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Abstract. We study the problem of computing approximate minimum edge cuts

by distributed algorithms. We use a standard synchronous message passing model

where in each round, O(log n) bits can be transmitted over each edge (a.k.a. the

CONGEST model). The first algorithm is based on a simple and new approach for

analyzing random edge sampling, which we call the random layering technique.

For any weighted graph and any ǫ ∈ (0, 1), the algorithm with high probability

finds a cut of size at most O(ǫ−1λ) in O(D) + Õ(n1/2+ǫ) rounds, where λ is

the size of the minimum cut and the Õ-notation hides poly-logarithmic factors in

n. In addition, based on a centralized algorithm due to Matula [SODA ’93], we

present a randomized distributed algorithm that with high probability computes a

cut of size at most (2 + ǫ)λ in Õ((D +
√
n)/ǫ5) rounds for any ǫ > 0.

The time complexities of our algorithms almost match the Ω̃(D +
√
n) lower

bound of Das Sarma et al. [STOC ’11], thus leading to an answer to an open

question raised by Elkin [SIGACT-News ’04] and Das Sarma et al. [STOC ’11].

To complement our upper bound results, we also strengthen the Ω̃(D+
√
n) lower

bound of Das Sarma et al. by extending it to unweighted graphs. We show that

the same lower bound also holds for unweighted multigraphs (or equivalently for

weighted graphs in which O(w log n) bits can be transmitted in each round over

an edge of weight w). For unweighted simple graphs, we show that computing an

α-approximate minimum cut requires time at least Ω̃(D +
√
n/α1/4).

1 Introduction

Finding minimum cuts or approximately minimum cuts are classical and fundamen-

tal algorithmic graph problems with many important applications. In particular, min-

imum edge cuts and their size (i.e., the edge connectivity) are relevant in the context

of networks, where edge weights might represent link capacities and therefore edge

connectivity can be interpreted as the throughput capacity of the network. Decompos-

ing a network using small cuts helps designing efficient communication strategies and

finding communication bottlenecks (see, e.g., [20,27]). Both the exact and approximate

variants of the minimum cut problem have received extensive attention in the domain of

centralized algorithms (cf. Section 1.1 for a brief review of the results in the centralized

setting). This line of research has led to (almost) optimal centralized algorithms with

running times Õ(m+n) [19] for the exact version and O(m+n) [24] for constant-factor

approximations, where n and m are the numbers of nodes and edges, respectively.
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As indicated by Elkin [6] and Das Sarma et al. [4], the problem has remained es-

sentially open in the distributed setting. In the LOCAL model [26] where in each round,

a message of unbounded size can be sent over each edge, the problem has a trivial time

complexity of Θ(D) rounds, where D is the (unweighted) diameter of the network.

The problem is therefore more interesting and also practically more relevant in models

where messages are of some bounded size B. The standard model incorporating this re-

striction is the CONGEST model [26], a synchronous message passing model where in

each time unit, B bits can be sent over every link (in each direction). It is often assumed

that B = Θ(log n). The only known non-trivial result is an elegant lower bound by Das

Sarma et al. [4] showing that any α-approximation of the minimum cut in weighted

graphs requires at least Ω(D +
√

n/(B log n)) rounds.

Our Contribution: We present two distributed minimum-cut approximation algorithms

for undirected weighted graphs, with complexities almost matching the lower bound

of [4]. We also extend the lower bound of [4] to unweighted graphs and multigraphs.

Our first algorithm, presented in Section 4, with high probability3 finds a cut of

size at most O(ε−1λ), for any ǫ ∈ (0, 1) and where λ is the edge connectivity, i.e.,

the size of the minimum cut in the network. The time complexity of this algorithm

is O(D) + O(n1/2+ǫ log3 n log log n log∗ n). The algorithm is based on a simple and

novel approach for analyzing random edge sampling, a tool that has proven extremely

successful also for studying the minimum cut problem in the centralized setting (see,

e.g., [20]). Our analysis is based on random layering, and we believe that the ap-

proach might also be useful for studying other connectivity-related questions. Assume

that each edge e ∈ E of an unweighted multigraph G = (V,E) is independently

sampled and added to a subset E′ ⊂ E with probability p. For p ≤ 1
λ , the graph

G′ = (V,E′) induced by the sampled edges is disconnected with at least a constant

probability (just consider one min-cut). In Section 3, we use random layering to show

that if p = Ω( logn
λ ), the sampled graph G′ is connected w.h.p. This bound is optimal

and was known previously, with two elegant proofs: [23] and [15]. Our proof is simple

and self-contained and it serves as a basis for our algorithm in Section 4.

The second algorithm, presented in Section 5, finds a cut with size at most (2+ε)λ,

for any constant ε > 0, in time O((D+
√
n log∗ n) log2 n log log n· 1

ε5 ). This algorithm

combines the general approach of Matula’s centralized (2+ε)-approximation algorithm

[24] with Thurimella’s algorithm for sparse edge-connectivity certificates [29] and with

the famous random edge sparsification technique of Karger (see e.g., [16]).

To complement our upper bounds, we also extend the lower bound of Das Sarma et

al. [4] to unweighted graphs and multigraphs. When the minimum cut problem (or more

generally problems related to small edge cuts and edge connectivity) are in a distributed

context, often the weights of the edges correspond to their capacities. It therefore seems

reasonable to assume that over a link of twice the capacity, we can also transmit twice

the amount of data in a single time unit. Consequently, it makes sense to assume that

over an edge of weight (or capacity) w ≥ 1, O(w log n) bits can be transmitted per

round (or equivalently that such a link corresponds to w parallel links of unit capacity).

The lower bound of [4] critically depends on having links with (very) large weight over

which in each round only O(log n) bits can be transmitted. We generalize the approach

3 We use the phrase with high probability (w.h.p.) to indicate probability greater than 1− 1

n
.
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of [4] and obtain the same lower bound result as in [4] for the weaker setting where

edge weights correspond to edge capacities (i.e., the setting that can be modeled using

unweighted multigraphs). Formally, we show that if Bw bits can be transmitted over

every edge of weight w ≥ 1, for every λ ≥ 1 and every α ≥ 1, there are λ-edge-

connected networks with diameter O(log n) on which computing an α-approximate

minimum cut requires time at least Ω
(
√

n/(B log n)
)

. Further, for unweighted simple

graphs, we show that computing an α-approximate minimum cut in λ-edge-connected

networks of diameter O(log n) requires at least time Ω
(

√
n/(B logn)

(αλ)1/4

)

.

In addition, our technique yields a structural result about λ-edge-connected graphs

with small diameter. We show that for every λ > 1, there are λ-edge-connected graphs

G with diameter O(log n) such that for any partition of the edges of G into spanning

subgraphs, all but O(log n) of the spanning subgraphs have diameter Ω(n) (in the case

of unweighted multigraphs) or Ω(n/λ) (in the case of unweighted simple graphs). As

a corollary, we also get that when sampling each edge of such a graph with probability

p ≤ γ/ log n for a sufficiently small constant γ > 0, with at least a positive constant

probability, the subgraph induced by the sampled edges has diameter Ω(n) (in the case

of unweighted multigraphs) and Ω(n/λ) (in the case of unweighted simple graphs). For

lack of space, the details about these results are deferred to the full version [10].

1.1 Related Work in the Centralized Setting

Starting in the 1950s [5, 8], the traditional approach to the minimum cut problem was

to use max-flow algorithms (cf. [7] and [20, Section 1.3]). In the 1990s, three new

approaches were introduced which go away from the flow-based method and provide

faster algorithms: The first method, presented by Gabow [9], is based on a matroid

characterization of the min-cut and it finds a min-cut in O(m + λ2n log n
m ) steps, for

any unweighted (but possibly directed) graph with edge connectivity λ. The second ap-

proach applies to (possibly) weighted but undirected graphs and is based on repeatedly

identifying and contracting edges outside a min-cut until a min-cut becomes apparent

(e.g., [14, 20, 25]). The beautiful random contraction algorithm (RCA) of Karger [14]

falls into this category. In the basic version of RCA, the following procedure is re-

peated O(n2 log n) times: contract uniform random edges one by one until only two

nodes remain. The edges between these two nodes correspond to a cut in the original

graph, which is a min-cut with probability at least 1/O(n2). Karger and Stein [20] also

present a more efficient implementation of the same basic idea, leading to total running

time of O(n2 log3 n). The third method, which again applies to (possibly) weighted but

undirected graphs, is due to Karger [18] and is based on a “semiduality” between min-

imum cuts and maximum spanning tree packings. This third method leads to the best

known centralized minimum-cut algorithm [19] with running time O(m log3 n).
For the approximation version of the problem (in undirected graphs), the main

known results are as follows. Matula [24] presents an algorithm that finds a (2 + ε)-
minimum cut for any constant ε > 0 in time O((m+n)/ε). This algorithm is based on

a graph search procedure called maximum adjacency search. Based on a modified ver-

sion of the random contraction algorithm, Karger [17] presents an algorithm that finds

a (1 + ε)-minimum cut in time O(m+ n log3 n/ε4).
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2 Preliminaries

Notations and Definitions: We usually work with an undirected weighted graph G =
(V,E,w), where V is a set of n vertices, E is a set of (undirected) edges e = {v, u} for

u, v ∈ V , and w : E → R
+ is a mapping from edges E to positive real numbers. For

each edge e ∈ E, w(e) denotes the weight of edge e. In the special case of unweighted

graphs, we simply assume w(e) = 1 for each edge e ∈ E.

For a given non-empty proper subset C ⊂ V , we define the cut (C, V \C) as the set

of edges in E with exactly one endpoint in set C. The size of this cut, denoted by w(C)
is the sum of the weights of the edges in set (C, V \C). The edge-connectivity λ(G) of

the graph is defined as the minimum size of w(C) as C ranges over all nonempty proper

subsets of V . A cut (C, V \ C) is called α-minimum, for an α ≥ 1, if w(C) ≤ αλ(G).
When clear from the context, we sometimes use λ to refer to λ(G).

Communicaton Model and Problem Statements: We use a standard message passing

model (a.k.a. the CONGEST model [26]), where the execution proceeds in synchronous

rounds and in each round, each node can send a message of size B bits to each of its

neighbors. A typically standard case is B = Θ(log n).
For upper bounds, for simplicity we assume that B = Θ(log n)4. For upper bounds,

we further assume that B is large enough so that a constant number of node identifiers

and edge weights can be packed into a single message. For B = Θ(log n), this implies

that each edge weight w(e) is at most (and at least) polynomial in n. W.l.o.g., we further

assume that edge weights are normalized and each edge weight is an integer in range

{1, . . . , nΘ(1)}. Thus, we can also view a weighted graph as a multi-graph in which all

edges have unit weight and multiplicity at most nΘ(1) (but still only O(log n) bits can

be transmitted over all these parallel edges together).

For lower bounds, we assume a weaker model where B · w(e) bits can be sent in

each round over each edge e. To ensure that at least B bits can be transmitted over

each edge, we assume that the weights are scaled such that w(e) ≥ 1 for all edges. For

integer weights, this is equivalent to assuming that the network graph is an unweighted

multigraph where each edge e corresponds to w(e) parallel unit-weight edges.

In the problem of computing an α-approximation of the minimum cut, the goal is to

find a cut (C∗, V \C∗) that is α-minimum. To indicate this cut in the distributed setting,

each node v should know whether v ∈ C∗. In the problem of α-approximation of the

edge-connectivity, all nodes must output an estimate λ̃ of λ such that λ̃ ∈ [λ, λα]. In

randomized algorithms for these problems, time complexities are fixed deterministically

and the correctness guarantees are required to hold with high probability.

2.1 Black-Box Algorithms

In this paper, we make frequent use of a connected component identification algorithm

due to Thurimella [29], which itself builds on the minimum spanning tree algorithm of

Kutten and Peleg [22]. Given a graph G(V,E) and a subgraph H = (V,E′) such that

4 Note that by choosing B = b log n for some b ≥ 1, in all our upper bounds, the term that does

not depend on D could be improved by a factor
√
b.
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E′ ⊆ E, Thurimella’s algorithm identifies the connected components of H by assign-

ing a label ℓ(v) to each node v ∈ V such that two nodes get the same label iff they

are in the same connected component of H . The time complexity of the algorithm is

O(D +
√
n log∗ n) rounds, where D is the (unweighted) diameter of G. Moreover, it

is easy to see that the algorithm can be made to produce labels ℓ(v) such that ℓ(v) is

equal to the smallest (or the largest) id in the connected component of H that contains

v. Furthermore, the connected component identification algorithm can also be used to

test whether the graph H is connected (assuming that G is connected). H is not con-

nected if and only if there is an edge {u, v} ∈ E such that ℓ(u) 6= ℓ(v). If some node

u detects that for some neighbor v (in G), ℓ(u) 6= ℓ(v), u broadcasts not connected.

Connectivity of H can therefore be tested in D additional rounds. We refer to this as

Thurimella’s connectivity-tester algorithm. Finally, we remark that the same algorithms

can also be used to solve k independent instances of the connected component iden-

tification problem or k independent instances of the connectivity-testing problem in

O(D + k
√
n log∗ n) rounds. This is achieved by pipelining the messages of the broad-

cast parts of different instances.

3 Edge Sampling and The Random Layering Technique

Here, we study the process of random edge-sampling and present a simple technique,

which we call random layering, for analyzing the connectivity of the graph obtained

through sampling. This technique also forms the basis of our min-cut approximation

algorithm presented in the next section.

Edge Sampling Consider an arbitrary unweighted multigraph G = (V,E). Given a

probability p ∈ [0, 1], we define an edge sampling experiment as follows: choose subset

S ⊆ E by including each edge e ∈ E in set S independently with probability p. We

call the graph G′ = (V, S) the sampled subgraph.

We use the random layering technique to answer the following network reliability

question: “How large should p be, as a function of minimum-cut size λ, so that the

sampled graph is connected w.h.p.?”5 Considering just one cut of size λ we see that if

p ≤ 1
λ , then the probability that the sampled subgraph is connected is at most 1

e . We

show that p ≥ 20 logn
λ suffices so that the sampled subgraph is connected w.h.p. Note

that this is non-trivial as a graph has exponential many cuts. It is easy to see that this

bound is asymptotically optimal [23].

Theorem 1. Consider an arbitrary unweighted multigraph G = (V,E) with edge con-

nectivity λ and choose subset S ⊆ E by including each edge e ∈ E in set S indepen-

dently with probability p. If p ≥ 20 logn
λ , then the sampled subgraph G′ = (V, S) is

connected with probability at least 1− 1
n .

We remark that this result was known prior to this paper, via two different proofs by

Lomonosov and Polesskii [23] and Karger [15]. The Lomonosov-Polesskii proof [23]

uses an interesting coupling argument and shows that among the graphs of a given

5 A rephrased version is, how large should the edge-connectivity λ of a network be such that it

remains connected w.h.p. if each edge fails with probability 1− p.
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edge-connectivity λ, a cycle of length n with edges of multiplicity λ/2 has the smallest

probability of remaining connected under random sampling. Karger’s proof [15] uses

the powerful fact that the number of α-minimum cuts is at most O(n2α) and then uses

basic probability concentration arguments (Chernoff and union bounds) to show that,

w.h.p., each cut has at least one sampled edge. There are many known proofs for the

O(n2α) upper bound on the number of α-minimum cuts (see [19]); an elegant argument

follows from Karger’s random contraction algorithm [14].

Our proof of Theorem 1 is simple and self-contained, and it is the only one of the

three approaches that extends to the case of random vertex failures6 [2, Theorem 1.5].

Proof (Proof of Theorem 1). Let L = 20 log n. For each edge e ∈ E, we independently

choose a uniform random layer number from the set {1, 2, . . . , L}. Intuitively, we add

the sampled edges layer by layer and show that with the addition of the sampled edges

of each layer, the number of connected components goes down by at least a constant

factor, with at least a constant probability, and independently of the previous layers.

After L = Θ(log n) layers, connectivity is achieved w.h.p.

We start by presenting some notations. For each i ∈ {1, . . . , L}, let Si be the set of

sampled edges with layer number i and let Si− =
⋃i

j=1 Sj , i.e., the set of all sampled

edges in layers {1, . . . , i}. Let Gi = (V, Si−) and let Mi be the number of connected

components of graph Gi. We show that ML = 1, w.h.p.

For any i ∈ [1, L − 1], since Si− ⊆ S(i+1)−, we have Mi+1 ≤ Mi. Consider the

indicator variable Xi such that Xi = 1 iff Mi+1 ≤ 0.87Mi or Mi = 1. We show the

following claim, after which, applying a Chernoff bound completes the proof.

Claim. For all i ∈ [1, L− 1] and T ⊆ E, we have Pr[Xi = 1|Si− = T ] ≥ 1/2.

To prove this claim, we use the principle of deferred decisions [21] to view the

two random processes of sampling edges and layering them. More specifically, we con-

sider the following process: first, each edge is sampled and given layer number 1 with

probability p/L. Then, each remaining edge is sampled and given layer number 2 with

probability
p/L

1−p/L ≥ p/L. Similarly, after determining the sampled edges of layers 1

to i, each remaining edge is sampled and given layer number i + 1 with probability
p/L

1−(i p)/L ≥ p/L. After doing this for L layers, any remaining edge is considered not

sampled and it receives a random layer number from {1, 2, . . . , L}. It is easy to see that

in this process, each edge is independently sampled with probability exactly p and each

edge e gets a uniform random layer number from {1, 2, . . . , L}, chosen independently

of the other edges and also independently of whether e is sampled or not.

Fix a layer i ∈ [1, . . . , L− 1] and a subset T ⊆ E. Let Si− = T and consider graph

Gi = (V, Si−). Section 3 presents an example graph Gi and its connected components.

If Mi = 1 meaning that Gi is connected, then Xi = 1. Otherwise, suppose that Mi ≥ 2.

For each component C of Gi, call the component bad if (C, V \ C)∩ Si+1 = ∅. That is,

6 There, the question is, how large the vertex sampling probability p has to be chosen, as a

function of vertex connectivity k, so that the vertex-sampled graph is connected, w.h.p. The

extension to the vertex version requires important modifications and leads to p = Ω( logn
√

k
)

being a sufficient condition. Refer to [2, Section 3] for details.
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Fig. 1: Graph Gi and its connected components. The green solid links represent edges in Si−

and the blue dashed links represent E \ Si−.

C is bad if after adding the sampled edges of layer i + 1, C does not get connected to

any other component. We show that Pr[C is bad] ≤ 1
e .

Since G is λ-edge connected, we have w(C) ≥ λ. Moreover, none of the edges

in (C, V \ C) is in Si−. Thus, using the principle of deferred decisions as described,

each of the edges of the cut (C, V \ C) has probability
p/L

1−(i p)/L ≥ p/L to be sampled

and given layer number i + 1, i.e., to be in Si+1. Since p ≥ 20 logn
λ , the probability

that none of the edges (C, V \ C) is in set Si+1 is at most (1 − p/L)λ ≤ 1/e. Thus,

Pr[C is bad] ≤ 1/e. Having this, since each component that is not bad gets connected

to at least one other component (when we look at graph Gi+1), a simple application of

Markov’s inequality proves the claim, and after that, a Chernoff bound completes the

proof. See [10] for details. ⊓⊔
Theorem 1 provides a very simple approach for finding an O(log n)-approximation

of the edge connectivity of a network graph G in O(D +
√
n log2 n log∗ n) rounds,

simply by trying exponentially growing sampling probabilities and checking the con-

nectivity. The proof appears the full version [10]. We note that a similar basic approach

has been used to approximate the size of min-cut in the streaming model [1].

Corollary 1. There exists a distributed algorithm that for any unweighted multi-graph

G = (V,E), in O(D+
√
n log2 n log∗ n) rounds, finds an approximation λ̃ of the edge

connectivity such that λ̃ ∈ [λ, λ ·Θ(log n)] with high probability.

4 Min-Cut Approximation by Random Layering

Now we use random layering to design a min-cut approximation algorithm. We present

the outline of the algorithm and its major ideas but defer putting the pieces together to

the proof of Theorem 2 in the full version [10].

Theorem 2. There is a distributed algorithm that, for any ǫ ∈ (0, 1), finds an O(ǫ−1)-
minimum cut in O(D) +O(n0.5+ǫ log3 n log log n log∗ n) rounds, w.h.p.

4.1 Algorithm Outline

The algorithm is based on closely studying the sampled graph when the edge-sampling

probability is between the two extremes of 1
λ and

Θ(logn)
λ . Throughout this process, we
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identify a set F of O(n log n) cuts such that, with at least a ‘reasonably large probabil-

ity’, F contains at least one ‘small’ cut.

The Crux of the Algorithm: Sample edges with probability p = ǫ logn
2λ for a

small ǫ ∈ (0, 1). Also, assign each edge to a random layer in [1, . . . , L], where

L = 20 log n. For each layer i ∈ [1, . . . , L− 1], let Si be the set of sampled edges

of layer i and let Si− =
⋃i

j=1 Sj . For each layer i ∈ [1, . . . , L − 1], for each

component C of graph Gi = (V, Si−), add the cut (C, V \ C) to the collection F .

We show that with probability at least n−ǫ/2, at least one of the cuts in F is an

O(ǫ−1)-minimum cut. Note that thus repeating the experiment for Θ(nǫ log n) times is

enough to get that an O(ǫ−1)-minimum cut is found w.h.p.

Theorem 3. Consider performing the above sampling and layering experiment with

edge sampling probability p = ǫ logn
2λ for ǫ ∈ (0, 1) and L = 20 log n layers. Then,

Pr[F contains an O(ǫ−1)-minimum cut] ≥ n−ǫ/2.

Proof. Fix an edge sampling probability p = ǫ logn
2λ for an ǫ ∈ (0, 1) and let α =

40ǫ−1. We say that a sampling and layering experiment is successful if F contains an

α-minimum cut or if the sampled graph GL = (V, SL−) is connected. We first show

that each experiment is successful with probability at least 1− 1
n . The proof of this part

is very similar to that of Theorem 1.

For an arbitrary layer number 1 ≤ i ≤ L − 1, consider graph Gi = (V, Si−). If

Mi = 1 meaning that Gi is connected, then GL is also connected. Thus, in that case,

the experiment is successful and we are done. In the more interesting case, suppose

Mi ≥ 2. For each component C of Gi, consider the cut (C, V \C). If any of these cuts is

α-minimum, then the experiment is successful as then, set F contains an α-minimum

cut. On the other hand, suppose that for each component C of Gi, we have w(C) ≥ αλ.

Then, for each such component C, each of the edges of cut (C, V \ C) has probability
p/L

1−(i p)/L ≥ p/L to be in set Si+1 and since w(C) ≥ αλ, where α = 20ǫ−1, the

probability that none of the edges of this cut in set Si+1 is at most (1 − p/L)αλ ≤
e

p
L ·αλ = e−

ǫ log n
2λ · 1

L · 40ǫ ·λ = 1/e. Hence, the probability that component C is bad as

defined in the proof of Theorem 1 (i.e., in graph Gi+1, it does not get connected to any

other component) is at most 1/e. The rest of the proof can be completed exactly as the

last paragraph of of the proof of Theorem 1, to show that

Pr[successful experiment] ≥ 1− 1/n.

Using a union bound, we know that

Pr[successful experiment] ≤ Pr[F contains an α-min cut] + Pr[GL is connected].

On the other hand,

Pr[GL is connected] ≤ 1− n−ǫ.

This is because, considering a single mininmum cut of size λ, the probability that none

of the edges of this cut are sampled, in which case the sampled subgraph is discon-

nected, is (1− ǫ logn
2λ )λ ≥ n−ǫ. Hence, we can conclude that

Pr[F contains an α-min cut] ≥ (1− 1/n)− (1−n−ǫ) = n−ǫ− 1/n ≥ n−ǫ/2. ⊓⊔
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Remark: It was brought to our attention that the approach of Theorem 3 bears some

cosmetic resemblance to the technique of Goel, Kapralov and Khanna [11]. As noted

by Kapralov [13], the approaches are fundamentally different; the only similarity is

having O(log n) repetitions of sampling. In [11], the objective is to estimate the strong-

connectivity of edges via a streaming algorithm. See [11] for related definitions and note

also that strong-connectivity is (significantly) different from (standard) connectivity. In

a nutshell, [11] uses O(log n) iterations of sub-sampling, each time further sparsifying

the graph until at the end, all edges with strong-connectivity less than a threshold are

removed (and identified) while edges with strong connectivity that is a Θ(log n) factor

larger than the threshold are preserved (proven via Benczur-Karger’s sparsification).

4.2 Testing Cuts

So far we know that F contains an α-minimum cut with a reasonable probability. We

now need to devise a distributed algorithm to read or test the sizes of the cuts in F and

find that α-minimum cut, in O(D) + Õ(
√
n) rounds.

Consider a layer i and the graph Gi = (V, Si−). Notice that we do not need to read

the exact size of the cut (C, V \C). Instead, it is enough to devise a test that passes w.h.p.

if w(C) ≤ αλ, and does not pass w.h.p. if w(C) ≥ (1 + δ)αλ, for a small constant

δ ∈ (0, 1/4). In the distributed realization of such a test, it would be enough if all the

nodes in C consistently know whether the test passed or not. Next, we explain a simple

algorithm for such a test. This test itself uses random edge sampling. Given such a test,

in each layer i ∈ [1, . . . , L − 1], we can test all the cuts and if any cut passes the test,

meaning that, w.h.p., it is a ((1 + δ)α)-minimum cut, then we can pick such a cut.7

Lemma 1. Given a subgraph G′ = (V,E′) of the network graph G = (V,E), a thresh-

old κ and δ ∈ (0, 1/4), there exists a randomized distributed cut-tester algorithm with

round complexity Θ
(

D + 1
δ2
√
n log n log∗ n

)

such that, w.h.p., for each node v ∈ V ,

we have: Let C be the connected component of G′ that contains v. If w(C) ≤ κ/(1+ δ),
the test passes at v, whereas if w(C) ≥ κ(1 + δ), the test does not pass at v.

For pseudo-code, we refer to the full version [10]. We first run Thurimella’s con-

nected component identification algorithm (refer to Section 2.1) on graph G for sub-

graph G′, so that each node v ∈ V knows the smallest id in its connected component

of graph G′. Then, each node v adopts this label componentID as its own id (tem-

porarily). Thus, nodes of each connected component of G′ will have the same id. Now,

the test runs in Θ(log2 n/δ2) experiments, each as follows: in the jth experiment, for

each edge e ∈ E \ E′, put edge e in set Ej with probability p′ = 1 − 2−
1
κ . Then, run

Thurimella’s algorithm on graph G with subgraph Hj = (V,E′∪Ej) and with the new

ids twice, such that at the end, each node v knows the smallest and the largest id in its

connected component of Hj . Call these new labels ℓmin
j (v) and ℓmax

j (v), respectively.

For a node v of a component C of Gi, we have that ℓmin
j (v) 6= v.id or ℓmax

j (v) 6= v.id
iff at least one of the edges of cut (C, V \ C) is sampled in Ej , i.e., (C, V \ C)∩Ej 6= ∅.

7 This can be done for example by picking the cut which passed the test and for which the related

component has the smallest id among all the cuts that passed the test.
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Thus, each node v of each component C knows whether (C, V \ C) ∩ Ej 6= ∅ or not.

Moreover, this knowledge is consistent between all the nodes of component C. After

Θ(log n/δ2) experiments, each node v of component C considers the test passed iff v
noticed (C, V \C)∩Ej 6= ∅ in at most half of the experiments. We defer the calculations

of the proof of Lemma 1 to of the full version [10].

5 Min-Cut Approximation via Matula’s Approach

In [24], Matula presents an elegant centralized algorithm that for any constant ε > 0,

finds a (2 + ε)-min-cut in O(|V | + |E|) steps. Here, we explain how with the help of

a few additional elements, this general approach can be used in the distributed setting,

to find a (2 + ε)-minimum cut in O
(

(D+
√
n log∗ n) log2 n log log n · 1

ε5

)

rounds. We

first recap the concept of sparse certificates for edge connectivity.

Definition 1. For a given unweighted multi-graph H = (VH , EH) and a value k > 0,

a set E∗ ⊆ EH of edges is a sparse certificate for k-edge-connectivity of H if (1)

|E∗| ≤ k|VH |, and (2) for each edge e ∈ EH , if there exists a cut (C, V \ C) of H such

that |(C)| ≤ k and e ∈ (C, V \ C), then we have e ∈ E∗.

Thurimella [29] presents a simple distributed algorithm that finds a sparse certificate

for k-edge-connectivity of a network graph G in O(k(D +
√
n log∗ n)) rounds. With

simple modifications, we get a generalized version, presented in Lemma 2. Details of

these modification appear in the full version of this paper [10].

Lemma 2. Let Ec be a subset of the edges of the network graph G and define the virtual

graph G′ = (V ′, E′) as the multi-graph that is obtained by contracting all the edges of

G that are in Ec. Using the modified version of Thurimella’s certificate algorithm, we

can find a set E∗ ⊆ E \Ec that is a sparse certificate for k-edge-connectivity of G′, in

O(k(D +
√
n log∗ n)) rounds.

Following the approach of Matula’s centralized algorithm8 [24], and with the help of

the sparse certificate algorithm of Lemma 2 and the random sparsification technique of

Karger [15], we get the following result.

Theorem 4. There is a distributed algorithm that, for any constant ε > 0, finds a

(2 + ε)-minimum cut in O((D +
√
n log∗ n) log2 n log log n · 1

ε5 ) rounds.

Proof (Proof Sketch). We assume that nodes know a (1 + ε/10)-factor approximation

λ̃ of the edge connectivity λ, and explain a distributed algorithm with round complexity

O((D +
√
n log∗ n) log2 n · 1

ε4 ). Note that this assumption can be removed at the cost

of a Θ( log logn
log (1+ε/10) ) = Θ(log log n · 1

ε ) factor increase in round complexity by trying

Θ( log logn
ε ) exponential guesses λ̃(1 + ε/10)i for i ∈ [0, Θ( log logn

ε )] where λ̃ is an

O(log n)-approximation of the edge-connectivity, which can be found by Corollary 1.

8 We remark that Matula [24] never uses the name sparse certificate but he performs maximum

adjacency search which indeed generates a sparse certificate.
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For simplicity, we first explain an algorithm that finds a (2 + ε)-minimum cut in

O(λ(D +
√
n log∗ n) log n · 1

ε2 ) rounds. Then, we explain how to reduce the round

complexity to O((D +
√
n log∗ n) log2 n · 1

ε4 ).
Pseudo-code is given in the full version [10]. First, we compute a sparse certificate

E∗ for λ̃(1+ε/5)-edge-connectivity of G, using Thurimella’s algorithm. Now consider

the graph H = (V,E \E∗). We have two cases: either (a) H has at most |V |(1− ε/10)
connected components, or (b) there is a connected component C of H such that w(C) ≤
2λ(1+ε/10)(1+ε/5)

1−ε/10 ≤ (2 + ε)λ. Note that if (a) does not hold, case (b) follows because

H has at most (1 + ε/5)λ̃|V | edges.

In Case (b), we can find a (2+ε)-minimum cut by testing the connected components

of H versus threshold κ = λ̃(2 + ε/3), using the Cut-Tester algorithm presented in

Lemma 1. In Case (a), we solve the problem recursively on the virtual graph G′ =
(V ′, E′) that is obtained by contracting all the edges of G that are in Ec = E \ E∗.

Note that this contraction preserves all the cuts of size at most λ̃(1 + ε/5) ≥ λ but

reduces the number of nodes (in the virtual graph) at least by a (1 − ε/10)-factor.

Consequently, O(log(n)/ε) recursions reduce the number of components to at most 2
while preserving the min-cut.

The dependence on λ can be removed by considering the graph GS = (V,ES),
where ES independently contains every edge of G with probability Θ

(

logn
ε2λ

)

. It can be

shown that the edge connectivity of GS is Θ(log(n)/ε2) and a min-cut of GS gives a

(1 +O(ε))-min-cut of G. The details appear in the full version [10]. ⊓⊔

6 Lower Bounds

In this section, we describe a lower bound that allows to strengthen and generalize

some of the lower bounds of Das Sarma et al. from [4]. Our lower bound uses the

same basic approach as the lower bounds in [4]. The lower bounds of [4] are based

on an n-node graph G with diameter O(log n) and two distinct nodes s and r. The

proof deals with distributed protocols where node s gets a b-bit input x, node r gets a

b-bit input y, and apart from x and y, the initial states of all nodes are globally known.

Slightly simplified, the main technical result of [4] (Simulation Theorem 3.1) states that

if there is a randomized distributed protocol that correctly computes the value f(x, y)

of a binary function f : {0, 1}b × {0, 1}b → {0, 1} with probability at least 1 − ε
in time T (for sufficiently small T ), then there is also a randomized ε-error two-party

protocol for computing f(x, y) with communication complexity O(TB log n). For our

lower bounds, we need to extend the simulation theorem of [4] to a larger family of

networks and to a slightly larger class of problems.

6.1 Generalized Simulation Theorem

Distributed Protocols: Given a weighted network graph G = (V,E,w) (∀e ∈ E :
w(e) ≥ 1), we consider distributed tasks for which each node v ∈ V gets some private

input x(v) and every node v ∈ V has to compute an output y(v) such that the collection

of inputs and outputs satisfies some given specification. To solve a given distributed



12 Ghaffari and Kuhn

task, the nodes of G apply a distributed protocol. We assume that initially, each node

v ∈ V knows its private input x(v), as well as the set of neighbors in G. Time is divided

into synchronous rounds and in each round, every node can send at most B · w(e) bits

over each of its incident edges e. We say that a given (randomized) distributed protocol

solves a given distributed task with error probability ε if the computed outputs satisfy

the specification of the task with probability at least 1− ε.

Graph Family G(n, k, c): For parameters n, k, and c, we define the family of graphs

G(n, k, c) as follows. A weighted graph G = (V,E,w) is in the family G(n, k, c) iff

V = {1, . . . , n} and for all h ∈ {1, . . . , n}, the total weight of edges between nodes

in {1, . . . , h} and nodes in {h+ k + 1, . . . , n} is at most c. We consider distributed

protocols on graphs G ∈ G(n, k, c) for given n, k, and c. For an integer η ≥ 1, we

define Lη := {1, . . . , η} and Rη := {n− η + 1, . . . , n}. Given a parameter η ≥ 1 and

a network G ∈ G(n, k, c), we say that a two-party protocol between Alice and Bob η-

solves a given distributed task for G with error probability ε if a) initially Alice knows

all inputs and all initial states of nodes in V \Rη and Bob knows all inputs and all initial

states of nodes in V \Lη , and b) in the end, Alice outputs y(v) for all v ∈ Ln/2 and Bob

outputs y(v) for all v ∈ Rn/2 such that with probability at least 1 − ε, all these y(v)
are consistent with the specification of the given distributed task. A two-party protocol

is said to be public coin if Alice and Bob have access to a common random string. The

proof of the following theorem appears in the full version [10].

Theorem 5 (Generalized Simulation Theorem). Assume we are given positive inte-

gers n, k, and η, a parameter c ≥ 1, as well as a subfamily G̃ ⊆ G(n, k, c). Further

assume that for a given distributed task and graphs G ∈ G̃, there is a randomized proto-

col with error probability ε that runs in T ≤ (n−2η)/(2k) rounds. Then, there exists a

public-coin two-party protocol that η-solves the given distributed task on graphs G ∈ G̃
with error probability ε and communication complexity at most 2BcT .

We now describe a generic construction to obtain graphs of the family G(n, k, c).
Given some integer n > 0, we define Tn = (V,ET ) to be a fixed unweighted binary

tree on the nodes V = {1, . . . , n} with depth ⌈log2 n⌉ where an in-order DFS traversal

of Tn (starting at the root) reproduces the natural order 1, 2, . . . , n. The tree Tn can thus

be seen as a binary search tree: Given any node i, for all nodes j of the left subtree of i,
it holds that j < i and for all nodes j of the right subtree of i, it holds that j > i.

Lemma 3. Given an integer p ∈ {1, . . . , n− 1}, consider the cut (Sp, V \ Sp), where

Sp = {1, . . . , p}. For every p ∈ {1, . . . , n− 1}, the number of edges between over the

cut (Sp, V \ Tp) is at most ⌈log2 n⌉.

Using the tree Tn, we can construct graphs from the family G(n, k, c) for c =
⌈log2 n⌉. Let H(n, k) be the family of weighted graphs H = (V,EH , wH) with node

set V = {1, . . . , n} such that for all edges {i, j} ∈ EH , |j − i| ≤ k. Given a graph

H ∈ H(n, k), we define a graph G(H) = (V,E,w) with node set V = {1, . . . , n} as

follows: (a) The edge set E of G(H) is E := EH ∪ ET . (b) The weight w(e) of an

edge e ∈ E is given as w(e) := max {1, wH(e)}.

Lemma 4. Given a graph H ∈ H(n, k), graph G(H) ∈ G(n, k, c) for c = ⌈log2 n⌉.

Further, the diameter of G(H) is O(log n).
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6.2 Lower Bound for Approximating Minimum Cut

We start by proving a lower bound on approximating min-cut in weighted graphs (or

equivalently in unweighted multigraphs).

Theorem 6. In weighted graphs, for any α ≥ 1 and any λ ≥ 1, computing an α-

approximate minimum cut requires at least Ω
(

D +
√

n/(B log n)
)

rounds.

Proof. We prove the theorem by reducing from the two-party set disjointness problem

[3,12,28]. Assume that as input, Alice gets a set X and Bob get a set Y such that both X
and Y are of size p and the elements of X and Y are from a universe of size O(p). It is

known that for Alice and Bob need to exchange at least Ω(p) bits to determine whether

X and Y are disjoint [12,28]. This lower bound holds even for public coin randomized

protocols with constant error probability and it also holds if Alice and Bob are given

the promise that if X and Y intersect, they intersect in exactly one element [28]. As

a consequence, if Alice and Bob receive sets X and Y of size p as inputs such that

|X ∩ Y | = 1, finding X ∩ Y also requires Alice and Bob to exchange Ω(p) bits.

Assume that there is a protocol to find an α-minimum cut or to α-approximate the

size of a minimum cut in time T with a constant error probability ε. In both cases, we

show that Alice and Bob can use this protocol to efficiently solve set disjointness by

simulating the distributed protocol on a special network.

We now describe the construction of this network. Let a and b be two positive integer

parameters. We construct a graph G ∈ G(n, λ,O(log n)) as follows: First, we construct

a weighted graph H = (VH , EH , wH) ∈ H(a, 1) where the node set of H is VH =
{1, . . . , a} and there is an edge e of weight wH(e) = αλ+ 1 between nodes i and j if

and only if |i−j| = 1. By Lemma 4, we can then get a graph G(H) ∈ G(a, 1, O(log n)).
To get a graph G, we add b additional copies of graph H . Call node i in the original

copy (i, 0) and node i in the jth additional copy node (i, j). In each copy j ≥ 1, we

connect node (1, j) with node (1, 0) by an edge of weight λ. By renaming node (i, j) to

κ(i, j) := j+(i−1)(b+1), we can see that graph G is in G(a(b+1), b+1, O(log n)).
In the following, let n = a(b+1) be the number of nodes of G. The first b+1 nodes of

G are nodes (1, j) for 0 ≤ j ≤ b, the last b+1 nodes of G are nodes (a, j) for 0 ≤ j ≤
b. Note that graph G is exactly λ-edge connected as any of the edges {(1, j), (1, 0)}
defines a cut of size λ. Note also that every cut which divides one of the copies of H
into two or more parts has size at least αλ+ 1.

Assume that Alice and Bob need to solve a set disjointness instance where X ⊂
{1, . . . , b}, Y ⊂ {1, . . . , b}, |X ∩ Y | ≤ 1, and |X|, |Y | = Ω(b). The graph G is ex-

tended such that the minimum cut problem in G represents the given set cover instance.

For each x 6∈ X , the weight of the edge {(1, x), (1, 0)} is increased to αλ+ 1. Further,

for every y 6∈ Y , we add an edge {(a, y), (a, 0)} of weight αλ+ 1. Now, if and only if

X ∩ Y = ∅, every copy of H is connected to the first copy by a link of weight αλ+ 1.

Therefore, if X and Y are disjoint, the size of a minimum cut is at least αλ + 1 and if

X and Y intersect, there is a cut of size λ.

Alice knows the initial states of nodes (i, j) for all i < a and thus for the nodes

(i, j) with 1 ≤ κ(i, j) < n − b (i.e., all except the last b + 1 nodes) and Bob knows

the initual states of nodes (i, j) for all i > 1 and thus for the nodes (i, j) with b+ 1 <
κ(i, j) ≤ n (i.e., all except the first b+1 nodes). If we have T < (n− 2)/(2(b+1)) =
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O(n/b) = O(a) for the time complexity T of the distributed minimum cut approx-

imation protocol, Theorem 5 implies that Alice and Bob can (b + 1)-solve the dis-

tributed task of α-approximating the minimum cut with total communication complex-

ity at most O(TB log n). As a consequence, Alice and Bob can also solve the given

set disjointness instance using the same protocol and from the known set disjointness

communication complexity lower bound, we therefore get TB log n = Ω(b). Choosing

a = Θ(
√

n/(B log n) and b = Θ(
√
nB log n) this implies the claimed lower bound

for approximating the size of the minimum cut. Assuming that Alice and Bob already

know that |X ∩ Y | = 1, the communication complexity lower bound on finding X ∩ Y
also implies the same lower bound for finding an α-minimum cut, even if the size λ of

the minimum cut is known. ⊓⊔

We now present our lower bound about min-cut approximation in unweighted sim-

ple graphs.

Theorem 7. In unweighted simple graphs, for any α ≥ 1 and λ ≥ 1, computing an

α-approximate minimum cut requires at least Ω
(

D +
√

n
B
√
αλ logn

)

rounds.

Proof (Proof Sketch). The proof is essentially done in the same way as the proof of

Theorem 6. We therefore only describe the differences between the proofs. Because in

a simple unweighted graph, we cannot add edges with different weights and we cannot

add multiple edges, we have to construct the graph differently. Let us first describe the

simple, unweighted graph H ′ corresponding to H in the construction of Theorem 7.

Instead of a being path of length a with edges of weight αλ + 1, H ′ is a sequence

of a cliques of size ⌈
√
αλ+ 1⌉. Adjacent cliques are connected by complete bipartite

graphs (with at least αλ + 1 edges). We again have b + 1 copies of H ′, where copy 0
is augmented with a complete binary tree by using Lemma 4. Each edge {(1, 0), (1, j)}
of weight λ is replaced by λ edges between clique (1, 0) and clique (1, j). Edges of

weight αλ + 1 between nodes (1, 0) and (1, j) and between nodes (a, 0) and (a, j)
are replaced by complete bipartite graphs between the respective cliques. Again, by

simulating a minimum cut approximation algorithm on the constructed graph, Alice

and Bob can solve a given set disjointness instance for a universe of size b. However,

the number of nodes of the network in this case is Θ(ab
√
αλ) leading to the lower

bound claimed by the theorem. ⊓⊔
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