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Abstract. We study problems of data aggregation, such as approximate counting
and computing the minimum input value, in synchronous directed netwaitks
bounded message bandwidth= {2(log n). In undirected networks of diameter

D, many such problems can easily be solvedifD) rounds, using)(logn)-

size messages. We show that for directed networks this is not the daesetine
bandwidthB is small, several classical data aggregation problems have a time
complexity that depends polynomially on the size of the network, even wigen
diameter of the network is constant. We show that computingaproximation

to the sizen of the network require§2(min {n, 1/¢*} /B) rounds, even in net-
works of diameter 2. We also show that computing a sensitive functigp, (e.
minimum and maximum) require€(,/n/B) rounds in networks of diameter

2, provided that the diameter i®t known in advance to be o(y/n/B). Our
lower bounds are established by reduction from several well-knowhlgms

in communication complexity. On the positive side, we give a nearly optimal
O(D + +/n/B)-round algorithm for computing simple sensitive functions using
messages of sizB = f2(log N), whereN is a loose upper bound on the size of
the network and is the diameter.

1 Introduction

Consider a wireless network comprising two base statioassinitting at high power,
and an unknown number of client devices which communicakg with the base sta-
tions. The base stations are received at all devices, afmdotiant device is received by
at least one base station. However, due to power constriatslients are not necessar-
ily received at both stations. The bandwidth of each baseatis limited, allowing it to
send only a certain numbé? of bits per timeslot. How many timeslots are required for
the base stations to determine the approximate numbereofts® We study this prob-
lem and other data aggregation problemsliirected networks, where communication
is not necessarily bidirectional.

Data aggregation tasks are central to many distribute@s\sstfor example, a peer-
to-peer network might require information about the nundfeients that have a local
copy of a file, and a sensor network might need to verify thatmmmalous reading
was detected by a certain percentage of sensors beforgingpiarWith the increasing
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availability of dynamic, large-scale distributed systeef§icient data aggregation has
become a particularly interesting challenge.

Classically, data aggregation has been studied in netwuathsbidirectional com-
munication links. In this setting the method of choice is tstfconstruct a spanning
tree of the network graph, and then perform distributed dgtregation “up the tree”.
In a synchronous undirected network, if computation igatéid by some node, a global
broadcast starting at the initiating node induces a brefadihsearch spanning tree of
the network. Basic aggregation functions, such as the mimipmaximum, sum, or
average of values distributed across the nodes of the systmthen efficiently be
computed by a simple convergecast on the tree. Even whendksage bandwidth is
quite restricted (e.g., if only a constant number of datagean be sent in a single mes-
sage), this method allows any of the functions above to bepeted inO(D) rounds
in networks of diameteD. Network properties such as the size of the network and the
diameterD itself can also be determined (D) time using small messages. In fact,
in [1] Awerbuch observes that computing certain aggregdtimctions and computing
a spanning tree are intimately related problems, whosedimlemessage complexities
are within constant factors of each other. This makes tharspg-tree/convergecast
approach a canonical solution of sorts.

The situation changes significantly when communicatiorotsnecessarily bidirec-
tional. Constructing a rooted directed spanning tree besomuch more challenging,
as it is much harder for the sender of a message to obtaindekditom the recipients,
or even to determine who are the recipients. In this paperhse ghat in contrast to
undirected networks, in directed networks with restridiaddwidth it is not always de-
sirable to aggregate data by first computing a rooted spgrree; for some functions,
such as minimum and maximum, it is faster to compute the agégeby other means.
Moreover, we show that the time complexity of computing agragate with restricted
bandwidth is not governed by the diameter of the networkgldor small-diameter
networks, the time complexity of computing certain aggtegas dominated by a fac-
tor polynomial inn, the size of the network. We are particularly interestedaneffect
of initial knowledge, i.e., whether or not the problem becomes easier if parameteh
as the size or diameter of the network are known in advance.

The paper is organized as follows. In Section 2 we discuasa@lvork. In Section 3
we introduce the model and problems studied in the paperranew several results
in communication complexity that form the basis for our loweunds. In Section 4
we consider the problems of exact and approximate countihgn the diameter of
the network is known to be 2; we show that computingeaapproximate count with
constant probability require®(min {n,1/e*} /B) rounds whereB is the message
bandwidth. Our lower bound implies that computing a roofgghsiing tree in networks
of diameter 2 require€(n/B) rounds.

In Section 5 we turn our attention to computing sensitivecfioms in networks of
unknown diameter. Informally, a function gdobally sensitive if its value depends on
all the inputs, and-sensitive if its value depends on asfraction of inputs. In undi-
rected networks, or even in directed networks of known diamB®, some globally-
sensitive functions can be computedD) time with only single-bit messages. We
show that for directed networks aihknown diameter the picture is quite different:
£2(y/n/B) rounds are required, even when the diameter of the netwaklsit this



fact is not known in advance). This lower bounds holds fodmanized computation
of any globally-sensitive function and for deterministangputation of any-sensitive
function wheree € (0,1/2). The lower bound holds even when the sizef the net-
work is known in advance and the UID spacé js. ., n.

Finally, in Section 5.2 we give a randomized algorithm far gnoblem of determin-
ing when a node has been causally influenced by all nodes grépd. This condition
is necessary to compute a globally-sensitive function, srfticient to compute sim-
ple functions such as minimum or maximum. The algorithm iesuD + O(\/n/B)
rounds w.h.p., nearly matching our lower bound. For lackpafce, some of the proofs
are omitted here, and appear in the full version of this paper

2 Background and Related Work

Distributed data aggregation and spanning tree computation. Early work on these
problems was concerned with thenessage complexity, that is, the total number of
messages sent by all processes, as well as their time catgplkxerbuch observed
in [1] that in undirected networks, the message and time ¢exitp of leader election,
computing a distributive sensitive function (e.g., minimor maximum) and count-
ing are all within a constant factor of the complexity of fingia spanning tree in the
network. It is also shown in, e.g., [1, 3] that the time comjtieof these problems in
undirected networks i®(n) and the message complexity@&m + nlogn) in net-
works of sizen with m edges. However, th€(n) lower bound is obtained in networks
of diameterf2(n), and the message complexity lower bound does not yield amoak
bound in our model. In a synchronous undirected network afndterD edges, it is
possible to construct a breadth-first search spanningiré¥ D) rounds, even if the
diameter and size of the network are not known in advanceng4gich a tree, functions
such as minimum, maximum, sum, or average can all be computiede O (D). Based
on a pre-computed spanning tree, researchers have alsdemusthe computation of
more complicated functions such as the median or the mo@& 12, 13, 15-17].

Communication complexity. A two-player communication game involves two players,
Alice and Bob, which are given private inputsy and must compute some joint func-
tion of their inputs,f(x, y). In order to computg the players communicate over sev-
eral rounds, and are charged for the total number of bitsangdd. Theleterministic
communication complexity of f is the worst-case number of bits exchanged in any de-
terministic protocol for computing’. The randomized communication complexity is
defined similarly; in the current paper we are interestedimdomized algorithms that
err with constant probability.

Communication complexity lower bounds have often been useabtain lower
bounds in distributed computing. The classical reductmhhique (see, e.g., [10]) par-
titions the network into two parts, with each player simiagthe nodes on one side of
the cut. The input to each player is reflected in the struatfiits part of the network
or in the input to the network nodes it simulates, and the wutp behavior of the dis-
tributed algorithm is used , and the communication-conipiéawer bound then shows
that a certain amount of information must cross the cut. kample, this technique is
used in [13] to obtain a lower bound on the complexity of cotimgithe number of
distinct elements in the input.



The reductions we give here are quite different in naturgtelsd of partitioning the
network, the players simulate non-disjoint sets of nodese@ust be taken to ensure
that information about one player’s private input does rleaK” to the other player
through nodes that both players simulate; this aspect ofemuctions strongly relies
on the fact that the network is directed.

3 Preliminaries

Network model. We model a synchronous directed network as a strongly coedhelc-
rected grapl; = (V, E), whereE C V2. We useN¢(v) = {u € V | dist(u,v) < d}
to denote thel-in-neighborhood of v, that is, the set of nodes whose distance i at
mostd. Nodes communicate by local broadcast: in each round, exatgu sends a
single message of size at md3twhereB = (2(logn), and this message is delivered
to all nodesv such that(u,v) € E. (Each node does not know which nodes receive
its message, i.e., it does not know its set of out-neighplive.assume that nodes and
communication links are reliable and do not fail during aaaxion.

In the sequel we often refer to algorithms whose correctiessly guaranteed
in networks that satisfy some fixed bound on the size or dianadtthe network. In
this case we say that the boundkizown a priori (or known in advance). Our lower
bounds assume that each node has a unique identifier (Ulndram some UID
spacel, ..., N, whereN is an upper bound on the size of the network that is known in
advance. For convenience, we assume the existence of ttuogdished UIDsa, b ¢
[N]; our reductions “embed” the two players in the graph as nade®lb respectively.
Some of our lower bounds allow for the case whafe= n, i.e., the exact size of the
network is known to all nodes and the UID spacg,is. . , n. In contrast, the algorithm
in Section 5.2 requires only a loose upper botd n and does not use UIDs at all.

Problem statements. We are interested in the following distributed problems.

— e-approximate counting: nodes are initially provided with some loose upper bound
N on the sizen of the network, and each nodenust eventually output an approx-
imate countz, satisfying|n, — n| < e-n.

— Computingglobally-sensitive functions of the input: a function is said to gob-
ally sensitive if there exists an input assignmentsuch that changing any single
coordinate ofz yields a different function value. For example, the all-omgut
assignment witnesses the global sensitivity of computingramum.

— Computinge-sensitive functions of the input: a function issensitive if there is an
input assignmernit such that changing aryn| coordinates of yields a different
function value. For example, the function that returns atifeast 25% of the inputs
are 1is(1/4)-sensitive, as witnessed by the all-zero input assignment.

Communication complexity lower bounds. Our results rely on several celebrated lower
bounds in communication complexity. Perhaps the best knower bound concerns
the Set Disjointness problem,i€s,, in which the players are given sel§ Y C [n]
(respectively) and must determine whetben' Y = 0.

Theorem 1 ([5, 14]).The randomized communication complexity of DiSJ, is 2(n).



We are also interested in a relaxed variant called Gap Sgibtisess, @P-DisJ, 4:
here the players are given séfsY C [n], with thepromise that eitherX N'Y = () or

|X NY| > g. The players must determine which of these cases holds. Wieegaip

g is large with respect ta, GAP-DIsJ, , is quite easy for randomized algorithms (one
can use random sampling to find an element of the interseitibis large). However,
for deterministic protocols the problem remains hard evéh wlinear gap. (This fact
appears to be folklore in the communication complexity camity; we include a proof
in the full version of this paper.)

Theorem 2. For any constant € € (0, 1/2), the deterministic communication complex-
ity of GAP-DISJ, (1/2—c)n IS £2(n).

The final problem is @GP-HAMMING -DISTANCE, denoted GHI) ,, where the
players receive vectors y € {0,1}" and must determine whether the Hamming dis-
tanceA(x, y) satisfiesA(z,y) > n/2 + g or whetherA(z,y) < n/2 — g. (If neither
holds, any answer is allowed.) Characterizing the randedhiommunication complex-
ity of GHD remained an open problem for a long time after itsdduction in [4] (for
the casegy = /n, which is in some sense the most interesting setting), un{],
Chakrabarti and Regev proved the following lower bound.

Theorem 3 ([2]).For any g < n, therandomized communication complexity of GHD,, ,
is 2(min {n,n%/g*}).

The reductions in this paper apablic-coin protocols: they assume that Alice and
Bob have access to a shared random string (of unbounded)efidjie lower bounds
above are stated farivate-coin protocols, where each player has its own private ran-
domness. However, any public-coin protocol can be trangddrinto a private-coin
protocol at the cost af (log ) additional bits [10], so the distinction is mostly imma-
terial for our purposes.

4 Approximate and Exact Counting

We begin by describing a lower bound feapproximate counting or exact counting. In
this setting we assume that nodes know some loose upper Béundh on the size of
the network, and must determine the exact or approximage Since exact counting is
a special case of approximate counting, we describe ther loagnd for approximate
counting, and later discuss exact counting.

The lower bound is obtained by reduction from GR[Py. Suppose we are given
an e-approximate counting algorithmd. Given an instancéx,y) of GHDy n, We
construct a networks, ,,, in which Alice and Bob jointly simulate the execution.df
WhenA terminates, Alice and Bob use the output4fo determine the correct answer
to GHD on the instancér, y). Since Alice knows only her inputand Bob knows only
y, neither player knows the complete topology of the netw@gk,, which depends on
bothz andy. The players therefore cooperate to simulate the execafighin G ,,.

Let X,Y C [N] be the sets whose characteristic vectorszaamdy, respectively.
The networkG,, ,, is given byG, , = (V4 4, Ez ), WhereV, , = X UY U {a, b} (for
a,b ¢ [N]),andE, , = ({a} X Vayy) U ({b} x Vo) U (X x {a}) U (Y x {b}) (see
Fig. 1).



Fig. 1. The networkG,,, for z = 110000100,y = 010100101 (i.e., X = {1,2,7},Y =
{2,4,7,9})

The Hamming distance(z, y) is closely related to the size 6f, ,:

Lemma 1. For all (z,y) € ({0, 1}N)2,thegraph Gy isstrongly connected, its diam-
eter is2, anditssizeis |V, | = (|||, + lyll; + Az, y))/2 + 2.

Next we show that an efficient algorithm for approximating #lize of diameter 2 net-
works leads to an efficient protocol for GHR .

Lemma 2. Given an e-approximate counting algorithm .A which outputs a correct an-
swer after ¢ rounds with probability at least 1 — ¢, one can construct a public-coin
protocol for GHDy . which exchanges a total of O(Bt + log N) bits and succeeds
with probability 1 — 6.

Proof. Given an instancéz, y), Alice and Bob simulate the execution &f in G,
as follows. Alice locally simulates the nodes ¥ U {a}, and Bob locally simulates
the nodes inY” U {b}. The shared random string is used to provide the randomness
of all nodes in the network. (Since Alice and Bob do not ifiigi&know which of the
nodes{1,..., N} are present, we interpret the shared random string as norgahe
randomness of each node. . ., N regardless of whether or not the node isXiru Y'.)
Notice that there can be some overlagp,N Y, which is simulated by both players
independently.

The initial states of all nodes if U{a} and inY U{b} are known to Alice and Bob,
respectively, because they depend only on the UIDs of thedesnand on the shared
randomness. Each round 4fis simulated as follows:

— Based on the states of their local simulations, Alice and ohpute the messages
sent by the nodes iX U {a} and inY U {b}, respectively.

— Alice sends to Bob the message sent by naded Bob sends to Alice the message
sent byb. Following this exchange, Alice and Bob have all the messageeived
by each node they need to simulate.

— The players update the states of their local simulationgbyihg to each node the
messages it receives @, ,: the nodes ofX U Y receive the messages sentdy
andb; nodea receives the messages sent by nodes in {b}; and node receives
the messages sent by nodediv {a}. (Note that Alice knowsX and Bob knows
Y, so the two players know which messages are supposed todiea@dy nodes
a, b, respectively.)

Although Alice and Bob do not directly exchange informatabout the states of nodes
in XNY —indeed, they do ndtnow which nodes are it NY’, and this is what makes
the problem difficult — still their local simulations agree the states of these nodes.



With probability at leasti — 0, after¢ rounds of the simulation node halts and
outputs an approximate coufitwhich satisfie§n — n| < en. When noden halts,
Alice sendsn to Bob, and in addition Alice and Bob send each otéf = ||z||, and
[Y'| = |ly|l, (respectively). LetA = 2(7 — 2) — ||z||, — ||v||,. Both players output O if
A< N/2,and 1 ifA > N/2. (If nodea fails to halt aftert rounds, the players output
an arbitrary answetr.)

If |7 — n| < en then Lemma 1 shows that — A(z,y)| = 2|7 — n| < 2en <
2¢N. Hence, with probability at leadt — 4, the players output the correct answer: if
A(z,y) > N/2 4 2¢eN thenA > N/2, and if A(x,y) < N/2 — 2¢N thenA < N/2.

The total number of bits sent during the protocdt 8t + 2 log(N). In addition, to
transform the protocol into a private-coin protocol we rieg® (log N) additional bits.
The communication complexity is therefatd Bt + log N). O

Although our reduction is stated in terms of the upper boddwe reduce from
GHDy .n), the “hard” instances are the ones wherés roughly linear inN; it is
always possible to solve GHD by exchanging the coordinatésdices: such that
x; = lory; = 1, and hence whepX U Y| = n the problem can easily be solved in
O(nlog N) bits. It is therefore more informative to state our lower bouin terms of
the actual sizex of the network. From Theorem 3 and the reduction above, waitobt
the following lower bound.

Theorem 4. If B = 2(log N), arandomized algorithmfor computing an e-approximate
count requires £2((min {n,1/¢?} /B) rounds to succeed with probability 2/3 in net-
works of diameter 2.

Remarks. The deterministic communication complexity of GHR ;4 is 2(N) even
wheng = ¢ - N for a sufficiently small constant [2]; therefore deterministically
computing are-approximate count for a sufficiently small constant requiréXn/B)
rounds. As folexact counting (deterministic or randomized), computing thectxaunt
is as hard as computing(&/n)-approximate count, s€(n/B) rounds are required.

The lower bound of Theorem 4 is nearly tight if the diametettref network is
known. An algorithm for-approximate counting is given in [11]; the algorithm of J11
sends messages containing real numbers, but using a rguwsatiame to bound the size
of messages (see [9]), one obtains@D + min {n, 1/¢2} /B)-round algorithm for
networks of known diametdp. For the case where the diameter is unknown, we obtain
a stronger lower bound in the next section.

Finally, the reduction from Lemma 2 also shows that finding@ed spanning tree
in directed networks is hard even when the diameter of thear&tis knowna priori to
be 2. In the networky, ,,, the nodes o UY" are not connected to each other; therefore
any rooted spanning tree 6f, , has diameter at most 3, as each nod&of Y except
possibly the root must have eitheror b as its parent in the tree. If one can find a
rooted spanning tree @, , in ¢ rounds, then an exact count can be computeds
rounds by finding such a tree and then “summing up the treaiv@gecast). Since
exact counting require€(n/B) rounds, so does computing a rooted spanning tree. In
the full version of this paper we show that this lower boundttwes to hold when the
size of the network is knowa priori, provided that the UID space is of size at least
(1 4 €)n for some arbitrarily small constant



5 Computing Sensitive Functions

In this section we study the complexity of computing sewmsifunctions, such as the
minimum or maximum input value. In contrast to the previoasti®n, here we are
interested in instances where the diameter of the netwanktiknowna priori to be
small, but the algorithm is deployed in a network tkaes in practice have a small
diameter. We will show that in such cases it is not possibexfioit the small diameter
of the network; the worst-case running time of the algorithost be2(D + /n/B).
We also give a nearly-matching algorithm for computing dargensitive functions.

Let f be a globally-sensitive function, and lebe an input assignment under which
changing any node’s input changes the valug ¢te., for ally # = we havef(z) #
f(©)). In any execution where the inputisat timet, a nodev can only know the value
of fif Nt(v) = V, thatis, ift rounds are sufficient for a message from any node in
the network to reach node otherwise there is some node whose input nedannot
know at timet, and this node’s input may determine the valuefoBimilarly, if f is
e-sensitive, there exists an input assignment under whichadge can know the value
of f at timet unless|N*(v)| > (1 — ¢)n. This motivates us to study the following
problem:

Definition 1 (Hearing from m nodes).In the Hear-fromsm-nodesproblem, denoted
HF,,., each node v in the network must halt at some time ¢ such that | N (v)| > m.

The worst-case time complexity of computing a globallysséwe function is at least
the worst-case time complexity of solving HFand similarly fore-sensitive functions
and HR;_.),. (In fact, computing are-sensitive function can require hearing from
strictly more than(1 — ¢)n nodes.) Of course, Hfcan easily be solved by having all
nodes wait until timex — 1; however, we are interested here in efficient solutionsctvhi
terminate faster in networks with smaller diameter (redalvever, that the diameter is
not known in advance).

5.1 Lower Bounds on Computing a Sensitive Function

In this section we show that even when the diameter of theorétis 2,learning that
the diameter is 2 requirg3(y/n/B) rounds in the worst case. More formally, we show
that when the size of the network is known, the UID spack is., n, and noa priori
bound on the diameter is known,

(a) Any randomized algorithm for HFrequires{2(y/n/B) rounds to succeed with
constant probability, even when executed in a network ohéiar 2; and

(b) Foranye € (0,1/2), any deterministic algorithm for Hir_.),, requiresf2(y/n/B)
rounds, again when executed in networks of diameter 2.

(Of course, in networks of diameter 2 we hd9€? (v)| = n for all nodesv, sot = 2 is
sufficient; however, this fact is not known to the algorithmraidvance.)

Fix an algorithmA for HF,,, and a network size > m. We describe a reduction
from Set Disjointness or Gap Set Disjointness, which wewgé to show both the hard-
ness of HF, for randomized algorithms and the hardness of HE,, for deterministic
algorithms.



As in Section 4, in the reduction we construct a netw@rkased on the instance of
Set Disjointness given to Alice and Bob. The two players thiemulate the execution
of Ain G, and output an answer to Set Disjointness (or Gap Set Diggss) based on
the behavior of4 in G — in this case, based on the time whdrerminates. We now
describe the construction of the network and the simulaised by Alice and Bob.

The construction has several parameters. First,Jdte the number of rounds such
that whenA is executed in a network of sizewith node UIDsl, . .., n, a, b (as before
we add UlDsa, b for convenience), with probability at lea®t3 all nodes halt by time
t 4. Based ont 4 and onm, we choose aegment length s > ¢ 4 + 1 which will be fixed
later. Informally, in the reduction nodes must distingudihmeter 2 networks from
diameters + 2, and we will show that this require3(n/s) rounds in the worst-case.

Assume for simplicity that dividesn. We divide the nodes, . . . , n into segments
S1,...,8n/s, €ach of sizes, whereS; := {(i —1)-s+1,(i —1)-s+2,...,i-s}.
Each segmens; is further subdivided into two parts:kack end SZ containing nodes
(i—1)---+1,...,i-s—tu, and afront-end SF containing the remaining nodes,
i-s—1taqa+1,...,i-s. Inthe sequel we implicitly use wrap-around (i.ewpd n
arithmetic) for node indices, so thatl =n, —2 =n — 1, and so on.

We are now ready to describe the reduction itself. The reéalucs from Disg, /,
that is, Set Disjointness (or Gap Set Disjointness) with arse ofn/s elements;
each segmerfi; represents a single element of the universe. Given an estany) of
DisJ, /s, we define a networks; . , := ({1,...,n,a,b}, E, . ,) (See Fig. 2), where

— Nodesa, b have edges to all nodes of the graph.

— Nodesl,...,n are connected in a directed cycle: for each [n] we have(i,: +
1) € Eszy.

— In each segment;, the last node (node- s) is connected to node. (This is to
ensure strong connectivity and a boundsef 2 on the diameter.)

— For alli ¢ X and for allv € S; we have(v,a) € Es ,,; similarly, foralli ¢ YV
and for allv € S; we have(v,b) € E; , .

Here,X andY are the sets whose characteristic vectorscagerespectively.

Fig. 2. The networkGs,,, from Thm. 5, withn = 12,t4 = 2,s = t4 + 1 = 3. Edges fronu, b
to nodesl, . . ., 12 are omitted for clarity. The B3J, instance shown here i§ = {2,4},Y =
{1,2,3}. Since2 € X NY, all Sz nodes except the last (node 6) are not connecteddtato b.
Therefore4 ¢ N*4(a), i.e., two rounds are not sufficient for nodeéo hear from node 4.



With the exception of the last node in each segment (whichniays connected to
nodea), the nodes in segmetst; are connected to nodeiff Alice did not receive:
in her input, and connected to nodldf Bob did not receive: in his input. Therefore,

if there exists an elemeritin the intersectionX N'Y = X UY, the nodes of the
corresponding segmeAt, with the exception of the last node, will not be connected to
either nodex or nodeb. These nodes are only connected to the rest of the graph by the
cycleedgegi —1)-s+1— (i —1)-s+2— ... — i-s. Consequently the diameter
of the graph is + 2 > t 4 in this case. It 4 rounds, nodesa andb can only hear from
the lastt 4 nodes of segmertt;, i.e., only from the front-end’’; for each segment;
suchthat € X NY, |SP| = s — t 4 nodes are missing frodv+ (a).

On the other hand, ik NY = () (or equivalently X UY = {1,...,n/s}), all nodes
in all segments are connected to either nede nodeb, and the diameter of the graph
is 2.

Lemma 3. For any z,y € {0,1}",

(a) Thegraph G; ., isstrongly connected,

(b) Foralli € X NY andfor all v € SP wehavev ¢ Nt4(a) andv & N*A(b),
(c) f X NY = 0, thediameter of G , , is2, and

(d) [N*“A(a)] <n—|XNY]|-(s—t4) (and similarly for b).

Alice and Bob simulate the execution dfin G . ,, in a slightly different manner
than in Lemma 2; here both players simulate notles. , n regardless of the input in-
stance, and in addition Alice simulates nadend Bob simulates node The remainder
of the simulation is the same as in Lemma 2, and we omit thelsiéere.

Proposition 1. Given inputs = and y respectively, and a shared string representing
the randomness of all nodes, Alice and Bob can each simulate nodes {a, 1, ...,n} and
{b,1,...,n} (respectively) throughout rounds 1, . . ., t 4 of theexecution of AinG; , .

It remains only to put the pieces together to obtain the falg lower bounds.

Theorem 5. If the diameter of the network is not known initially, any randomized al-
gorithm for computing a globally-sensitive function requires 2(1/n/B) rounds with
probability at least 2/3 when executed in networks of diameter 2.

Proof. As explained above, it is sufficient to show the correspagdiound for HE,.

Fix an algorithmA, and lett 4 be defined as above. Fix a segment length of
t 4 + 1 (so that the back-end of each segment contains exactly afed.no

Given an instancéz,y) of DisJ,,,, Alice and Bob jointly simulate the firsty
rounds in the execution ofl in G, as in Proposition 1. Aftet 4 rounds, Alice
informs Bob whether or not nodehas halted in the simulation. If nodehas halted,
the players outputX N'Y = 0”; otherwise they outputX NY # ("

As we saw in Lemma 3, i N'Y = 0 then the diameter of/; , 1 ., IS 2, SO
with probability at leas®/3 all nodes halt aftet 4 rounds and Alice and Bob output
“X NY = (". On the other hand, i N Y # 0, then by timet 4 nodea has not heard
from all nodes, as Lemma 3 shows that atIgastt4)- | X NY| = |[X NY]| > 0 nodes
are missing fromV’4(a). Consequently, with probability at lea&t3, nodea does not
halt by timet_4 and the players outputX N'Y # ()"



The total number of bits exchanged by the players in the pobtabove is2B -
t4 + 1, because Alice and Bob only send each other the messagasg bytmodes
a andb, plus one bit needed for Alice to inform Bob whether nadbas halted. An
additionalO(log(n/t4)) bits are required to obtain a private-coin protocol. Siree t
randomized communication complexity ofi€|,, /; ,+1)| is £2(n/t.4), we must have

2B -ta+ 1= 2(n/ta),orinother wordst4 = 2(y/n/B). O

Theorem 6. If the diameter of the network is initially unknown, any deterministic al-
gorithm for computing an e-sensitive function, where e € (0,1/2) is constant, requires
£2(y/n/B) rounds when executed in networks of diameter 2.

Proof (sketch). We prove that?(/n/B) rounds are required to solve HE.), deter-
ministically for anye € (0, 1/2), even in networks of diameter 2. The proof is similar to
that of Thm. 5, except that we now reduce frommEDIS)),, /5| /| n/s) fOr an appropri-
ately chosen constant € (0,1/2), and the segment lengttis also chosen differently.
Fix a deterministic algorithmd for HF(,_.),,, and lett 4 be the maximal time at
which the algorithm halts in any network of diameter 2. We tmasv choose a segment
lengths = O(t 4) so that the following conditions hold:
(@) If XNY =0, then the diameter aF,  , is 2. This ensures that in “yes” instances,
all nodes halt by time 4.
(b) If | X NY]| > €|n/s] then we haveN'4(a)| < (1 — €)(n + 2). This ensures that
in “no” instances, node cannot halt by timet 4.
These conditions suffice for the protocol from Thm. 5 to s@BA&P-DISJ|,, /5| e/ [n/s)
as well. From Lemma 3 we see that condition (a) holds regssdd our choice of.
As for condition (b), from part (d) of Lemma 3, it is sufficietat chooses := at 4, €
so that
n—¢ {HJ (a=1)tg < (1 —e€)(n+2).
at g
There exist constants > 1, €' € (0, 1/2) satisfying this constraint (we omit the details
for lack of space). For this choice sf¢’, the reduction from Thm. 5 yields a protocol
with communication complexit@ Bt 4 + 1 for GAP-DISJ, o/, Wheren’ = |n/s| =
O(n/t4). Because @Gp-Disyis linearly hard for deterministic protocols even when the
gap is linear in the universe size (Theorem 2), we must By + 1 = 2(n/ta),

i.e.,tA:Q(\/n/B). O

Remarks. The construction in this section can be modified to show a &ated results.

In Theorems 5 and 6 we assumed that no upper bound on the diaofethe
network is known in advance. Suppose now that some upperdobuan the diam-
eter is known in advance. We can show that any randomizeditdgofor comput-
ing a globally-sensitive function, and any deterministigogithm for computing an
e-sensitive function foe € (0,1/2), requiresf2(min {D, n/B}) rounds when exe-
cuted in networks of diameter 2.

To see this, observe that the diameteqf, , never exceeds + 2. Suppose that
D = o(y/n/B) and we are given an Hfalgorithm (or similarly, a deterministic
HF (1 _¢)n-algorithm) A with ¢ 4 < D — 2. If we use a segment length of=t 4 + 1 <
D—2,asin Thm. 5, the diameter upper bound is not violate@n ,.. For this choice of



s, the reduction from Thm. 5 allows us to solvesd,, |, where|n/s| > |n/(D—-2)],
using less thaB(D — 2)B + 1 bits. We must havé(D — 2)B + 1 = 2(n/D), that s,
D = 2(y/n/B), contradicting our assumption that= o(/n/B).

Next, consider the problem of finding an approximate courgmwthe diameter is
not known in advance. (Our lower bound from Section 4 alloles diameter to be
known in advance, but the following requires it to be unkngwret N be the best
upper bound known in advance on the count. We will show thatdier to distinguish
a network of sizex from a network of sizeV, nodesz, b must solve a Set Disjointness
instance of siz€(n/t 4), so that again4 = {2(/n/B) rounds are required.

Recall that inG; . ,,, the distance from any nodé— 1) - s + 1 wherei € X NY
to nodesa andb is s > t4. Thus, whenX N'Y # (), we can choose a node:=
(t—1)-s+1wherei € XNY, and “hide” nodes. + 1, ..., N behind it, adding edges
from nodes» + 1,..., N tov and from nodes, b to nodes: + 1,..., N. LetGy ,
be the resulting network. Since the distance from nettenodess, b exceeds 4, and
the new nodes + 1,..., N are connected only to node t 4 rounds are insufficient
for nodesu, b to distinguishGy; . , from G*, . . Therefore, itX NY" # (), an algorithm
for distinguishing networks of size + 2 from networks of sizeV cannot terminate
by timet 4 in G, 5, (except with small probability). This is sufficient to camwut the
reduction from Thm. 5 exactly as before, obtainingfaf/n/B) lower bound on any
non-trivial approximation of the count.

5.2 A(D + O(y/n/B))-Round Algorithm for HF ,,

We now give an algorithm that solves Hh nearly-optimal time. If, for example, the
minimum input value heard so far is forwarded alongside thesages of our algorithm,
this allows nodes to compute the global minimum. The alporiloes not use UIDs,
and it only requires an polynomially loose upper bouvid> »n on the count.

High-level overview of the algorithm. Initially, each node computes a sequence of in-
dependent Bernoulli variables, and stores the indiceseofdiniables that turned up one.
These indices are callédkens. The tokens are then forwarded throughout the network
by all nodes. If a node does not receive any new tokens forfigmitly long period of
time, it concludes that it has heard from all nodes, and halts waiting period is long
enough so that if at the eribf the period we do not haw*(v) = V, then during the
waiting period the tokens of many new nodes are received bpd the probability that
none of these nodes generated a token that was not previoshn is very small.

Detailed description. Since nodes do not know the exact sizeve use exponentially-
increasing guesse¥ for k = [loglog N7,..., [log N]. We refer to each value df
as alevel. On levelk, each node computés independent Bernoulli variables; with
Pr[X; = 1] = 1/252, wherel;, = 6(V2* B) (the exact value will be fixed later). We
denote byL;, := Zle ¢; the total number of variables computed on levéls< k.

At the beginning of the algorithm, the indices of the varéathat turned up one on
each level are collected in a s@bkens = {(k,i) | X = 1}. The tokens are ordered
lexicographically — first by level and then by index. Eachdnlcan be represented
usinglogn + loglog N bits; for simplicity we assume that each message cag fit



for k = [loglog N1, [loglog N] + 1,..., [log N| do
Compute independet;, ..., X * ~ Bernoulli(2~(v+2))
| last_update, < 0

Tokens < {(k,i) € N* | X; =1}, Sent « 0

forr=1,2,...do

X « select thed smallest tokens irfokens \ Sent

broadcasfX and setSent <— Sent U X

receive tokeng” from neighbors

forall y = (k,i) € Y \ Tokens do V&' > k : last_update,, < r

Tokens <— Tokens UY

if 3k : (| {(k, ) € Tokens}| < 20,/3) A (r — last_update, > 273;) then halt

Algorithm 1: A (D + O(y/n/B))-round algorithm for HE,

tokens, that isB = S(logn + loglog N) wheref is an integer. Pseudocode for the
algorithm is given by Algorithm 1. In the sequel, lgt:= [L/5].

After generating an initial set of tokens, the tokens arsatisinated in batches 6f
tokens each, with lower-level tokens taking precedence loigher-level tokens. Each
node halts as soon as on some leeglewer than2¢;, /3 tokens have been received in
total, and in the pagtr;, = 2[ Ly /5] rounds no new token was received.

The algorithm relies opipelining [18] to quickly disseminate small tokens through-
out the network. Because we forward small tokens beforelarges, the progress of a
token(k, i) can only be impeded by tokens on its own levgldr lower levels ' < k);
there are at most;, = Y.F_, ¢; such tokens, and of them can be sent per message.
Thus the “latency” of tokertk, i) is at most[L, /8] = 7. More formally, for a set
S C V of nodes, letd(S) := U,cs 1(k,4) | (k,i) € Tokens,(0)} be the levelk
tokens generated by the nodes%flLet Tokens, (t) stand for the value of the local
variable Tokens at nodev and timet. The latency of levek tokens is bounded by the
following lemma.

Lemmad4. Forallv e Vandt > 11, Ap(N'"™(v)) C Tokens,(t) C A(Nt(v)).

We can now bound the round complexity of the algorithm in eofithe “correct”
value ofk, which is roughlylog(n).

Lemma 5. Let & := min {[loglog N1, [logn]}. In graphs of diameter D, the algo-
rithmterminatesin D + 3[L;, /3] rounds with probability at least 1 — e~*+/°.

Proof (sketch). It is not difficult to show that the expected number of lekeiekens
generated by all the nodes together is at mggs. A Chernoff bound shows that w.h.p.,
the total number of level-tokens does not excegd/3)¢;, so the second part of the

termination condition is satisfied fér= k. For the first part of the condition we rely on
pipelining: Lemma 4 shows that; (N? (v)) C Tokens, (D+;) for all nodesy; since
NP(v) = V, attimeD + 7, each node has already received all tokens generated
anywhere in the network. After this time no node can receiwe reew tokens, so all
nodes halt no later than tim@ + 37;. O



Next we show that w.h.p., nodes do not halt before they hasedifeom alln nodes.

Lemma 6. If the level-k termination condition holds at node v at time ¢, then with
probability at least 1 — e~/ (32""*8) we have N*(v) = V.

Proof (sketch). The level% termination condition asserts that no new lekdibkens

are received during the time intervl — 27, ¢]. Assume thatV'(v) # V, and set

S := Nt=27(v), 8" := N'="(v). From Lemma 4 we see that

(a) Ax(S’) C Tokens,(t), thatis, all tokens generated by the nodesoare known
to v at timet; and

(b) Tokens,(t—27) C Ar(S),i.e., attime—27, nodev only knows tokens generated
by the nodes of.

Since no new tokens were addedfokens, between time — 27, and timet, we must

haveA; (S’) = Ax(S); in other words, the nodes 6f \ S did not generate any tokens

that were not already generated by the nodeS. &/e will show that this is unlikely.
From the levelk termination criterion, at leadt; /3 tokens were not generated

by the nodes ofS. Each of these tokens is generated by each nod& §fS with

probability 1/2%+2. Because we assumed thit (v) # V' and the graph is strongly

connected|S’ \ S| > 7. Hence, for each toke(k,i) ¢ Ax(S), we can show that

Pr[(k,i) € Ax(S"\ S)] > 71./2¥*3 independently of the other tokens. It follows that

Pr[Ak(S) = A(S)] < (1 — 7/2673) /% < o=/ (3:228), .

Combining the two lemmas, we see that choodipgs ©(1/2%31n N) yields a
polynomially small probability of any node not halting ang D + O(L;/3) = D +

O(+/n/B), or halting before it has heard from allnodes.

Theorem 7. For any constant c, if £, > \/3(c +2)3 - 2543 1n N, then with probability
atleast 1 — 1/N° each node v haltsat atimet = D + O(L./8) = O(D + /n/B)
such that N*(v) = V.

6 Conclusion

Data aggregation problems are traditionally studied in e®that feature symmetric
point-to-point communication. However, wireless netvgckan havesymmetric com-
munication topologies, due to the effects of local intexfme and heterogeneous power
assignments. This motivates our interest in directed niédswavith communication by
local broadcast.

Our results show that the traditional strategy of first cotimgua spanning tree,
and then solving various distributed tasks using the treenot always optimal for
directed networks; for example, while computing a rootednsying tree can require
2(D + n/B) rounds (as we saw in Section 4), certain data aggregatesecaony-
puted or approximated i®(D + \/n/B) rounds. Our lower bounds also imply that
it is not possible to quickly compute a small-diameter syrrimespanning subgraph
of a directed network with diameter 2. In general it seems ‘fugpology-oblivious”
algorithms, such as the algorithm in Section 5.2 and godggrithms [6, 11], may be
better suited for directed networks.



We leave open the question of finding a tight bound on the ohétéstic time com-
plexity of computing a sensitive function; is therdeter ministic algorithm that matches
the2(D++/n/B) lower bound, or can the lower bound be strengthened? Fanitsh
reasons, it seems unlikely that a two-party reduction ofstigke we used in this paper
will yield a stronger lower bound, but perhaps multi-pargyrenunication complexity
lower bounds could be used.
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