4. Let i, j ∈ V , i a neighbor of j. Let β be a
closed execution that ends with bcast(m)i at time t, where
(g − 1)σ ≤ t < gσ.
Define the following sets of time-unbounded executions that
extend β: A, the executions in which no abort(m)i occurs,
and B, the executions in which, by the end of Decay phase
g + φ, a rcv(m)j occurs.
If Prβ(A) > 0, then Prβ(Ā ∪B) ≥ Prβ(B|A) ≥ 1− ε.

Lemma 5.5. Let i ∈ V . Let β be any closed prefix of a
time-unbounded execution that ends with bcast(m)i at time
t, where (g − 1)σ ≤ t < gσ.
Define the following sets of time-unbounded executions that
extend β: A, the executions in which no abort(m)i occurs,
and B, the executions in which, by the end of Decay phase
g + φ, ack(m)i occurs and is preceded by rcv(m)j for every
neighbor j of i.
If Prβ(A) > 0, then Prβ(Ā ∪B) ≥ Prβ(B|A) ≥ 1− ε∆.

Lemma 5.6. Let j ∈ V . Let β be a closed execution that
ends at time t, where (g − 1)σ ≤ t < gσ. Let I be the set of
neighbors of j that have active bcasts at the end of β, where
bcast(mi)i is the bcast at i. Suppose that I is nonempty.
Suppose that no rcv(mi)j occurs in β, for any i ∈ I.
Define the following sets of time-unbounded executions that
extend β: A, the executions in which no abort(mi)i occurs
for any i ∈ I, B, the executions in which, by the end of
Decay phase g + h, at least one of the following occurs: a
rcv(mi)j for some i ∈ I, or a rcvj for some message whose
bcast occurs after β, and C, the executions in which, by the
end of Decay phase g + h, ack(mi)i occurs for every i ∈ I.
If Prβ(A) > 0, then Prβ(Ā ∪ B ∪ C) ≥ Prβ(B ∪ C|A) ≥
1− (7

8
)h.

5.2 Implementing the Probabilistic Layer
First, we show that DMAC (φ) implements the probabilistic
layer, for a particular choice of φ. Here we fix constants:
ε, a real, 0 < ε ≤ 1; h, a positive integer (the number of
Decay phases for the progress bound); and φ = d8∆ ln(1

ε
)e

(the number of Decay phases for the receive and acknowl-
edgement bounds). We define the parameters for the prob-
abilistic layer: frcv = fack = (φ + 1)σ; fprog = (h + 1)σ;
εrcv = ε; εack = ε∆; εprog = (7

8
)h; and tabort = 1. Using

Lemmas 5.2-5.6, we obtain:

Theorem 5.7. DMAC (φ) implements the probabilistic
layer with parameters frcv = fack = O(∆ log(1

ε
) log ∆),

fprog = O(h log ∆), εrcv = ε, εack = ε∆, εprog = (7
8
)h,

and tabort = O(1).

5.3 Implementing the Basic Layer
Now we prove that, with probability ≥ 1 − ε, DMAC (φ)
implements the basic layer, for certain values of ε and φ. Our
theorem assumes that, in any execution, the environment
Env submits at most b bcasts, for some fixed positive integer
b, so the total number of external MAC layer events (bcast,
ack, abort, and rcv) is at most b(∆ + 2). Here we fix: ε,
a real, 0 < ε ≤ 1; a = b(∆ + 2); ε1 = ε

2a
(a bound on the

errors for some individual properties); φ = d8∆ ln(∆
ε1

)e (the

number of Decay phases for the acknowledgement bound);
and h = log8/7(1/ε1). We also define the parameters for the

basic layer: frcv = fack = (φ + 1)
sigma; fprog = (dhe + 1)σ; and tabort = 1. In the following
result, the probabilistic claims are with respect to the unique
probabilistic execution of the system DMAC (φ)‖Env‖Net ,
where Env is a probabilistic environment that submits at
most b bcasts.

Theorem 5.8. With probability at least 1− ε, the execu-
tion satisfies all the properties of the basic layer, with frcv,
fack, fprog, and tabort as defined above, and thus, with frcv =
fack = O(∆ log(∆b

ε
) log ∆), fprog = O(log(∆b

ε
) log ∆), and

tabort = O(1).

Proof. Theorem 5.7 implies that the algorithm satisfies
the non-probabilistic properties. By Lemma 5.3, for every
bcasti event that is not terminated with an abort, a cor-
responding acki occurs within φ Decay phases, and so by
time fack = (φ + 1)σ. Thus, if the implementation fails
for an execution, it must be because of either an ack vio-
lation, meaning that some ack event is not preceded by all
required rcv events, or a progress violation, meaning that
the progress delay bound is violated somewhere. We show
that the probability of each of these types of violations is at
most ε

2
. These proofs involve applying Lemma 5.5 for indi-

vidual bcast events and Lemma 5.6 for individual external
MAC layer events, and using union bounds.

6. GLOBAL BROADCAST
In the multi-message broadcast (MMB) problem, messages
arrive from the environment at arbitrary times, at arbitrary
locations, via arrive(m)i inputs. The algorithm is supposed
to deliver all messages to all locations, using deliver(m)i

outputs. The single-message broadcast (SMB) problem is
essentially the special case of the MMB problem for a single
message originating at a single (known) location i0.
Our broadcast algorithms are based on the Basic Multi-
Message Broadcast (BMMB) algorithm of [14, 15]. This
algorithm is intended to be combined with a (basic or prob-
abilistic) MAC layer.

The Basic Multi-Message Broadcast (BMMB)
Protocol: Every process i maintains a FIFO queue
named bcastq and a set named rcvd. Both are initially
empty. If process i is not currently sending a message on
the MAC layer and its bcastq is not empty, it sends the
message at the head of the queue on the MAC layer (dis-
ambiguated with identifier i and sequence number) using
a bcast output. If i receives a message from the environ-
ment via an arrive(m)i input, it immediately delivers
the message m to the environment using a deliver(m)i

output, and adds m to the back of bcastq and to the
rcvd set. If i receives a message m from the MAC layer
via a rcv(m)i input, it first checks rcvd. If m ∈ rcvd it
discards it. Else, i immediately performs a deliver(m)i

output and adds m to bcastq and rcvd.

The Basic Single-Message Broadcast (BSMB)
Protocol: This is just BMMB specialized to one mes-
sage, and modified so that the message starts in the state
of a designated initial node i0.

We combine these with our DMAC implementation of the
MAC layer, parameterizing the combined algorithms with
the number φ of Decay phases. Namely, BSMB-Decay(φ)
consists of BSMB composed with DMAC (φ); this combi-
nation is similar to the global broadcast algorithm in [2].
BMMB-Decay(φ) consists of BMMB and DMAC (φ).

7. ANALYSIS OF THE SINGLE-MESSAGE
BROADCAST ALGORITHM

We analyze BSMB-Decay using both the basic and prob-
abilistic MAC layers, by combining results from Section 5
with higher-level analysis of the global broadcast algorithm.
Our results, Theorems 7.1 and 7.9, take the form of asser-
tions that, with probability at least 1− ε, for an arbitrary ε,
0 < ε ≤ 1, the message is delivered everywhere within time
that is expressed as a function of ε and graph parameters.
The analysis using the basic layer is very simple, because
it uses previous high-level analysis results without modifi-
cation. However, it yields a slightly worse bound than the
one obtained by Bar-Yehuda et al. for the intermingled al-
gorithm [2]. The analysis using the probabilistic layer yields
the same bounds as in [2], but the high-level analysis of
BSMB over the MAC layer must be redone, and is not easy.
The ideas in this analysis are derived from those in the por-
tion of the analysis of [2] that deals with the high-level al-
gorithm, with a little extra complication due to asynchrony.
Our main accomplishment here is that we have decomposed
the algorithm and its analysis into two independent pieces.

7.1 Basic Abstract MAC Layer
Here we use our basic MAC layer to prove an upper bound
of O(D log(n

ε
) log ∆) on the time to deliver the message ev-

erywhere with probability at least 1 − ε. To define φ (the
number of Decay phases), in the theorem statement, we de-
fine constants: b = n (a bound on the number of bcast
events—here, the single message gets bcast at most once by
each node); a = n(∆ + 2) (a bound on the total number of
external MAC layer events); ε1 = ε

2a
; and φ = d8∆ ln(∆

ε1
)e.

Theorem 7.1. With probability at least 1 − ε, BSMB-
Decay(φ) guarantees that deliver events occur at all nodes
6= i0 by time O(D log(n

ε
) log ∆).

Proof. Theorem 3.2 of [15] implies that the message is
received everywhere within time O(Dfprog). Based on the
constants in the first part of Section 5, and using the as-
sumption that σ = (dlog(∆ + 1)e), we substitute fprog =
O(h log ∆), h = O(log(1

ε1
)), ε1 = ε

2a
, and a = O(n∆), to

obtain a bound of the form O(D log(n
ε
) log ∆). This means

that, if the algorithm ran with a basic abstract MAC layer
with fprog as above, it would, in every execution, deliver
the message everywhere by the indicated time. Since The-
orem 5.8 implies that the MAC layer achieves the progress
bound fprog with probability at least 1−ε, the entire system
achieves the required message delivery bound with probabil-
ity at least 1− ε.

7.2 Probabilistic Abstract MAC Layer
Now we use our probabilistic MAC layer to improve the
bound of Section 7.1 to O((D + log(n

ε
)) log ∆), the same

bound as in [2]. We first assume a probabilistic layer with
parameters fprog, fack, εprog, and εack and analyze the com-
plexity of BSMB in terms of these parameters. Then we
replace the abstract layer with DMAC and combine our
bounds for DMAC with our bounds for BSMB to obtain
Theorem 7.9. We begin by identifying “nice” broadcasts,
which result in timely acknowledgements preceded by all re-
ceives: We bound the probability that an execution is not
nice:

Definition 7.2 (Nice broadcasts and executions).
Suppose a bcast(m)i event π occurs at time t0 in execution
α. Then π is nice if ack(m)i occurs by time t0 + fack and is
preceded by a rcv(m)j for every neighbor j of i. Execution
α is nice if all bcast events in α are nice. Let N denote the
set of all nice executions.

Lemma 7.3. In a system of the form Mac‖Env‖Net, where
Mac implements the probabilistic abstract MAC layer with
acknowledgement parameters fack and εack, and Env is an
environment for the MAC layer that submits at most b bcasts
in any execution and never submits an abort, Pr(N̄) ≤ bεack.

Proof. Using the definition of fack, we argue that the
probability of a violation involving each bcast event is at
most εack. The result follows from a union bound.

Successful progress for the message is captured formally in
the following “Progress Condition”, which is parameterized
by a nonnegative real τ (a time duration). We also include a
(small) parameter δ, because of a race condition that arises
from the combination of probability and asynchrony (see
below).

Definition 7.4 (PC δ
j(τ)). Assume that j ∈ V − {i0}

and that δ and τ are nonnegative reals. Define constants
γ1 = 3

1−εprog
and γ2 = 2

1−εprog
. We say that α ∈ PC δ

j(τ) if

a rcvj event occurs in α by time (γ1dist(i0, j)+γ2τ)(fprog +
δ). Let PC δ(τ) =

T
j PC δ

j(τ). Let PC j(τ) and PC (τ) de-

note PC 0
j (τ) and PC 0(τ), respectively.

In the following results, our probabilistic statements are with
respect to the system BSMB‖Mac‖Env‖Net , where Mac
is an arbitrary implementation of the abstract probabilistic
MAC layer with parameters fprog, fack, εprog, and εack, and
Env is some probabilistic environment. Most of the work
in our analysis is devoted to proving the following lemma,
which lower-bounds the probability of the progress condition
PC δ

j(τ). It works for any positive value of δ, no matter how
small—any such δ suffices to handle the race conditions.

Lemma 7.5. Let j ∈ V − {i0}. Let δ be a positive real.
Then Pr(PC δ

j(τ) ∪ N̄) ≥ 1− e−τ .

Proof. See Lemma 6.6 of [11]. We consider the distin-
guished shortest path Pi0,j from i0 to j. For every q, we
define time tq = q(fprog + δ). We define a random vari-
able Distq to capture the maximum progress made by the
message along the path by time tq, and a Boolean random
variable Xq to indicate whether progress is made between
times tq and tq+1; Xq is essentially min(1, Distq+1−Distq).
We prove the key fact that, for any finite execution β that
ends at time tq + δ, the probability that Xq = 1, that is,
that progress is made between times tq and tq+1, condi-
tioned on an execution being an extension of β, is at least
1 − εprog. Combining this result for all such β yields that

the probability that Xq = 1, conditioned on any values of
X0, X1, . . . , Xq−1, is at least 1− εprog. Also, the probability
that X0 = 1 is at least 1− εprog. We then apply Lemma 2.1
(where the Yq are 1 with probability exactly 1− ε) to obtain
the final bound.

The δ is used in the proof to guarantee that the values of ran-
dom variables Dist0, Dist1, . . . , Distq and X0, X1, . . . , Xq−1

are really determined by the prefix β—this does not follow
automatically. Nevertheless, we can remove the δ from the
statement of the lemma:

Lemma 7.6. Let j ∈ V − {i0}. Then Pr(PC j(τ) ∪ N̄) ≥
1− e−τ .

Proof. See Lemma 6.7 of [11]. The key fact is that
Lemma 7.5 holds for every δ > 0.

Standard probabilistic arguments, including union bounds,
then yield a lower bound on the set of executions that are
nice, and also satisfy the progress condition for every node j:

Lemma 7.7. Pr(PC (τ) ∩N) ≥ 1− ne−τ − Pr(N̄).

We combine Lemma 7.7 with Lemma 7.3 (our upper bound
on the probability of N̄), and instantiate τ as ln(n

ε
), to ob-

tain our bound for BSMB over the probabilistic MAC layer:

Theorem 7.8. BSMB guarantees that, with probability at
least 1− ε− nεack, deliver events occur at all nodes 6= i0 by
time (γ1D + γ2 ln(n

ε
))fprog.

Finally, we combine the bound for BSMB in terms of the
probabilistic layer with our bound for DMAC to obtain a
bound for BSMB-Decay. Our probabilistic statement is for
the BSMB-Decay(φ)‖Env‖Net , where φ = d8∆ ln(1

ε
)e, and

Env is some probabilistic environment.

Theorem 7.9. Let φ = d8∆ ln(1
ε
)e. Then with probabil-

ity at least 1 − ε, BSMB-Decay(φ) guarantees that deliver
events occur at all nodes 6= i0 by time O((D+log(n

ε
)) log ∆).

Proof. Choose εack = ε
2n

. Theorem 7.8, applied with
ε in that theorem instantiated as our ε

2
, implies that, with

probability at least 1− ε
2
− nεack ≥ 1− ε, rcv events occur

at all nodes 6= i0 by time (γ1D + γ2 ln(n
ε
))fprog. Using the

definitions of parameters for the implementation of the prob-
abilistic layer, in Section 5, we may assume that εprog ≤ 7

8
to make this O((D + log(n

ε
))fprog). Again using the pa-

rameter definitions, we substitute fprog = O(log ∆) into the
expression, to get a bound of O((D + log(n

ε
)) log ∆).

8. ANALYSIS OF THE MULTI-MESSAGE
BROADCAST ALGORITHM

Now we analyze BMMB-Decay, using both the basic and
probabilistic MAC layers, by combining results from Sec-
tion 5 with higher-level analysis of the global broadcast al-
gorithm. Our results, Theorems 8.2 and 8.12, assert prob-
abilistic upper bounds on the time for delivering any par-
ticular message to all nodes in the network, in the presence
of a limited number of concurrent messages. We assume a
bound k on the number of messages that arrive from the
environment during the entire execution. Again, the analy-
sis using the basic layer is simple, while the analysis using
the probabilistic layer is more difficult and yields a better
bound. The latter analysis is new; it uses ideas from the

analysis in Section 7.2, plus new ideas to cope with the on-
line arrival of messages. It also uses a path decomposition
trick to achieve the best bound. We begin by defining the
set K(m) of messages concurrent with a given message m:

Definition 8.1 (K(m)). Suppose α is an execution in
N and m ∈ M is a message for which an arrive(m) event
occurs in α. Let clear(m) be the final ack(m) event in α.
Define K(m) to be the set of messages m′ ∈ M such that
an arrive(m′) event precedes the clear(m) event and the
clear(m′) event follows the arrive(m) event. That is, K(m)
is the set of messages whose processing overlaps the interval
between the arrive(m) and clear(m) events.

8.1 Basic Abstract MAC Layer
Here we use our basic MAC layer to prove an upper bound
of O((D + k′∆) log(nk

ε
) log ∆) on the time to deliver any

particular message everywhere with probability at least 1−
ε, in the presence of at most k′ concurrent messages and
with at most k messages overall. If k is polynomial in n,
the bound reduces to O((D + k′∆) log(n

ε
) log ∆). We define

constants: b = kn (a bound on the number of bcast events—
each of the k messages gets bcast at most once by each node);
a = kn(∆ + 2) (a bound on the total number of external
MAC layer events); ε1 = ε

2a
; and φ = d8∆ ln(∆

ε1
)e.

Theorem 8.2. Let m ∈ M . Then BMMB-Decay(φ) guar-
antees that, with probability at least 1 − ε, the following
property holds of the generated execution α. Suppose an
arrive(m) event occurs in α. Let k′ be a positive integer
such that |K(m)| ≤ k′. Then deliver(m) events occur at all
processes in α within time O((D+k′∆) log(nk

ε
) log ∆) of the

time of the arrive(m) event.

Proof. Theorem 3.2 of [15] implies that the message is
received everywhere within time (D + 2k′ − 1)fprog + (k′ −
1)fack, which is O((D + k′))fprog + (k′ − 1)fack. Based on
the constants defined in Section 5, we substitute fprog =
O(log(1

ε1
) log ∆), fack = O(∆ log(∆

ε1
) log ∆), ε1 = ε

2a
, and

a = O(kn∆), to obtain a bound of the form O
`
(D + k′∆)·

log(nk
ε

) log ∆
´
. Theorem 5.8 implies that the MAC layer

achieves fprog and fack with probability ≥ 1−ε, so the entire
system achieves the required message delivery bounds with
probability ≥ 1− ε.

8.2 Probabilistic Abstract MAC Layer
Now we use our probabilistic layer to improve the bound of
Section 8.1 to O((D + k′∆ log(nk

ε
)) log ∆). We first assume

a probabilistic layer with parameters fprog, fack, εprog, and
εack and analyze the complexity of BMMB in terms of these
parameters. Then we replace the abstract layer with DMAC
and combine the bounds for DMAC and BMMB to obtain
Theorem 8.12.
For our analysis of BMMB over the MAC layer, we first
redefine the progress condition PC . Then we prove a non-
probabilistic bound on the message delivery time in execu-
tions that are “well-behaved”, in the sense that they satisfy
the new PC , and also are “nice” as defined in Section 7.2.
Then we bound the probability that an execution is well-
behaved and use this to infer our probabilistic bound on
message delivery time. We begin by defining Ci(t), the set
of messages whose processing is completed at node i by time
t, and also redefining PC . Except in Lemma 8.5, τ is any
nonnegative real.

Definition 8.3. For any i ∈ V , nonnegative real t and
execution α, let Cα

i (t) be the set of messages m such that
ack(m)i occurs by time t in α. For any I ⊆ V , nonnegative
real t and execution α, let Cα

I (t) =
T

i∈I Cα
i (t), that is, the

set of messages m such that ack(m)i occurs by time t for
every i ∈ I.

We define a get(m)j event to be the first event by which
node j receives message m; this may be either an arrive
event by which m arrives from the environment, or a rcv
event by which m is received from the MAC layer.

Definition 8.4 (Progress Condition PC i,j(τ)). Let
i, j ∈ V , i 6= j be two processes. Write Pi,j as i = i0, i1, . . . , id
= j, and let I = {i1, . . . , id}. We say that the progress
condition, PC i,j(τ), holds for an execution α (i.e., α ∈
PC i,j(τ)) if for every nonnegative real t, the following holds:
If a get(m)i event for some message m /∈ Cα

Γ(I)(t) occurs

in α by time t, then a get(m′)j event for some message
m′ /∈ Cα

Γ(I)(t) occurs by time t + (γ1d + γ2τ)fprog. Let

PC (τ) =
T

i,j,i6=j PC i,j(τ).

8.2.1 Message Delivery for Well-Behaved Executions
Here we prove a non-probabilistic upper bound on message
delivery time in well-behaved executions, that is, executions
that are in PC (τ)∩N . This says that, if a message m arrives
at a node i from the environment at time t0, j is any node,
and l is any number, then either m reaches j within a certain
time that depends on dist(i, j) and l, or else l new messages
reach j in that time. The proof is the most challenging one
in the paper.

Lemma 8.5. Let τ, l ≥ 1 and d ≥ 0 be integers. Define

td,l := t0+

((γ1 + γ2)d + ((γ1 + 2γ2)τ + γ1 + γ2)l) fprog + (l − 1)fack.

Let α be an execution in PC (τ)∩N . Assume that arrive(m)i

occurs at time t0 in α. Let M ′ ⊆ M be the set of messages
m′ for which arrive(m)i precedes clear(m′) in α. Let j ∈ V ,
dist(i, j) = d. Then for every integer l ≥ 1, at least one of
the following two statements is true:

1. A get(m)j event occurs by time td,l and ack(m)j occurs
by time td,l + fack.

2. There exists a set M ′′ ⊆ M ′, |M ′′| = l, such that
for every m′ ∈ M ′′, get(m′)j occurs by time td,l and
ack(m′)j occurs by time td,l + fack.

Proof. See Lemma 7.10 of [11]. We prove the lemma
by induction on l. For the base case, l = 1, we consider
subcases based on whether d = 0 or d > 0. For d > 0,
we use the fact that α ∈ PC i,j(τ) to yield a message with
the needed properties. For the inductive step, we assume
the lemma for l − 1 and all values of d and prove the claim
for l. For this, we proceed by induction on d. The base case,
d = 0, is straightforward. For the inductive step for d, we
assume the lemma for l and all smaller values of d. Write
Pi,j as i = i0, i1, . . . , id = j and let I = {i1, . . . , id}. Assume
that Statement 1 is false for j and l, i.e., it is not the case
that get(m)j occurs by time td.l and ack(m)j occurs by time
td.l + fack. We show that Statement 2 must be true for j
and l. By inductive hypothesis, Statement 2 is true for j
and l−1. That is, there exists M ′′ ⊆ M ′, |M ′′| = l−1, such
that, for every m′ ∈ M ′′, get(m′)j occurs by time td,l−1 and

ack(m′)j occurs by time td,l−1 +fack < td,l. Fix this set M ′′

for the rest of the proof.
After dispensing with easy cases, we are left with the case
where M ′′ ⊆ Cα

j′(tdist(i,j′),l−1 + fack) for every neighbor j′

of j, i.e., all messages in M ′′ have been completely processed
at all neighbors of j. For any integer e, 0 ≤ e ≤ d − 1, let
Ie = {ie+1, . . . , id}. Let e′ be the smallest integer, 0 ≤ e′ ≤
d− 1, such that

M ′′ ⊆
\

j′∈Γ(Ie′)

Cα
j′(tdist(i,j′),l−1 + fack). (1)

We know e′ exists because (1) holds for e′ = d − 1. For
this e′, we show that there exists m′ ∈ M ′ − M ′′ such that
get(m′)ie′ occurs by time te′+1,l−1 + fack < te′+τ+1,l−1 +

fack. Fix such m′. Now we divide the path from ie′ to
id into intervals of length τ : let d − e′ = qτ + r, where q
and r are nonnegative integers and 0 ≤ r < τ . Assume
that q > 0; the case where q = 0 is similar but simpler.
Then by (1), we have M ′′ ⊆ Cα

Γ(J)(te′+τ+1,l−1+fack), where

J = {ie′+1, . . . ie′+τ}. If m′ ∈ Cα
Γ(J)(te′+τ+1,l−1+fack), then

get(m′)ie′+τ
occurs by time te′+τ+1,l−1 + fack. Otherwise,

we apply the PC ie′ ,ie′+τ
(τ) condition, with m = m′ and

t = te′+τ+1,l−1 + fack. This yields m1 /∈ Cα
Γ(J)(te′+τ+1,l−1 +

fack) such that get(m1)ie′+τ
occurs by time te′+τ+1,l−1 +

fack +(γ1τ + γ2τ)fprog ≤ te′+2τ+1,l−1 + fack. We show that
m1 ∈ M ′−M ′′. Thus, in either case, there exists m1 ∈ M ′−
M ′′ such that get(m1)ie′+τ

occurs by time te′+2τ+1,l−1 +

fack. We repeat the same argument using PC ie′+τ ,ie′+2τ
(τ),

PC ie′+2τ ,ie′+3τ
(τ), . . . ,PC ie′+(q−1)τ ,ie′+qτ

(τ), to show that

there exists mq ∈ M ′−M ′′ such that get(mq)id−r occurs by
time td−r+τ+1,l−1 + fack. Then, by applying PC id−r,j(τ),

we show that there exists m′′ ∈ M ′−M ′′ such that get(m′′)j

occurs by time td−r+τ+1,l−1 + fack +(γ1r +γ2τ)fprog ≤ td,l.
This implies Statement 2 for j and l.

8.2.2 Probabilistic Message Delivery Upper Bound
Now we prove a lower bound on the probability of the event
PC (τ) ∩ N , and then tie all the results together in Theo-
rem 8.12. In the next lemmas, our probabilistic statements
are with respect to the system BMMB‖Mac‖Env‖Net , where
Mac is an arbitrary implementation of the probabilistic layer
with parameters fprog, fack, εprog, and εack, and Env is some
probabilistic environment that submits at most k messages.
The first lemma bounds the probability of fast message prop-
agation between particular nodes i and j. Specifically, after
any finite execution β in which i gets a new message, it
lower-bounds the probability that either some new message
is delivered to j within a short time, or else the execution
is not nice. Here we use the conditional distribution on
time-unbounded executions of BMMB that extend β. The
notations Aβ and Prβ are defined in Section 2.

Lemma 8.6. Consider processes i and j, write Pi,j as i =
i0, i1, i2, . . . , id = j, and let I = {i1, . . . , id}. Let β be a
finite execution of the BMMB protocol that ends at time t0.
Assume that there exists m /∈ Cβ

Γ(I)(t0) such that a bcast(m)i

event occurs in β. Let F be the subset of Aβ in which there

exists m′ /∈ Cβ
Γ(I)(t0) for which a get(m′)j event occurs by

time t0 + (γ1d + γ2τ)fprog. Then Prβ(F ∪ N̄) ≥ 1− e−τ .

Proof. See Lemmas 7.11 and 7.12 of [11]. We first prove
a version of the lemma that includes a δ term to handle race

conditions, and later remove δ. The proof follows the general
outline of that for Lemma 7.5, and again uses Lemma 2.1.
Now we use the path Pi,j , and define tq = t0 + q(fprog +
δ). The definitions of Distq and Xq are similar to before,
only now they talk about progress for some message not in
Cβ

Γ(I)(t0), rather than just the single given message. Argu-

ments throughout the proof are modified to give progress
guarantees for messages not in Cβ

Γ(I)(t0).

To prove a lower bound on the probability for PC , we de-
fine an alternative progress condition WPC (“weak progress
condition”). WPC is defined in terms of intervals that begin
with get and ack events, rather than intervals that begin at
arbitrary points. We prove that WPC is equivalent to PC .

Definition 8.7 (WPC i,j,c(τ)). , Let i, j ∈ V , i 6= j
be two processes and let c be a positive integer. Write Pi,j

as i = i0, i1, . . . , id = j, and let I = {i1, . . . , id}. We say
that α ∈ WPC i,j,c(τ) if for every nonnegative real t, the
following holds: If α contains at least c get or ack events,
and the cth such event occurs at time t, and a get(m)i event
for some message m /∈ Cα

Γ(I)(t) occurs by time t, then a

get(m′)j event for some message m′ /∈ Cα
Γ(I)(t) occurs by

time t + (γ1d + γ2τ)fprog. We define the set WPC (τ) of
executions as

T
i,j,i6=j,1≤c≤2nk WPC i,j,c(τ).

Lemma 8.8. PC (τ) = WPC (τ).

We prove a lower bound for WPC (τ):

Lemma 8.9. Pr(WPC (τ) ∪ N̄) ≥ 1− 2n3ke−τ .

Proof. We use Lemma 8.6 to prove that, for every i, j,
and c, Pr(WPC i,j,c(τ)∪N̄) ≥ 1−e−τ . A union bound yields
the result.

We then use Lemmas 8.9 and 8.8 to obtain a lower bound
on the probability of PC (τ):

Lemma 8.10. Pr(PC (τ) ∩N) ≥ 1− 2n3ke−τ − Pr(N̄).

We combine Lemma 8.5 with Lemma 8.10 and the bound for
Pr(N̄) in Lemma 7.3, and instantiate τ as dln(2n3k

ε
)e, to ob-

tain our result for BMMB over the probabilistic MAC layer:

Theorem 8.11. Let m ∈ M . Then BMMB guarantees
that, with probability at least 1 − ε − nkεack, the follow-
ing property holds of the generated execution α: Suppose
an arrive(m)i event π occurs in α, and let t0 be the time
of occurrence of π. Let k′ be a positive integer such that
|K(m)| ≤ k′. Then deliver(m) events occur at all nodes in
α by time

t0 + (k′ − 1)fack+„
(γ1 + γ2)D+

„
(γ1 + 2γ2)

‰
ln

2n3k

ε

ı
+ γ1 + γ2

«
k

«
fprog.

Finally, we combine the bound for BMMB in terms of the
probabilistic MAC layer with the bound for DMAC to ob-
tain a bound for BMMB-Decay. Our probabilistic state-
ment is for the system BMMB-Decay(φ)‖Env‖Net , where
φ = d8∆ ln(1

ε
)e, and Env is some probabilistic environment

that submits at most k messages.

Theorem 8.12. Let m ∈ M . Let φ = d8∆ ln 1
ε
e. Then

BMMB-Decay(φ) guarantees that, with probability at least
1−ε, the following property holds for the generated execution
α: Suppose an arrive(m)i event π occurs in α. Let k′ be
such that |K(m)| ≤ k′. Then deliver(m) events occur at all
nodes in α within time O((D+k′∆ log nk

ε
) log ∆) of the time

of occurrence of π.

Proof. Choose εack = ε
2nk

. Theorem 8.11 implies that,
with probability at least 1 − ε

2
− nkεack ≥ 1 − ε, get(m)

events occur everywhere within time

(k′ − 1)fack+„
(γ1 + γ2)D +

„
(γ1 + 2γ2)

‰
ln

4n3k

ε

ı
+ γ1 + γ2

«
k′

«
fprog.

Using the definitions of parameters for the implementation
of the probabilistic layer, in Section 5, we may assume that
εprog ≤ 7

8
, so this expression is O((D + log(nk

ε
)k′)fprog) +

(k′ − 1)fack. Again using those parameter definitions, we
substitute fprog = O(log ∆) and fack = O(∆ log(nk

ε
) log ∆)

into the expression, to get a bound of

O

„„
D + k′∆ log

nk

ε

«
log ∆

«
.

To see why we can use fack = O(∆ log(nk
ε

) log ∆) here,
instantiate ε in the parameter definitions with ε

2nk∆
, for

the ε in the statement of this theorem. Then the param-
eter definitions say that εack = ε

2nk∆
∆ = ε

2nk
. This yields

that fack = O(∆ log(2nk∆
ε

) log ∆) = O(∆ log(nk
ε

) log ∆), as
needed.

9. CONCLUSIONS
We have shown how one can use abstract MAC layers to
decompose broadcast algorithms into a high-level part for
broadcast and a low-level part for contention management.
We use both the basic abstract MAC layer of [14, 15] and a
new probabilistic layer. The basic layer is simple to use, but
yields bounds that are not quite optimal. The probabilistic
layer yields better bounds, at the cost of somewhat harder
high-level analysis. The approach is flexible, in that it allows
high-level algorithms to be combined easily with different
implementations of the MAC layer.
Our analysis of the high-level multi-message broadcast algo-
rithm is sufficiently hard that we think it would have been
infeasible without such a decomposition. Thus, we believe
that this approach enables analysis of more complicated al-
gorithms than one could handle otherwise. Current and fu-
ture work involves designing and analyzing other algorithms
over the MAC layers, and developing other algorithms to
implement the MAC layers. We hope that this work will
contribute to building a comprehensive theory for wireless
network algorithms, spanning from the physical level to ap-
plications.

10. REFERENCES
[1] M. Adler and C. Scheideler. Efficient communication

strategies for ad hoc wireless networks. Theory
Comput. Syst., 33(5/6):337–391, 2000.

[2] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the
time-complexity of broadcast in multi-hop radio
networks: An exponential gap between determinism
and randomization. Journal of Computer and System
Sciences, 45(1):104–126, 1992.

[3] R. Bar-Yehuda, A. Israeli, and A. Itai. Multiple
communication in multi-hop radio networks. SIAM
Journal on Computing, 22(4):875–887, 1993.

[4] A. Cornejo, N. Lynch, S. Viqar, and J. Welch. A
neighbor discovery service using an abstract MAC
layer. In Proceedings of Allerton Conference on
Communication, Control and Computing, 2009.

[5] A. Cornejo, S. Viqar, and J. Welch. Reliable Neighbor
Discovery for Mobile Ad Hoc Networks In Proceedings
of the International Workshop on Foundations of
Mobile Computing, 2010. To appear.

[6] A. Czumaj and W. Rytter. Broadcasting algorithms in
radio networks with unknown topology. In Proceedings
of the Symposium on Foundations of Computer
Science, pages 492–501, 2003.

[7] S. Dolev, S. Gilbert, M. Khabbazian, and C. Newport.
Broadcasting in radio networks with multiple
channels. Submitted for publication.

[8] L. Gasieniec. On efficient gossiping in radio networks.
In Proceedings of the International Colloquium on
Structural Information and Communication
Complexity, pages 2–14, 2009.

[9] S. Gollakota and D. Katabi. ZigZag decoding:
Combating hidden terminals in wireless networks. In
Proceedings of the ACM SIGCOMM Conference,
volume 38, pages 159–170, 2008.

[10] T. Jurdzinski and G. Stachowiak. Probabilistic
algorithms for the wakeup problem in single-hop radio
networks. In Proceedings of International Symposium
on Algorithms and Computation, pages 139–150, 2002.

[11] M. Khabbazian, D. Kowalski, F. Kuhn, and N. Lynch.
The cost of global broadcast using abstract MAC
layers. MIT Tech. Report (MIT-CSAIL-TR-2010-005),
February 2010.

[12] M. Khabbazian, N. Lynch, M. Medard, and
A. Parandeh-Gheibi. MAC design for analog network
coding. MIT Tech. Report (MIT-CSAIL-TR-2010-
-036), July 2010.

[13] D. Kowalski and A. Pelc. Broadcasting in undirected
ad hoc radio networks. In Proceedings of the
International Symposium on Principles of Distributed
Computing, pages 73–82, 2003.

[14] F. Kuhn, N. Lynch, and C. Newport. The abstract
MAC layer. In Proceedings of the International
Symposium on Distributed Computing, pages
48–62, 2009.

[15] F. Kuhn, N. Lynch, and C. Newport. The abstract
MAC layer. MIT Tech. Report (MIT-CSAIL-TR-
-2009-021), May 2009.

[16] Sayan Mitra. A Verification Framework for Hybrid
Systems. PhD thesis, Massachusetts Institute of
Technology, 2007.

[17] A. Pelc. Algorithmic aspects of radio communication.
In Proceedings of the International Workshop on
Foundations of Mobile Computing, pages 1–2, 2008.

[18] D. Peleg. Time-efficient broadcasting in radio
networks: A review. In Proceedings of the
International Conference on Distributed Computing
and Internet Technologies, pages 1–18, 2007.

[19] J. Walter, J. Welch, and N. Vaidya. A mutual
exclusion algorithm for ad hoc mobile networks.
Wireless Networks, 7(6):585–600, 2001.

