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Abstract. We investigate the complexity of basic symmetry breaking problems
in multihop radio networks with multiple communication channels. We assume
a network of synchronous nodes, where each node can be awakened individually
in an arbitrary time slot by an adversary. In each time slot, each awake node can
transmit or listen (without collision detection) on one of multiple available shared
channels. The network topology is assumed to satisfy a natural generalization of
the well-known unit disk graph model.
We study the classic wake-up problem and a new variant we call active wake-
up. For the former we prove a lower bound that shows the advantage of multiple
channels disappears for any network of more than one hop. For the active version
however, we describe an algorithm that outperforms any single channel solution.
We then extend this algorithm to compute a constant approximation for the min-
imum dominating set (MDS) problem in the same time bound. Combined, these
results for the increasingly relevant multi-channel model show that it is often pos-
sible to leverage channel diversity to beat classic lower bounds, but not always.

1 Introduction

An increasing number of wireless devices operate in multi-channel networks. In these
networks, a device is not constrained to use a single fixed communication channel.
Instead, it can choose its channel from among the many allocated to its operating band
of the radio spectrum. It can also switch this channel as needed. For example, devices
using the 802.11 standard have access to around a dozen channels [1], while devices
using the Bluetooth standard have access to around 75 [5].

In this paper, we prove new upper and lower bounds for symmetry breaking prob-
lems in multi-channel networks. Our goal is to use these problems to compare the com-
putational power of this model with the well-studied single channel wireless model
first studied by Chlamtac and Kutten [7] in the centralized setting and by Bar-Yehuda
et al. [3] in the distributed setting. In more detail, we look at the wake-up problem [8,9,
14, 15], a new variant of this problem we call active wake-up, and the minimum domi-
nating set (MDS) problem (see [16,20] for a discussion of MDS in single channel radio
networks). Our results are summarized in Figure 1.
? Supported by the Swiss National Science Foundation under grant n. 200021-135160.



Single Channel Multi-Channel
Single Hop Wake-Up Θ(log2 n) O(log2 n/F + logn)

Multihop Wake-Up Ω(log2 n+D log (n/D)) Ω(log2 n+D)

Single Hop Active Wake-Up Θ(log2 n) O(log2 n/F + logn log logn)

Multihop Active Wake-Up Ω(log2 n+D logn/D) O(log2 n/F + logn log logn)

MDS Θ(log2 n) O(log2 n/F + logn log logn)

Fig. 1: Summary of the results we study in this paper. The single channel column contains the
existing results from the wireless algorithm literature, though we strengthen these results model-
wise in this paper. The multi-channel column contains our new results described for the first time
(the exception is the single hop wake-up result, which derives from our recent work [11]).

Result Details & Related Work. We model a synchronous multi-channel radio net-
work using an undirected graph G = (V,E) to describe the communication topology,
where G satisfies a natural geographic constraint (cf. Section 2). We assume F ≥ 1
communication channels. In each round, each node u chooses a single channel on which
to participate. Concurrent broadcasts on the same channel lead to collision and there is
no collision detection. For F = 1, the model is the classical multihop radio network
model [3, 7].

The wake-up problem assumes that all nodes in a network begin dormant. Each
dormant node can be awakened at the start of any round by an adversary. It will also
awaken if a single neighbor broadcasts on the same channel. To achieve strong multi-
channel lower bounds, we assume that dormant nodes can switch channels from round
to round, using an arbitrary randomized strategy. To achieve strong multi-channel upper
bounds, our algorithms assign the dormant nodes to a single fixed channel. In the single
channel model, the best known lower bound is Ω(log2 n +D log (n/D)) (a combina-
tion of the Ω(log2 n) wake-up bound of [13, 15] and the Ω(D log (n/D)) broadcast
bound of [19], which holds by reduction). The best known upper bound is the near-
matching O(D log2 n) randomized algorithm of [9], which generalizes the earlier sin-
gle hop O(log2 n) bound of [15]. In these bounds, as with all bounds presented here, n
is the network size and D the network diameter.

In Section 4.1, we prove our main lower bound result: in a multi-channel network
with diameter D > 1, Ω(log2 n+D) rounds are required to solve wake-up, regardless
of the size of F . This bound holds even if we restrict our attention to networks that
satisfy the strong unit disk graph (UDG) property.4

In other words, for multihop wake-up, the difficulty of the single channel and multi-
channel settings are (essentially) the same. This bound might be surprising in light of
our recent algorithm that solves wake-up in O(log2 n/F + log n) rounds in a multi-
channel network with diameter D = 1 [11]. Combined, our new lower bound and the
algorithm of [11] establish a gap in power between the single hop and multihop multi-
channel models.

4 Many radio network papers assume a geographic constraint on the network topology. The
UDG property is arguably the strongest of these constraints. More recently, the trend has been
toward looser constraints that generalize UDG (e.g., bounded independence or the clique graph
constraint assumed by the algorithms in this paper).



The intuition behind our result is as follows: multiple channels help nearby awake
nodes efficiently reduce contention, but they do not help these nodes, in a multihop
setting, determine which node(s) must broadcast to awaken the dormant nodes at the
next hop. The core technical idea driving this bound is a reduction from an abstract
hitting game that we bound using a powerful combinatorial result proved by Alon et al.
in the early 1990s [2].

In Section 4.2, we are able to leverage this same hitting game to prove a stronger
version of the Ω(log2 n) bound of wake-up in single hop, single channel networks [13,
15]. The existing bound holds only for a restricted set of algorithms called uniform. Our
new bound holds for general algorithms. An immediate corollary is that the O(log2 n)
time, non-uniform MIS algorithm of Moscibroda and Wattenhoffer is optimal [20].

On the positive side, we consider the active wake-up problem, which is defined the
same as the standard problem except now nodes are only activated by the adversary.
The goal is to minimize the time between a node being activated and a node receiving
or successfully delivering a message. This problem is arguably better motivated than the
standard definition, as few real wireless devices are configured to allow nodes to moni-
tor a channel and then awaken on receiving a message. The active wake-up problem, by
contrast, uses activation to model a device being turned on or entering the region, and
bounds the time for every device to break symmetry, not just the first device.

In a single channel network, the Ω(log2 n) lower bound of standard wake-up still
applies to active wake-up. In Section 4.3, we describe a new algorithm that solves active
wake-up in a multi-channel network inO(log2 n/F +log n log log n) rounds—beating
the single channel lower bound for non-constant F .

We finally turn our attention to the minimum dominating set (MDS) problem. In the
single channel setting the Ω(log2 n) lower bound of [13,15] (and our own stronger ver-
sion from Section 4.2) applies via reduction. This is matched in UDGs by theO(log2 n)-
time MIS algorithm of [20].5 In Section 5, we describe our main upper bound result, a
O(log2 n/F + log n log log n)-time multi-channel algorithm that also provides a con-
stant approximation of a minimum dominating set (in expectation)—beating the single
channel bounds for non-constant F .

The key idea behind our algorithms is to leverage multi-channel diversity to filter
the number of awake nodes from a potential of up to n down to O(logk n), for some
constant k ≥ 1—allowing for more efficient subsequent contention management.
Note on Proofs. Due to lack of space we sometimes only provide proof sketches rather
than detailed proofs. We refer to [12] for the latter.

2 Model & Preliminaries

We model a synchronous multihop radio network with (potentially) multiple commu-
nication channels. We use an undirected graphG = (V,E) to represent the communica-
tion topology for n = |V |wireless nodes, one for each u ∈ V , and use [F ] :={1, ...,F},
F ≥ 1, to describe the available communication channels. For each node u ∈ V we use
N(u) to describe the neighbors of u inG, and letNk(u) be the set {v : dist(u, v) ≤ k}.

5 In UDGs, an MIS provides a constant-approximation of an MDS.



Nodes in our model are awakened asynchronously, in any round, chosen by an adver-
sary. At the beginning of each round, each awake node u selects a channel f ∈ [F ] on
which to participate. It then decides to either broadcast a message or receive. A node’s
behavior can be probabilistic and based on its execution history up to this point. If u
receives and exactly one node from N(u) broadcasts on channel f during this round,
then u receives the message, otherwise, it detects silence. If u broadcasts, it can not
receive anything. That is, we assume concurrent broadcasts by neighbors on the same
channel lead to collision, and there is no collision detection. Notice that u gains no di-
rect knowledge of the behavior on other channels during this round (we assume that u
only has time to tune into and receive/broadcast on a single channel per round).

When analyzing algorithms, we will assume a global round counter that starts with
the first node waking up. This counter is only used for our analysis and is not known
to the nodes. Furthermore, we assume nodes know n (or, a polynomial upper bound
on n, which would not change our bounds), but do not have advanced knowledge of
the network topology. In Sections 4.3 and 5, we describe algorithms in which nodes
can be in many states, indicated: W, A, C, D, L and E. We also use this same notation
to indicate the set of nodes currently in that state. Finally, for ease of calculation we
assume that log n, log log n and log n/ log logn are all integers.
Graph Restrictions. When studying multihop radio networks it is common to assume
some type of geographic constraint on the communication topology. In this paper, we
assume a constraint that generalizes many of the constraints typically assumed in the
wireless algorithms literature, including unit ball graphs with constant doubling dimen-
sion [17], which was shown in [21] to generalize (quasi) UDGs [4, 18].

In more detail, let R = {R1, R2, ..., Rk} be a partition of the nodes in G into
regions such that the sub-graph of G induced by each region Ri is a clique. The cor-
responding clique graph (or region graph) is a graph GR with one node ri for each
Ri ∈ R, and an edge between ri and rj iff ∃u ∈ Ri, v ∈ Rj such that u and v are
connected in G; we write R(u) for the region that contains u. In this paper, we assume
that G can be partitioned into cliquesR such that the maximum degree of GR is upper
bounded by some constant parameter ∆.
Probability Preliminaries. In the following, if the probability that event A does not
occur is exponentially small in some parameter k—i.e., if P(A) = 1 − e−ck for some
constant c > 0—we say that A happens with very high probability w.r.t. k, abbreviated
as w.v.h.p.(k). We say that an event happens with high probability w.r.t. a parameter
k, abbreviated as w.h.p.(k), if it happens with probability 1 − k−c, where the constant
c > 0 can be chosen arbitrarily (possibly at the cost of adapting some other involved
constants). If an event happens w.h.p.(n), we just say it happens with high probability
(w.h.p.). Finally we define the abbreviation w.c.p. for with constant probability.

Our algorithm analysis makes use of the following lemma regarding very high prob-
ability, proved in our study of wake-up in single hop multi-channel networks [11]:

Lemma 1. Let there be k bins and n balls with non-negative weights w1, . . . , wn ≤ 1
4 ,

as well as a parameter q ∈ (0, 1]. Assume that
∑n
i=1 wi = c · k/q for some constant

c ≥ 1. Each ball is independently selected with probability q and each selected ball is
thrown into a uniformly random bin. With probability w.v.h.p.(k), there are at least k/4
bins in which the total weight of all balls is between c/3 and 2c.



3 Problem

In this paper, we study two variants of the wake-up problem as well as the minimum
dominating set problem. In all cases, when we say that an algorithm solves one of these
problems in a certain number of rounds, then we assume this holds w.h.p.
Wake-Up: The standard definition of the wake-up problem assumes that in addition to
being awakened by the adversary, a dormant node u can be awakened whenever a single
neighbor broadcasts. In the multi-channel setting we assume that dormant nodes can
monitor an arbitrary channel each round and they awaken if a single neighbor broadcasts
on the same channel in the corresponding round. The goal of the standard wake-up
problem is to minimize the time between the first and last awakening in the whole
network.
Active Wake-Up: The active variant of the wake-up problem, which we are introducing
in this paper, eliminates the ability for nodes to be awakened by other nodes. We instead
focus on the time needed for an awaken node to successfully communicate with one of
its neighbors. In standard wake-up dormant nodes are limited to listening only and we
show that standard wake-up can be global in nature (it can take time for wake-up calls
to propagate over a multihop network). The motivation for active wake-up is to have
a similar problem, which allows to get past the limits imposed by the global nature of
standard wake-up and still capture the most basic need within solving graph problems:
communication. It turns out that active wake-up is inherently local, making it a good
candidate for capturing the symmetry breaking required of local graph problems.

More formally, we say an awake node u is completable if at least one of its neighbors
is also awake. We say a node u completes if it delivers a message to a neighbor or
receives a message from a neighbor. The goal of active wake-up is to minimize the
worst case time between a node becoming completable and subsequently completing.
Minimum Dominating Set: Given a graph G = (V,E), a set D ⊆ V is a dominating
set (DS) if every node in E := V \ D neighbors a node in D. A minimum dominating
set (MDS) is a dominating set of minimum cardinality over all dominating sets for the
graph. We say that a distributed algorithm solves the DS problem in time T if upon
waking up, within T rounds, w.h.p., every node (irrevocably) decides to be either in
D or in E such that at all times, all nodes in E have a neighbor in D. We say that the
algorithm computes a constant approximation MDS if at all times, the size of D is within
a constant factor of the size of an MDS of the graph induced by all awake nodes.

4 Wake-Up

In this section we prove bounds on both the standard and active versions of wake-up in
multi-channel networks.

4.1 Lower Bound for Standard Wake-Up

In the single channel model, there is a near tight bound of Ω(log2 n +D log n/D) on
the wake-up problem. We prove here that for D > 1 the (almost) same bound holds for
multi-channel networks.



Theorem 2. In a multi-channel network of diameter D = 1, the wake-up problem can
be solved in O(log2 n/F + log n), but requires Ω(log2 n + D) rounds for D > 1,
regardless of the size of F . The lower bound holds even if we restrict our attention to
network topologies satisfying the unit disk graph property.

To better capture what makes a multihop network so difficult (and for proving The-
orem 2), we reduce the following abstract game to the wake-up problem.
The Set Isolation Game. The set isolation game has a player face off against an adver-
sarial referee. It is defined with respect to some n > 1 and a fixed running time f(n),
where f maps to the natural numbers. At the beginning of the game, the referee secretly
selects a target set T ⊂ [n]. In each round, the player generates a proposal P ⊆ [n]
and passes it to the referee. If |P ∩ T | = 1, the player wins and the game terminates,
otherwise the referee informs the player it did not hit the set, and the game moves on
to the next round without the player learning any additional information about T . If the
player gets through f(n) rounds without winning, it loses the game. A strategy S for
the game is a randomized algorithm that uses the history of previous plays to proba-
bilistically select the new play. We call a strategy S an f(n) round solution to the set
isolation game, iff for every T , w.h.p., it guarantees a win within f(n) rounds.

Lemma 3. Let A be an algorithm that solves wake-up in f(n,F) rounds, for any n >
0 and F > 0, when executed in a multi-channel network with diameter at least 2
and a topology that satisfies the unit disk graph property. It follows that there exists a
gF (n) = f(n+ 1,F) round solution to the set isolation game.

Proof. Fix someF . Our set isolation solution simulatesA on a 2-hop network topology
of size n+1 and with F channels, as follows. Let u1, . . . , un+1 be the simulated nodes.
We arrange u1 to un in a clique C, and connect some subset C ′ ⊆ C to un+1. Notice,
the resulting network topology satisfies the UDG property. In our simulation, the nodes
in C are activated in the first round, and the player proposes, in each round of the game,
the values from [n] corresponding to the subset of simulated nodes {u1, . . . , un} that
broadcast during the round on the same channel chosen by un+1. (Notice, the simulator
is responsible for simulating all communication and all channels.)

In this simulation, we want C ′ to correspond to T in the isolation game. Of course,
the player simulating A does not have explicit knowledge of T . To avoid this problem,
our simulation always simulates un+1 as not receiving a message. This is valid behavior
in every instance except for the case where exactly one node inC ′ broadcasts. This case,
however, defines exactly when the player wins the game. If A isolates a single player
in C ′ in f(n+ 1,F) rounds (as is required to solve wake-up in this simulated setting),
then our set isolation solution solves the set isolation game in the same time. ut

To bound wake-up in multihop multi-channel networks, it is now sufficient to bound
the set isolation game. Notice that bounds for a deterministic variant of the game could
be derived from existing literature on selective families [6, 10], but we are interested
here in a randomized solution. To obtain this bound, we leverage the following useful
combinatorial result proved by Alon et al. in the early 1990s [2]:6

6 Our first idea was to try to adapt the strategy used in the existingΩ(log2 n) bound on wake-up
in single channel radio networks [13, 15]. This strategy, however, assumes a strong uniformity



Lemma 4 (Adapted from [2]). Fix some n > 0. LetH and J be families of nonempty
subsets of [n]. We say that H hits J iff for every J ∈ J , there is an H ∈ H such that
|J ∩ H| = 1. There exists a constant c > 0 and family J , with |J | polynomial in n,
such that for every familyH that hits J , |H| ≥ c log2 n.

The above lemma applies to the case where there are multiple sets to hit, but the sets
are known in advance. Here we translate the results to the case where there is a single
set to hit, but the set is unknown in advance, and a result must hold with high probability
(i.e., the exact setup of the set isolation game).

Lemma 5. Any set isolation game strategy S needs f(N) = Ω(log2N) rounds.

Proof. Fix some n > 0. LetN = nk, where k > 1 is a constant we fix later. Consider an
execution of S with respect to the set [N ]. Let HS = (HS(r))1≤r≤f(N) be a sequence
of subsets of [n] such thatHS(r) describes the values from [n] included in the proposal
of S in round r of the execution under consideration. Let J be the difficult family
identified by Lemma 4, defined with respect to n.

Assume for contradiction that f(N) = o(log2N), i.e., f(N) < c log2 n. But then,
as a direct corollary of Lemma 4, there is at least one subset J ∈ J that is not hit by
HS . With this in mind, we define the follow referee strategy for the set isolation game.
Choose the target subset T from J uniformly at random. Any given execution of S fails
to hit T with probability at least 1/|J |. By Lemma 4, |J | is polynomial in n.

Therefore, we can choose our constant k such that 1/|J | > 1/nk.7 It follows that
the probability of failure to win the game in f(N) rounds is at least 1/|J | > 1/nk =
1/N , a contradiction to the definition of a set isolation game strategy. ut

The D > 1 term of Theorem 2 now follows from Lemmas 3 and 5, plus a straight-
forward argument thatΩ(D) rounds are needed to propagate informationD hops, while
the D = 1 term comes from [11].

4.2 A Stronger Single Channel Wake-Up Bound

Before continuing with our multi-channel results, we make a brief detour. By leverag-
ing our set isolation game and Lemma 5, we can prove a stronger version of the classic
Ω(log2 n) lower bound on wake-up in a single hop single channel network [13, 15].
This existing bound holds only for uniform algorithms (i.e., nodes use a uniform fixed
broadcast probability in each round). The version proved here holds for general ran-
domized algorithms (i.e., each node’s probabilistic choices can depend on its IDs and
its execution history).

The argument is a variation on the simulation strategy used in Lemma 3.

Theorem 6. Let A be a general randomized algorithm that solves wake-up in f(n)
rounds in a single hop single channel network. It follows that f(n) = Ω(log2 n).

condition among the nodes, which makes sense in a single channel world—where no nodes
can communicate until the problem is solved—but is too restrictive in our multi-channel world,
where nodes can coordinate on the non-wake-up channels, and therefore break uniformity in
their behavior.

7 In the proof construction used in [2], the size J is bounded around n8.



Proof. Here we follow the same general strategy exhibited by Lemma 3: showing how
to use A to solve set isolation. Though the idea of this reduction is the same, we must
alter the argument to deal with the fact that we are now in a single hop network.

In more detail, simulate all n wake-up nodes as awake and not receiving messages.
In each round, propose the set of simulated wake-up nodes that broadcast in that round.
Notice, if we knew T , the obvious thing to do would be to simulate only the nodes
corresponding to T , because by the definition of the wake-up problem, there would be
a round in which exactly one of those nodes broadcasts (as required to solve wake-up).
We are instead simulating all nodes. However, this does not cause a problem because
each node’s simulation looks the same regardless of the other nodes being simulated—
in the single channel wake-up problem, nodes do not communicate with each other
before the problem is solved. Consequently, for the nodes corresponding to T , this sim-
ulation is indistinguishable from one in which only these nodes were being simulated.
Therefore, in some round r ≤ f(|T |) ≤ f(n), exactly one of these nodes from T has to
broadcast. The resulting proposal set will contain only one element from T (potentially
in addition to some other elements from [n] \ T ): solving set isolation. ut

The wake-up problem reduces to the MIS problem, so a bound on wake-up ap-
plies to MIS. The best known MIS algorithm for single channel radio networks is the
O(log2 n)-time algorithm of Moscibroda and Wattenhoffer [20]. Because their algo-
rithm is non-uniform, we cannot reduce from the uniform wake-up bounds of [13, 15].
Using Theorem 6, however, the reduction now holds, proving the conjecture that the
result of [20] is optimal.

4.3 Upper Bound for Active Wake-Up

In this section we present a O(log2 n/F + log n log log n) time solution to the ac-
tive wake-up problem in a multi-channel network. For non-constant F this beats the
Ω(log2 n) lower bound for this problem in the single channel setting.
Algorithm Description. Our algorithm, Algorithm 1, requires that F ≥ 9 and that
F = O(log n) (if F is larger we can simply restrict ourselves to use a subset of
the channels). It uses the first channel as a competition channel, and the remaining
F = F−1 channels for nodes in an active state (denoted A). Nodes begin the algorithm
in state A, during which they choose active state channels with uniform probability and
broadcast with a probability that increases exponentially from 1/n to 1/4, spending
onlyO(log n/F) rounds at each probability. During this state, if a node receives a mes-
sage it is eliminated (E), at which point it receives on the competition channel for the
remainder of the execution. A node that survives the active state moves on to the compe-
tition state (C) during which it broadcasts on the competition channel with probabilities
that exponentially increase from 1/ log2 n to 1/2, spending Θ(log n) rounds at each
probability. As before, receiving a message eliminates a node (E). Finally, a node that
survives the competition state advances to the leader state (L) where it broadcasts on
the competition channel with probability 1/2 in each round.

We analyze the algorithm below.

Theorem 7. Algorithm 1 solves the active wake-up problem in multi-channel networks
in O(log2 n/F + log n log log n) rounds.



Algorithm 1: Active Wake-Up Algorithm

State description: A – active, C – competitor, L – leader, E – eliminated

begin
αA = Θ(logn/F); αC = Θ(logn)
set count := 0; phase := 0; state := A
while state 6= E do

count := count + 1
uniformly at random pick: k ∈ {2, . . . ,F}; q ∈ [0, 1)
switch state do

case A
if q > 2phase

n
then listen on k else send on k

if count > αA then phase := phase + 1; count := 0
if phase > log (n/4) then phase := 0; state := C

case C
if q > 2phase

log2 n
then listen on 1 else send on 1

if count > αC then phase := phase + 1; count := 0
if phase > log ((log2 n)/2) then state := L

case L
if q ≥ 1/2 then listen on 1 else send on 1

Listen on 1 perpetually
Upon receiving a message:
if state 6= L then state := E

As detailed in Section 2, we assume the graph can be partitioned into cliques with
certain useful properties. In this proof we refer to those cliques as regions, which we
label R1, R2, . . . , Rk, where k ≤ n. We also make use of the “very high probability”
notation, and corresponding Lemma 1, also presented in Section 2.

For a given round and node u, let p(u) be the probability that u broadcasts in that
round. Similarly, for a given round and region R, let PA(R) :=

∑
u∈A∩R p(u) and

PC(R) :=
∑
u∈(C∪L)∩R p(u). When it is clear which region is meant, we sometimes

omit the (R) in this notation. We begin by bounding PA for every region R. The fol-
lowing lemma is a generalization of Lemma 4.8 from [11], modified to now handle a
multihop network.

Lemma 8. W.h.p., for every round and region: PA = O(F) = O(F).

Proof Sketch. We assume that the lemma does not hold and get that in some region
R the probability mass (PM) is in Θ(F) for the length of one phase. We can apply
Lemma 1 to get Θ(F) channels with a Θ(1) PM each. The graph restrictions impose a
limit on the amount of interference from neighboring regions. On a single such channel
a successful broadcast now happens w.c.p. and it eliminates a Ω(1/F) fraction of the
total PM. Using Chernoff we get a constant fraction reduction on the PM w.v.h.p.(F).
Detailed analysis reveals that O(log n/F) rounds are sufficient to reduce the PM by an
arbitrary constant factor w.h.p., causing a contradiction. ut



Lemma 9. W.h.p., for every round and region R: PC = O(1).

Proof Sketch. With Lemma 8 we immediately get that, w.h.p., only O(F) = O(log n)
nodes move to C per round and region, thus at most O(log2 n) per phase in C. During
one phase the broadcasting probability mass (PM) in one region can at most double. At
the same time, continuously exceeding a certain constant threshold would imply that
during one phase, w.h.p., the PM shrinks by an arbitrary constant factor. (Note that
interference from neighboring regions is limited due to the graph restriction.) ut

Proof (of Theorem 7). In the following, let T = O(log2 n/F + log n log log n) be the
time required to get from waking up to L. Consider a node u that wakes up in region R
in round r. We consider two cases. In the first case, u is eliminated before it reaches L.
Therefore, u received a message in T rounds—satisfying the theorem statement.

In the second case, u reaches L without receiving a message. At this point T rounds
have elapsed. If u is not already completable, wait until it next becomes so. Let v be
the first node to make u completable. Within T rounds from waking up, v is either
eliminated or in C. In either case, it will remain on the competition channel for the
remainder of the execution, where it has a chance of receiving a message from u ∈ L,
which would complete u. In each such round, u broadcasts with constant probability.
We apply Lemma 9 to establish that the broadcast probability sum of interfering nodes
(both inR and neighboring regions) is constant. Combined, u has a constant probability
of delivering a message to v. For sufficiently large constant c, c log n additional rounds
are sufficient for u to complete with high probability. ut

5 Minimum Dominating Set

In this section, we present an algorithm that computes a constant-factor (in expectation)
approximation for the MDS problem in time O(log2 n/F + log n log log n). For F =
ω(1) this outperforms the fastest known algorithm to solve MDS in the single channel
model. For F = O(log n/ log log n) the speed-up is in the order of Θ(F).
Algorithm Description. Algorithm 2 builds on the ideas of the active wake-up algo-
rithm of the previous section as follows. For simplicity, we assume that F = O(log n),
as more frequencies are not exploited. For an easier handling of the analysis we partition
and rename the F available channels [F ] into {A1, . . . ,AF}∪̇{D1, . . . ,DnD}∪̇{C},
such that F = Θ(F) and nD = O(min{log log n,F}).

After being woken up, a node u starts in the waiting state W, in which it listens
uniformly at random on channels D1, . . . ,DnD . Its goal is to hear from a potentially
already existing neighboring dominator before it moves on to the active state A. Once
in A node u starts broadcasting on the channels {A1, . . . ,AF} with probability 1/n in
each round. It acts in phases and at the beginning of each phase it doubles its broadcast-
ing probability until it reaches probability 1/4. As in the wake-up protocol, u chooses
its channel uniformly at random, allowing us to reduce the length of each phase from
the usual Θ(log n) in a single channel setting to Θ(log n/F), while still keeping the
broadcasting probability mass in each region bounded w.h.p.

Unlike the wake-up algorithm, a node is not done when it receives a message. Thus,
if a node receives a message in state A then it restarts with state W. If a node manages



to broadcast in state A, it immediately moves on to the candidate state C. Because the
probability mass in A is bounded in every region, the number of nodes moving to the
candidate state can also be bounded by O(polylog n).

State C starts with a long sleeping phase (phase 0) in which nodes act as in state W,
i.e., they listen on channelsD1, . . . ,DnD : to find out about potential dominators created
while they were in state A. If a node u does not receive the message of a neighboring
dominator in that time it moves on to phases 1, 2, . . . , during which u tries to become a
dominator by broadcasting on channel C. Unlike in state A, u can start with broadcasting
probability 1/ log2 n, without risk of too much congestion. This allows us to reduce the
total number of phases to O(log log n). A candidate that manages to broadcast, imme-
diately moves on to the dominating state D, while candidates receiving a message from
another candidate move to the eliminated state E, because they know that the sender
of that message is now a dominator. Assuming that F = Ω(log log n), dominators run
the following protocol. In each round, they choose a channel Di uniformly at random
and broadcast on it with probability 2−i. We can show that the number of dominators
in each node v’s neighborhood is at most poly-logarithmic in n. Then, as soon as v has
at least one dominator in its neighborhood, there is always a channel Dλ on which v
can receive a message from a dominator with constant probability. On average v will
choose the right channel within O(log log n) rounds, so O(log n log log n) rounds are
enough to ensure high probability. In the case F = o(log log n) a constant number of
channels with appropriate broadcasting probabilities suffice to make a dominator heard
within O(log2 n/F + log n log log n) rounds.

We analyze the algorithm below.

Theorem 10. Algorithm 2 computes a constant approximation for the MDS problem in
time O(log2 n/F + log n log log n).

Let us start out with some definitions and notations. We define PA and PC analo-
gously to Section 4.3. Further, we call a node decided if it belongs to D or E. A region
R is called decided in round r, if no node in R is in A or C in any round r′ ≥ r. Hence,
in particular after a region R becomes decided, no dominators will be created in R.
Finally, we define T ′ := αW + αsleep + (αA + αC + 2) log n and T := 3(∆2 + 1)T ′.

Lemma 11. W.h.p., at all times and for every region R, the probability mass PA in R
is bounded by O(F).

Proof. The proof is identical to the proof of Lemma 8 for the wake-up algorithm. ut

Lemma 12. W.h.p., at most O(F + log n) = O(log n) nodes switch to the candidate
phase in any region R in any round r.

Proof. By Lemma 11, w.h.p., the probability mass PA is always bounded by cF for
some constant c. For each node v in the region R, define Xv as the Bernoulli random
variable that indicates whether v moves to the candidate phase in round r and let X :=∑
v∈RXv and µ := E[X] ≤ PA ≤ cF. For an arbitrary d > 0 let δ := µ−1(e2cF +

d log n)− 1. Then, applying a standard Chernoff bound, we get

P(X ≥ (1 + δ)µ) = P(X ≥ (e2cF + d log n)) ≤ e−µ(δ+1) ≤ e−d logn = n−d. ut



Algorithm 2: Dominating Set Algorithm

States: W – waiting, A – active, C – candidate, D – dominator, E – eliminated

Channels: A1, . . . ,AF – filtering, D1, . . . ,DnD – notification, C – competition

begin
αW = αsleep = Θ(log2 n/F+logn log logn); αA = Θ(logn/F); αC = Θ(logn)
set count := 0; state := W
if F = Ω(log log n) then nD := Θ(log logn) else nD := 4
while state 6= E do

count := count + 1
uniformly at random pick: i ∈ {1, . . . , nD}; k ∈ {1, . . . ,F}; q ∈ [0, 1)
switch state do

case W
listen on Di

if count = αW then count := 0, state := A, phase := 0

case A
if count = αA then count := 0, phase := min{phase + 1, log(n/4)}
if q > 2phase

n
then listen on Ak

else send on Ak; count := 0, phase := 0, state := C
case C

if phase = 0 then
listen on Di

if count = αsleep then count := 0, phase := 1
else

if count = αC then count :=0, phase :=min{phase+1, 2 log logn}
if q > 2phase−1

log2 n
then listen on C else send on C; state := D

case D

if nD = 4 then p :=
(
F

logn

)i

else p := 2−i

with probability p send on Di

Upon receiving a message:
if state = A then count := 0, state := W else state := E

Lemma 13. W.h.p., at all times and for every region R, the probability mass PC in R
is bounded by O(1).

Proof. By Lemma 12, in no round more than O(log n) nodes move from state A to
state C. Thus at most O(log2 n) nodes do so within the length αC of one phase (not
phase 0) of state C. The claim then follows analogously to the proof of Lemma 9. ut

The purpose of the sleeping phases in state W and at the beginning of state C is
for nodes to detect if they have a dominator in their neighborhood and thus getting
eliminated before going to A or to start competing in C. The following lemma shows
that both sleep phases do their job and that a full sleep phase is enough for a dominator
to eliminate a neighbor in state W or phase 0 of state C.



Lemma 14. Assume that a node u starts with state W or phase 0 of state C in round r
and there is already a dominator in N(u). Further, assume that kt := |D∩ (N1(u))| =
O(log3 n/F + log2 n log log n) at all times t ∈ [r, r + αW] = [r, r + αsleep]. Then,
w.h.p., u switches to state E by round r + αW = r + αsleep.

Proof Sketch. First assume that nD = Ω(log log n). Because of kt being bounded as
demanded there is a ‘favored’ channel Dλt on which the broadcasting probability mass
(PM) is in Θ(1). Thus, u has a Θ(1/ log logn) probability to hit that channel each
round. αsleep rounds suffice for u to receive a message w.h.p. If nD = o(log log n), then
4 channels suffice. The stated probabilities in Algorithm 2 ensure that on one of the
4 channels the PM is in Ω(F/ log n) ∩ O(1), i.e., O(log n/F) rounds per phase are
enough for receiving a message w.h.p. ut

The following lemma shows that the number of dominators in each region is bounded
and that as soon as there is a dominator in a region, the region also becomes decided
within bounded time.

Lemma 15. The lemma statement is in three parts:

(a) W.h.p., in every region R and round r: only O(log n) nodes move to state D.
(b) W.h.p., if there is a node u in state D, then all nodes that are already awake in

N1(u) ⊃ R(u) are decided within time T ′.
(c) W.h.p., in every region R: |D| = O(log3 n/F + log2 n log log n).

Proof Sketch. Part (a) is proven similar to Lemma 12 using the result of Lemma 13.
For (b) let v ∈ N(u). Due to (a) there are not too many dominators created inN(v),

so there is no congestion on channelsD1, . . . ,DnD . Lemma 14 then provides that nodes
in states A or W will get eliminated soon. Nodes in state C will be decided eventually
due to the algorithm construction.

Part (c) follows from combining (a), (b) and Lemma 14. ut

Lemma 16. W.h.p., each node u that wakes up is decided within T = O(log2 n/F +
log n log log n) rounds.

Proof Sketch. Note that if u leaves states W and A behind then it will get decided
within T ′ rounds. Thus, for not getting decided soon it has to be set back to state W
often. But every time this happens, a node v ∈ N(u) moves to state C, getting de-
cided eventually, implying the creation of a dominator w ∈ N1(v) ⊂ N2(u) within
T ′ rounds. Lemma 15 limits the time until R(w) is decided. Finally, this can happen at
most ∆2 + 1 = O(1) times. ut

Lemma 17. For each region R, the expected number of nodes that become dominators
in region R is bounded by O(1).

Proof. Consider some fixed region R and let t0 be the first time when a node becomes
a candidate in region R. For i = 1, 2, . . . , let PC,i be the sum of the broadcast proba-
bilities of all the candidates in region R on channel C in round t0 + i. As nodes have to
be candidates before becoming dominators, dominators in region R can only be created



after time t0. Let Xi be the number of dominators created in R in round t0 + i and let
X =

∑
i≥1Xi. To prove the lemma, we have to show that E[X] = O(1).

We say that a newly created dominator v in round r clears its region R iff v is the
only dominator created in region R in round r and all candidates in region R hear v’s
message on channel C in round r. Clearly, all nodes that are candidates in region R in
round r switch to state E when this occurs. Therefore, the only nodes in R that can still
become dominators must either be in another state (W, A) or not yet awake. By Lemma
15, |D ∩ R| is always bounded such that by Lemma 14, w.h.p., the latter nodes also do
not become dominators.

Having established the power of clearing, we bound the probability of such events.
In more detail, let Ei be the event that in round t0+i some node v in regionR becomes a
dominator by clearing R. We next show that such a clearance happens with probability
at least δ · PC,i for some constant δ > 0. To see why, recall that by Lemma 13, we
know that for all i ≥ 1, PC,i as well as PC,i(R

′) in round t0 + i for every neighboring
region R′ are upper bounded by some constant P̂C. For each candidate v in region R
let p(v) be its broadcasting probability. Then the probability that exactly one candidate
from region R broadcasts on channel C in round t0 + i is lower bounded by∑

v∈R∩C
p(v)

∏
u∈R∩C, u 6=v

(1− p(u)) ≥ PC,i4
−P̂C = Ω(PC,i).

The probability that no candidate from any neighboring region R′ (of which there are
at most ∆) broadcasts on channel C in round t0 + i is at least 4−∆P̂C = Ω(1). Hence,
there exists a constant δ > 0 such that P(Ei) ≥ δPC,i.

In the following, we define Qi :=
∑i
j=1 PC,i. The probability that no node v clears

region R by some time t0 + τ can be upper bounded by

P
(⋂τ

i=1
Ei
)
≤
∏τ

i=1
(1− δPC,i) < e−δ

∑τ
i=1 PC,i = e−δQτ .

As discussed above, w.h.p., a clearance in R prevents new nodes from subsequently
becoming dominators in this region. Let G be the event that this high probability prop-
erty holds. When we condition on G, it holds that a dominator can join a region in a
given round only if there have been no previous clearances in that region. Hence,

E [Xi|G] ≤ P

(⋂i−1

j=1
E i
)
· PC,i

and therefore
E [X|G] ≤

∑
i≥1

PC,i · e−δQi−1 = O(1).

Because G happens w.h.p., and |D| ≤ n, we get E[X] = O(1). ut

Proof (of Theorem 10). By Lemma 16, w.h.p., after it wakes up every node is decided
within O(log2 n/F + logn log log n) rounds. Since a node only goes to state E after
hearing from a neighboring dominator, the computed dominating set is valid. Finally,
by Lemma 17, in expectation, the algorithm computes a constant approximation of the
optimal MDS solution. ut
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