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Abstract

In this paper, we study distributed approximation algorithms
for fault-tolerant clustering in wireless ad hoc and sensor net-
works. A k-fold dominating set of a graph G = (V, E) is a subset
S of V such that every node v ∈ V \ S has at least k neighbors
in S. We study the problem in two network models. In general
graphs, for arbitrary parameter t, we propose a distributed algo-
rithm that runs in time O(t2) and achieves an approximation ratio
of O(t∆2/t log ∆), where n and ∆ denote the number of nodes
in the network and the maximal degree, respectively. When the
network is modeled as a unit disk graph, we give a probabilistic
algorithm that runs in time O(log log n) and achieves an O(1)

approximation in expectation. Both algorithms require only small
messages of size O(log n) bits.

1 Introduction

Ad hoc and sensor networks have been envisioned in
a large number of application fields. Moreover, there are
a growing number of real (even commercial) systems that
are being built, ranging from monitoring and surveillance,
to medical applications, the observation of biological and
chemical processes, and disaster relief. These networks
are formed by autonomous nodes that communicate via ra-
dio, without any additional a-priori infrastructure. Typ-
ically, if two nodes are not within mutual transmission
range, they communicate through intermediate nodes re-
laying their messages. In other words, the communication
infrastructure is provided by the nodes themselves. Estab-
lishing and maintaining such a virtual infrastructure is an
important challenge.

One important approach for dealing with the inherent
lack of structure in ad hoc and sensor networks has been
dominating set based clustering [1, 4, 8, 12, 22, 23]. Specif-
ically, clustering allows the formation of virtual backbones,
it improves the usage of scarce resources, such as band-
width and energy, and clustering helps realizing spatial mul-
tiplexing in non-overlapping clusters. Clustering is also an

effective way of improving the performance of routing algo-
rithms [1, 23] and it is a building block for efficient network
initialization [12, 18].

One key characteristics of wireless ad-hoc and particu-
larly sensor networks is that node failure is an event of non-
negligible, in some cases even high probability. This is par-
ticularly the case in sensor networks where the equipment
is restricted to a minimum due to limitations in cost and
weight. Battery driven sensor nodes may also stop working
because they run out of energy supply. Secondly, the shared
wireless medium is inherently less stable than wired media.
This results in more packet losses and a lower throughput.
A third aspect that has an influence on the required degree
of redundancy and fault-tolerance is mobility, which is a key
issue in ad hoc networks.

For all these reasons, hierarchical structures such as
dominating sets are prone to fail unless they provide enough
fault-tolerance or redundancy. In this paper, we therefore
study the fault-tolerant version of the dominating set prob-
lem. Formally, in a graph G = (V,E), a k-fold dominating
set is a subset S ⊆ V such that, each node v ∈ V \ S has
at least k dominators in S in its neighborhood. The min-
imum k-fold dominating set problem (k-MDS) asks for a
k-fold dominating set of minimal cardinality. For k = 1, a
1-MDS problem is simply the standard minimum dominat-
ing set problem (MDS).

In this paper, we give upper bounds on the distributed ap-
proximability of the k-MDS problem in two different mod-
els, general graphs and unit disk graphs (UDG). In a UDG
G = (V,E), nodes are located in the Euclidean plane and
there exists a communication link between two nodes u and
v if the distance between the two nodes is at most 1. A node
u can send a message to a node v only if there is a communi-
cation link between them. UDGs have been a popular model
for modeling the characteristic wireless nature of commu-
nication in multi-hop radio networks. Since in reality, sig-
nal propagation does often not form clear-cut disks, we also
study the problem in general graphs, which can be regarded
as the pessimistic counterpart to the optimistic UDG model.
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Clearly, algorithms that are based on maintaining a
global view of the network are infeasible in the context of ad
hoc or sensor networks. Hence, distributed algorithms that
have a running time growing linearly (or sometimes even
polylogarithmically) in the number of nodes are typically
unemployable in large-scale ad hoc or sensor systems. In-
stead, we are interested in entirely distributed and local al-
gorithms featuring a (very) low time complexity, even at the
cost of somewhat suboptimal solutions. In particular, we are
interested in the achievable trade-off between the amount of
communication (time complexity) and the quality of the ob-
tained solution (approximation ratio).

In this paper, we first present a distributed approxima-
tion algorithm. For arbitrary values of t, the algorithm
achieves an O(t∆2/t log ∆) approximation in time O(t2).
The algorithm first approximates the fractional version of
the k-MDS problem in a distributed way. The final solu-
tion is then obtained using a distributed form of random-
ized rounding. This approximation upper bound is particu-
larly interesting in view of the distributed approximability
lower bound given in [13]. This lower bound implies that
in O(t) communication rounds, no (possibly randomized)
algorithm can achieve an approximation ratio better than
Ω(∆1/t/t), even if message size is unbounded and nodes
have unique identifiers. Specifically, this lower bound indi-
cates that the time-approximation trade-off achieved by our
algorithm is not too far from the optimum.

The second contribution in the paper is a a random-
ized algorithm that computes a k-fold dominating set in
time O(log log n) in UDGs, if nodes can sense distances
to neighboring nodes. The algorithm achieves a constant
approximation ratio in expectation. Furthermore, the algo-
rithm uses only small messages of size O(log n) bits. This
limited message size is important, because in all practical
scenarios, the size of messages cannot be arbitrarily large.
This algorithm for the UDG is based on an algorithm given
in [7] for approximating the standard minimum dominating
set problem (cf. Section 2).

The remainder of the paper is organized as follows. We
give an overview over related work in Section 2. In Sec-
tion 3, we formally introduce our model of computation.
Our algorithms for general graphs and unit disk graphs are
presented in Sections 4 and 5, respectively.

2 Related Work

MDS and the closely related minimum set cover problem
are two of the first problems that have been shown to be
NP-hard. The straightforward adaptation of the greedy set-
cover algorithm gives an asymptotically optimal O(log ∆)
approximation [5], even for the fault-tolerant version [20].
On the other hand, it was shown that unless problems in NP
can be solved by deterministic nO(log log n) time algorithms,

no algorithm can approximate the minimum dominating set
problem better than ln ∆, where ∆ is the highest degree in
the network [6].

Dominating sets have also been studied in the context of
distributed computing. The first distributed approximation
algorithms with provable guarantees for MDS was given in
[17], a result that was subsequently improved in [19]. The
first approximation algorithm achieving a polylogarithmic
approximation appeared in [9]. This algorithm has an ex-
pected approximation ratio of O(log ∆) in O(log n log ∆)
communication rounds, where ∆ is the highest degree in the
network. In [16], an algorithm is given that requires O(t2)
communication rounds for with an O(t∆2/t log ∆) approx-
imation, for arbitrary values of t. This result has recently
been improved to an approximation of O(∆1/t log ∆) in
time O(t2) in [15]. These upper bounds are in contrast
to lower bound for the distributed approximation of dom-
inating sets given in [13]. In t communication rounds, no
(possibly randomized) algorithm can achieve an approxi-
mation ratio better than Ω(nc/t2/t) or Ω(∆1/t/t), for some
small constant c. This implies that in arbitrary graphs,
every algorithm requires at least time Ω(log ∆/ log log ∆)
or Ω(

√
log n/ log log n) in order to achieve a constant (or

polylogarithmic, for that matter) approximation. Clearly,
all these lower bounds carry over to the k-MDS problem as
well.

The only previously known upper bound on the dis-
tributed approximability of the k-fold dominating set prob-
lem in general graphs has been given in [9]. In this pa-
per, Jia, Rajaraman, and Suel propose an algorithm that
achieves an expected approximation ratio of O(log ∆) in
time O(log n log ∆ log k) w.h.p.

In unit disk graphs, MDS remains NP-hard, but constant
approximations become possible. Numerous distributed al-
gorithms have been proposed for clustering multi-hop wire-
less networks, but most of them are of heuristic nature and
do not provide worst-case guarantees, e.g., [3, 8, 23]. The
distributed algorithms in [1, 22] compute a constant approx-
imation to the regular, non-redundant MDS problem. How-
ever, their algorithm requires time O(n) in the worst-case.
Recently, [14] has proposed an algorithm that deterministi-
cally computes (among other problems) a constant approxi-
mation to the minimum dominating set problem in unit disk
graphs in time O(log∗n). However, their algorithm requires
messages that are much larger than O(log n) which may be
problematic in practical settings. Clustering under harsher
network models that also takes into account asynchronous
wake-up and collisions has been considered in [12].

The paper most related to our algorithm in the UDG
model is [7]. In this excellent paper, the authors give an
algorithm that computes a constant approximation to the
MDS problem in sublogarithmic running time. Unfortu-
nately, the analysis given in [7] does not seem to be rigorous
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enough. Specifically, it is implicitly assumed that if for a re-
cursive random variable Xi, it holds that E[Xi+1] ≤

√
Xi,

then it also holds that E[Xi+2] ≤
√√

Xi, and conse-

quently E[Xi+j ] ≤ X
1/2j

i . However, this argument ap-
pears to be based on the assumption that E[

√
X] ≤

√
E[X]

which is not true in general. Our UDG algorithm for the k-
MDS problem takes a similar algorithmic approach as [7]
for the MDS problem, but we attempt to provide a more
rigorous analysis. For the special case of setting k = 1,
our UDG algorithm gives a constant approximation in time
O(log log n).

In contrast to the MDS problem, much less is known
about the distributed approximation of the k-fold dominat-
ing set in unit disk graphs. In fact, we are not aware of any
explicit distributed approximation algorithm that addresses
this problem in this model.

3 Model and Notation

We describe the network using the standard message
passing model. The network is modelled as an undirected
graph G = (V,E). Two nodes u, v ∈ V of the network are
connected by an edge (u, v) ∈ E whenever there is a di-
rect bidirectional communication channel connecting u and
v. For simplicity, we assume a synchronous communica-
tion model where time is divided in rounds. In each round,
every node can send a message to each of its neighbors in
G. Message size is restricted to O(log n) bits per message,
i.e., every message can contain only a constant number of
node identifiers. The time complexity of an algorithm is the
number of rounds it needs to complete. Note that at the cost
of higher message complexity, every synchronous message
passing algorithm can be turned into an asynchronous algo-
rithm with the same time complexity [2].

While in Section 4.1, we do not make further assump-
tions about the underlying network graph, we study the case
of unit disk graphs in Section 5.1. The unit disk graph
(UDG) model has become a quasi-standard for the analysis
of algorithms designed for wireless networks. In a UDG
G = (V,E), nodes are located in the Euclidean plane.
There is an edge between two nodes u and v iff the Eu-
clidean distance between u and v is at most 1. As in [7],
we assume in Section 5.1 that nodes can sense the distance
between themselves and their neighbors.

In this paper, logarithms are to the base 2, unless the
base is explicitly stated. In Section 5.2, we use the the ith

logarithm of a value defined as

Definition 3.1. For an integer i > 0, the ith logarithm of n
is defined as

log(i)
2 n :=

{
log2 n , i = 1
log2 (log(i−1)

2 n) , i > 1

For technical reasons in the proof, we will also use a
slightly alternate version, namely, we define the base of the
outermost logarithm to be a constant ξ, instead of 2. For-
mally, log(i)n = logξ (log(i−1)

2 n). Furthermore, log∗ n :=
min {i | log(i)n ≤ 2} is the number of times we have to
take the logarithm before the value decreases below the con-
stant 2.

Throughout the paper, we use the following nomencla-
ture. Nv denotes the set of neighbors of node v (including
v). By abuse of notation, where appropriate Nv also rep-
resents the set of neighboring identifiers. In Section 5, we
additionally define Nv(τ) := {w ∈ V | dist(v, w) ≤ τ} as
the set of neighbors of node v that are at most at distance τ
from v.

4 Algorithm for General Graphs

Our algorithm for general graphs consists of two parts.
First a fractional solution for the k-fold dominating set
problem is computed. This fractional solution is convereted
into an integer one by a distributed randomized rounding
scheme. The two parts are described in Sections 4.1 and
4.2, respectively.

4.1 Solving the Fractional Problem

The fractional version of minimum k-fold dominating
set can be seen as a linear programming relaxation of the k-
MDS problem. We obtain the following pair of primal and
dual linear programs, in the following denoted by (PP)and
(DP), respectively.

min
n∑

i=1

xi max
n∑

i=1

(kiyi − zi)

s.t.∀i :
∑
j∈Ni

xj ≥ ki s.t.∀i :
∑
j∈Ni

yj − zi ≤ 1

0 ≤ xi ≤ 1 yi, zi ≥ 0

In the primal LP (PP) (left-hand side), there is a variable
xi for every node vi (i = 1, . . . , n). Further, for every node
vi, there is a parameter ki denoting the number of times vi

has to be covered. The goal is to minimize the sum of all
x-variables under the condition that the sum of the x-values
in the neighborhood Ni of each node vi is at least ki. In
the dual LP (DP) (right-hand side), for every node vi, there
are variables yi and zi. Note that the problem defined by
(PP) does not exactly match the definition for k-fold dom-
inating sets of Section 1. In (PP), the number of times ki

a node vi needs to be covered can vary for different nodes
whereas in the definition of Section 1, we have ki = k for
all i. Further, according to the definition of Section 1, only
nodes which are not in the dominating set have to be cov-
ered k times. Nodes in the dominating set cover themselves
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and need not be covered by neighboring nodes. In favor of
a slightly simpler and better readable algorithm, (PP) de-
mands that also nodes vi of the dominating set have to be
covered by ki − 1 other nodes. We would like to point out
that our algorithm can be adapted to the case where domi-
nating set nodes cover themselves. The results concerning
time complexity and approximation ratio given by Theo-
rems 4.5 and 4.6 remain the same. It would also be possible
to extend our algorithm to also solve the weighted version
of the k-MDS problem.

The distributed algorithm to compute a solution for the
linear program (PP) is given by Algorithm 1. From a
very general point of view, the algorithm and its analysis
can be seen as a distributed version of the greedy k-MDS-
algorithm as described in [21]. In the greedy algorithm,
we start with an empty set S. In each step, a node with a
maximal number of not yet completely covered neighbors
is added to S.

The main problem of applying the greedy algorithm in a
distributed environment is the synchronization of different
nodes with equal or similar numbers of uncovered neigh-
bors capable of joining the dominating set. We have to
solve a classical symmetry breaking problem. Solving a
fractional problem instead of its integral counterpart often
is a good way to avoid most problems arising in the context
of symmetry breaking [11]. Intuitively, whenever there are
q neighbors of a node u which could all join the dominating
set according to the greedy condition, instead of selecting
one of the q nodes, we can increment the x-value of each of
them by 1/q.

The main techniques of our solution are borrowed from a
distributed algorithm for the standard dominating set prob-
lem [16]. During the execution of Algorithm 1, all nodes vi

start with xi = 0 and increase their x-values over time. We
say that a node vi is colored gray as soon as the sum of the
weights xj for vj ∈ Nvi

exceeds 1, that is, as soon as the
node is completely covered. Initially all nodes are colored
white. The number of white nodes vj ∈ Nvi

at a given time
is called the dynamic degree of vi and denoted by δ̃i. Ini-
tially, all nodes are white and thus δ̃i = δ(vi) + 1, where
δ(vi) denotes the degree of vi.

Lemma 4.1. For all nodes vi with xi < 1, the dynamic
degree δ̃i ≤ (∆ + 1)(p+1)/t at all times.

Proof. We prove the lemma by induction over s. For p =
t − 1, the condition simplifies to δ̃i ≤ (∆ + 1) which is
always true. In the last iteration of the inner-loop (q-loop),
all vi with δ̃i ≥ (∆+1)p/t set xi := 1 which clearly makes
the condition of the lemma true.

During an execution of Algorithm 1, a primal solution x
and a dual solution (y,z) for the linear programs (PP) and
(DP) are computed, respectively. The following lemmas
establish properties concerning the computed solutions.

Algorithm 1 Distributed LP Approximation

1: xi := 0; δ̃i := δ(vi) + 1; coli := white;
2: ci := 0; ∀j : αj,i := 0; ∀j : βj,i := 0;
3: for p := t − 1 to 0 by −1 do
4: for q := t − 1 to 0 by −1 do
5: if (xi < 1) ∧ (δ̃i ≥ (∆ + 1)p/t) then

6: x+
i := min

{
1

(∆+1)q/t , 1 − xi

}
;

7: xi := xi + x+
i

8: fi;
9: send xi, x

+
i , δ̃i to all neighbors;

10: if coli = white then
11: c+

i :=
∑

j∈Ni
x+

j ;

12: λ := min{1, (ki − ci)/c+
i };

13: ci := ci + c+
i ;

14: for all j ∈ Ni do

15: βj,i := βj,i +
λx+

j

(∆+1)p/t ;

16: αj,i := αj,i + λx+
j

17: od;
18: if ci ≥ ki then
19: coli := gray ;
20: yi := 1

(∆+1)p/t

21: fi
22: fi;
23: send coli to all neighbors;
24: δ̃i :=

∣∣{j ∈ Ni | colj = white}
∣∣

25: od
26: od;
27: zi :=

∑
j∈Ni

(αi,jyj − βi,j)

Lemma 4.2. Let OPT be the objective value of an opti-
mal solution of (PP). The sum of the variables βi,j can be
bounded in the following way:

(
(∆+1)1/t+1

)
·

n∑
i=1

∑
j∈Ni

βi,j ≥
n∑

i=1

xi−t(∆+1)1/t·OPT

Proof. In Line 13 of Algorithm 1, ci is incremented by the
sum of the increases of the x-values of nodes in Ni. Thus,
ci stores the number of times node vi is covered. As long
as the value of ci is at most ki after Line 13, λ is set to 1 in
Line 12. If λ = 1, for each of the δ̃j white neighbors vi of a
node vj , βj,i is increased by x+

j /(∆ + 1)p/t. Because δ̃j ≥
(∆ + 1)p/t, the total increase of β-values upper bounds the
total increase of x-values. Consequently, in some sense, we
use the β-values in the dual LP (DP) to pay for the x-values
in the primal LP (PP), a technique known as dual fitting
[21]. The only time, λ can be smaller than 1 is when vj

becomes covered ki times. There, λ can be arbitrarily close
to 0 in which case βi,j does not pay its part of x+

i . To prove
the lemma, we have to show that the β-values nevertheless
pay for most of the x-values.
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Consider the x-values and β-values of a single iteration
of the outer loop (p-loop) of the algorithm. Assume that vi

becomes covered ki times in iteration qi of the inner loop
(q-loop). There are two cases which we have to consider,
namely, qi < t − 1 and qi = t − 1.

If qi < t − 1, we know that all neighbors vj of vi which
increase xj in iteration qi have already increased xj in it-
eration qi + 1. During iteration qi + 1, vi remained white
and thus λ was 1 when computing the βj,i share of x+

j of
iteration qi +1. Because x+

j increases at most by a factor of

(∆+1)1/t per inner-loop iteration, the βj,i-part of iteration
qi + 1 pays for the xj-increases of iterations qj + 1 and qj

up to a factor of (∆ + 1)1/t + 1.
If qi = t − 1, the above argumentation does not hold

because there is no iteration qi + 1 of the inner loop. It can
therefore be that the x-increases of iteration qi are not paid
for by β-values. However since each of these x-increases
is at most 1/(∆ + 1)(t−1)/t, the sum of the x-increases of
iteration qi is at most n/(∆ + 1)(t−1)/t. Combining the
two cases, we get that in each iteration of the outer loop,
up to a factor of (∆ + 1)1/t + 1, the β-increases pay for
all x-increases except for the ones from inner-loop iteration
t − 1. Summed over all outer-loop iterations, we have

(
(∆ + 1)1/t + 1

)
·

n∑
i=1

∑
j∈Ni

βi,j ≥
n∑

i=1

xi −
tn

(∆ + 1)
t−1

t

.

Because in a (fractional) dominating set every node can
cover at most ∆ + 1 nodes, the size of an optimal dominat-
ing set is at least n/(∆ + 1). Plugging this into the above
inequality completes the proof.

Lemma 4.3. For the dual solution (y,z) constructed by Al-
gorithm 1, we have

∑n
i=1 (kiyi − zi) =

∑n
i=1

∑
j∈Ni

βi,j .

Proof. By the definition of λ in Line 12, we have∑
j∈Ni

αj,i = ki. With this, the lemma follows because

n∑
i=1

(kiyi−zi) =
n∑

i=1


kiyi −

∑
j∈Ni

(αi,jyj − βi,j)




=
n∑

i=1


ki−

∑
j∈Ni

αj,i


 yi +

n∑
i=1

∑
j∈Ni

βi,j .

Lemma 4.4. If the (PP) is feasible, the computed primal
solution x is a feasible solution of (PP). The solution
(y,z) for (DP) is feasible up to a factor of t(∆ + 1)1/t.

Proof. To show that the primal solution x is feasible, let us
take a look at the very last iteration of the inner loop where
p = q = 0. All nodes vi which still have a white node in

their neighborhood set xi to 1. Thus, every node vj which
can be covered (kj ≤ δ(vj) + 1) becomes covered.

To see that the dual solution (y,z) is feasible up to a
factor of k(∆ + 1)2/k, we have to prove that all variables
are non-negative and that Inequality (1) holds.

∀i :
∑
j∈Ni

yj − zi ≤ t(∆ + 1)1/t. (1)

It is clear the yi ≥ 0 for all i. To see that zi ≥ 0, observe
that αi,jyj ≥ βi,j (see Lines 15 and 20).

Let us now prove Inequality (1). Let us first look at
the value of

∑
j∈Ni

yj − zi for outer-loop iterations where
xi < 1 at the beginning. By Lemma 4.1, vi has at
most (∆ + 1)(p+1)/t white neighbors. Because only white
nodes increase their y-values,

∑
j∈Ni

yj grows by at most

(∆ + 1)(p+1)/t/(∆ + 1)p/t = (∆ + 1)1/t in an outer-loop
iteration where xi < 1 at the beginning.

Let us now consider the outer-loop iterations where xi =
1 at the beginning. If there is a node vj ∈ Ni which remains
white after xi is set to 1, we have αi,j = 1. Let N ′

i denote
the set of white nodes in Ni just after setting xi to 1, then∑
vj∈N ′

i

yj − zi =
∑

vj∈N ′
i

(1 − αi,j)yj +
∑

vj∈N ′
i

βi,j ≤ (∆ + 1)1/t.

Having bounded the degree of infeasibility in Lemma
4.4, we can obtain the main theorem.

Theorem 4.5. For arbitrary t, Algorithm 1 computes a fea-
sible solution for the linear program (PP) in time O(t2).
The approximation ratio of the algorithm is at most t·

(
(∆+

1)2/t + (∆ + 1)1/t
)
.

Proof. For the time complexity note that every iteration of
the inner loop can be computed in 2 rounds and that the
number of iterations is t2.

By Lemma 4.4, all inequalities of (DP) are satisfied up
to a factor of κ := t(∆ + 1)1/t. Dividing all dual variables
by κ therefore results in a feasible dual solution. Let yi =
yi/κ and zi = zi/κ (i = 1, . . . , n) be such a feasible dual
solution. By Lemma 4.3 and by LP duality, we have

n∑
i=1

∑
j∈Ni

βi,j = κ ·
n∑

i=1

(kiyi − zi) ≤ κOPT

where OPT is defined as in Lemma 4.2. By Lemma 4.2 we
can conclude the proof as

n∑
i=1

xi ≤
(
(∆ + 1)1/t + 1

)
·

n∑
i=1

∑
j∈Ni

βi,j + κOPT

≤ t ·
(
(∆ + 1)2/t + (∆ + 1)1/t

)
· OPT
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Algorithm 2 Distributed Randomized Rounding

1: pi := min{1, xi · ln(∆ + 1)};

2: x′
i :=

{
1 with probability pi

0 otherwise
3: send xi to all neighbors;
4: if

∑
j∈Ni

x′
j < ki then

5: send REQ to ki−
∑

j∈Ni
x′

j neighbors v� ∈ Ni with
x′

� = 0
6: fi;
7: if REQ is received then x′

i := 1 fi

Remark: Setting, for instance, t = O(log ∆) in Algo-
rithm 1, the algorithm achieves an approximation ratio of
O(log ∆) in O(log2 ∆) rounds.

4.2 Randomized Rounding

The fractional solution computed by Algorithm 1 can be
converted into an integral one (dominating set) by apply-
ing Algorithm 2, a distributed variant of a standard random-
ized rounding scheme. The algorithm starts with a solu-
tion x1, . . . , xn for (PP) and computes an integral solution
which is denoted by x′

1, . . . , x
′
n. The following theorem

shows that in expectation, the size of the obtained solution
is only by a factor of roughly log ∆ larger than the objective
value of the solution for (PP).

Theorem 4.6. Starting with a ρ-approximate solution for
the linear program (PP), Algorithm 2 computes an integer
solution with approximation ratio ρ log ∆ + O(1) in con-
stant time.

Proof. A variable x′
i can be set to 1, that is, vi can be chosen

as dominator in Lines 2 and 5. We introduce two random
variables X and Y denoting the number of nodes joining
the dominating set in Lines 2 and 5, respectively.

By linearity of expectation, we have

E [X] = ln(∆ + 1) ·
n∑

i=1

xi ≤ ln(∆ + 1) · ρ · OPT .

In order to bound the expected value of Y , we look at the
probability qi that vi is not covered ki times after Line 2.
We distinguish two cases. If ki = 1, we have

qi =
∏

j∈Ni

(1 − pj) ≤
∏

j∈Ni

(
1 −

∑
j∈Nipj

|Nj |

)|Nj |

≤
(

1 − ln(∆ + 1)
|Nj |

)
≤ e− ln(∆+1) =

1
∆ + 1

.

If ki > 1, we can bound qi using Chernoff and get

qi ≤


 e−

ln(∆+1)−1
ln(∆+1)

1
ln(∆+1)

1
ln(∆+1)




ki ln(∆+1)

∈ O
(

1
ki(∆ + 1)

)
.

Note that ki ≥ 2. The expected value of Y can therefore be
bounded as follows:

E [Y ] ≤
n∑

i=1

kiqi ∈
n∑

i=1

ki · O
(

1
ki(∆ + 1)

)

= O
(

n

∆ + 1

)
= O(OPT ).

Combining the obtained bounds for E [X] and E [Y ] com-
pletes the proof.

Remark: In Algorithms 1 and 2, it is implicitely assumed
that all nodes of the graph know the maximum degree ∆.
Using techniques described in [16, 11], it is possible to get
rid of this assumption.

5 Algorithm for Unit Disk Graphs

5.1 Algorithm

In this section, we show that an algorithm very similar
to the one of [7] can be turned into a fault-tolerant algo-
rithm for the dominating set problem by adding an addi-
tional step to the algorithm. Algorithm 3 describes the de-
tails of the process, which is executed by all nodes in the
system in a distributed way. In a first phase—which is es-
sentially equivalent to the algorithm proposed in [7]—the
algorithm selects a simple (not fault-tolerant) set of leaders
whose cardinality is within a constant factor of the optimal
solution in expectation. In a second phase, this dominating
set consisting of the leaders is extended to a fault-tolerant
dominating set with a constant approximation ratio. As for
the first phase of the algorithm, we present a new analysis
of the algorithm’s approximation guarantee.

Part I of Algorithm 3 works by repeatedly decreasing the
number of active nodes, that is, the nodes that may even-
tually become leaders. Initially, all nodes are active. As
soon as a node becomes passive, it decides not to become
a decides not to become a dominator. Part I proceeds in
logξ log n rounds, where ξ = 3/2. In each round ri, an ac-
tive node v considers only those active neighbors that are
within distance θ of v. In a sense, θ represents a node’s
transmission range in a given round. This range θ is dou-
bled in every round.

At the outset of a round ri, every active node chooses
a random identifier IDi(v) in the range [1, . . . , n4], which
ensures with high probability that no two nodes in the net-
work will ever choose the same ID. Each active node v
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Algorithm 3 UDG algorithm (code for node v)
1: (* PART I *)
2: a(v) := true; leader(v) := false;

3: ξ = 3/2; θ := 1
2 (log n)−

1
log ξ ;

4: for i := 1 to logξ log n do
5: randomly choose IDi(v) from [1, . . . , n4];
6: send (a(v), IDi(v)) to all w ∈ Nv(θ);
7: recv (a(w), IDi(w)) from all w ∈ Nv(θ);
8: Av := {w ∈ Nv(θ) | a(w) = true};
9: send M to w ∈ Av with highest IDi(v);

10: if not recv M from any w ∈ Av then
11: a(v) := false; stop
12: fi
13: θ := 2θ
14: od
15: if a(v) = true then leader(v) := true fi;
16: (* PART II *)
17: c(v) :=

∣∣{u ∈ Nv | leader(u) = true}
∣∣;

18: U(v) := {u ∈ Nv | c(v) < k};
19: while U(v) �= ∅ do
20: select k nodes u1, . . . , uk ∈ U(v);
21: inform ui to set leader(ui) := true;
22: c(v) :=

∣∣{u ∈ Nv | leader(u) = true}
∣∣;

23: U(v) := {u ∈ Nv | c(v) < k}
24: od

then elects among its active neighbors (with regard to the
restricted transmission range θ) the one active node with
the highest ID (Line 8), possibly itself. If an active node is
elected by at least one other active node, it remains active.
If not, it becomes passive and stops executing Part I. Nodes
that have remained active throughout all logξ log n rounds
become leaders.

As for notation, θi denotes the transmission range θ of
active nodes in round ri. As θ is doubled in every round,
it holds that θi = 2i−1/(log n)1/ log ξ. During Part I, the
indicator variable a(v) is true for active nodes, and false
for passive nodes. Finally, S is the set of selected leaders in
Part I.

5.2 Analysis

In this section, we prove the performance guarantees of
Algorithm 5.1. Without affecting the asymptotic results,
we omit ceilings throughout this section for succinctness
of presentation. For each round ri, we cover the plane with
imaginary disks Ci of radius θi/2 in a hexagonal lattice, as
shown in Figure 1. Let Di be the disk centered at the cen-
ter of Ci having radius 3θi/2. As shown in Figure 1, Di is
(fully or partially) covering 19 smaller disks Ci. The trans-
mission range in round ri being θi, every node in a disk Ci

can reach all other nodes in Ci, whereas nodes outside Di

Ci

R

r

Di

Figure 1. Disks Ci and Di of round ri.

are unable to cover any nodes in Ci. Let C be a disk with
radius 1/2. In round ri, we write Ci ∈ C to denote all disks
Ci that cover C.

It was shown in [7] that in Part I of Algorithm 3, every
node is either a leader, or is covered by a leader.

Lemma 5.1 ([7]). The set of leaders produced by Algorithm
3 forms a correct dominating set, i.e., for all nodes v ∈
V \ S, it holds that |S ∩ Nv| ≥ 1.

Proof. At the end of Algorithm 3, all active nodes become
leaders. To prove the claim for passive nodes, let Av(θi)
denotes the set of active nodes within distance θi of v. We
prove the claim by induction over the algorithm’s rounds.
Specifically, we show that at the beginning of round ri, it
holds for every passive node v that |Av(θi)| ≥ 1.

For i = 1, the claim is true because every node is ac-
tive. In any subsequent round, if an active node v has no ac-
tive neighbors in its current neighborhood, v remains active.
Consider an arbitrary node v. Let rq be the first round in
which v becomes passive. By the above argument, it holds
that |Av(θq)| ≥ 1, which establishes the base case. For
the induction step, assume that the claim holds for round
ri, i.e., v is covered by an active node within distance θi at
the beginning of ri. We now show that v remains covered
by an active node. Let w ∈ Av(θi)v be a covering active
node. In case w remains active in round ri, v remains cov-
ered. Otherwise, w must have elected a node w′ in round ri.
Since the transmission range in round ri is θi, it holds that
dist(v, w′) ≤ 2θi = θi+1 by triangle inequality. Hence,
w′ is in Av(θi+1)v , covering v at the beginning of round
ri+1, which concludes the induction step. Finally, the claim
follows from the fact that the final transmission radius is

θlogξ log n =
2logξ log n

2 · (log n)1/ log ξ
=

1
2

and consequently, every passive node is covered by an ac-
tive node in distance at most 1.

Next, we show that the expected number of dominators is
within the claimed factor of the optimal solution. The next
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lemma lower bounds the decrease of the number of active
nodes in each round. Specifically, consider a disk Ci in a
round ri, and the corresponding disk Di. The next lemma
from [7] establishes a relationship between |Di| and |Ci+1|.

Lemma 5.2 ([7]). Let mi denote the number of active nodes
in Di in round ri and let xi and x′

i be the number of active
nodes in Ci at the beginning and at the end of ri, respec-
tively. It holds that x′

i ≤ δ
√

mi ln mi with probability at

least 1 − γm
− ln mi−1− 2

log ξ

i , for some constants γ and δ.

Lemma 5.2 allows us to obtain a bound on the decrease
of active nodes during the course of Part I. Intuitively, in ev-
ery successful round, the number of active nodes decreases
by a factor of δ

√
mi ln mi per disk. Showing that the prob-

ability of having only good rounds is high enough in ex-
pectation then leads to the desired result. Turning this intu-
ition into a rigorous argument requires some technical work.
First, we require a simple geometric lemma.

Lemma 5.3. Let α(i) be the number of disks of radius θi/2
to completely cover a disk C of radius 1/2. Defining η =
16π
3
√

3
, it holds that

α(i) <
η

4θ2
i

= η(log n)
2

log ξ · 2−2i.

Proof. The limit of the ratio of the area of C to the area of
the smaller disks is 3

√
3

2π [10]. All disks intersecting C are
completely inside the disk C ′, where C ′ has radius r(C ′) =
1
2 + θi. Hence, we can write

(1/2 + θi)
2
π

α(i) · (θi/2)2 π
≥ 3

√
3

2π
.

The lemma now follows by solving for α(i) and plugging
in the definitions of η and θi.

In the sequel, we consider a set of disks Ci of radius θi/2
that completely cover C for each round ri. Fix one such Ci

and let mi denote the number of nodes located in the cor-
responding disk Di of radius 3θi/2 as shown in Figure 1.
Similarly, let xi, x′

i, and mi be defined as in Lemma 5.2
with regard to Ci and Di, i.e., xi and x′

i are the number of
active nodes in Ci at the beginning and the end of round ri,
respectively. Notice that because the node’s transmission
range in ri is θi, all nodes within Ci can hear each other.
Hence, we can apply Lemma 5.2 to each such Ci individ-
ually. Unfortunately, we face the problem that the bound
implied by Lemma 5.2 only holds with a certain proba-
bility. Particularly, the high probability result becomes in-
creasingly useless as mi decreases. For instance, once mi is
in the order of O(log log n), Lemma 5.2 holds merely with
probability O(log log n)O(log log log n) which is asymptoti-
cally smaller than any polynomially bounded function in n.

On the other hand, once mi is small, the consequences of
Lemma 5.2 failing to hold may not be as grave with regard
to the expected number of leader in the end. To formal-
ize this intuition, we partition the logξ log n rounds of Part
I into log∗n phases consisting of a decreasing number of
rounds.

Definition 5.4. Let ri denote the ith round of Algorithm 3.
For j = 1, . . . , log∗ n, phase Pj consists of all rounds ri

such that

logξ log n − log(j+1)n ≤ i < logξ log n − log(j+2)n.

Hence, by Definition 5.4, phase Pj consists of
log(j+1)n − log(j+2)n rounds. In phase Pj , we call a disk
Ci active if and only if mi ≥ log(j)n, i.e., when the number
of active nodes in the “neighborhood” (the larger disk Di)
of Ci is not too small. During the first phase, for instance, a
disk Ci is active if mi ≥ logξ n.

We call a round ri good for an active disk Ci if x′
i ≤

δ
√

mi ln mi holds, that is, when the random experiment de-
scribed in Lemma 5.2 succeeds. A disk is bad if the above
equation does not hold. In this case, we do not know any-
thing about the decrease of xi, but at least, it follows by the
construction of the algorithm that x′

i ≤ xi.
Using this set of definitions, we can establish the follow-

ing key lemma.

Lemma 5.5. After Part I of Algorithm 3, the number of
leaders in an arbitrary disk C of radius 1/2 is in O(1) in
expectation for some constant τ , i.e., E [S ∩ C] ∈ O(1).

Proof. We distinguish two kinds of leaders. Bad leaders are
those which during the course of the algorithm have been
located in at least one bad disk. Good leaders have never
been part of a bad disk in any round.

Consider an arbitrary round ri. If ri is not good for a
disk Ci ∈ C, mi may remain the same in the worst case. In
subsequent rounds, such bad active nodes may disappear,
but clearly, for our worst-case analysis, we obtain an upper
bound for the total number of leaders in C if we assume that
all such bad nodes will permanently remain leaders. Let the
set of all bad nodes (potential bad leaders) in round ri be
Ui, and let W denote the set of good leaders.

In each round ri, new random IDs are chosen by active
nodes. As a consequence, the outcomes of the random ex-
periments of consecutive rounds are independent of each
other. Thus, we can bound E [S ∩ C] as

E [S ∩ C] ≤
logξ log n∑

i=1

E [Ui] + E [W ] .

The expected number of bad nodes in round ri in a disk
Ci ∈ C is at most mi times the probability of a failure in
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Lemma 5.2. Summing up over all disks Ci ∈ C yields

E [Ui] ≤
∑

Ci∈C

γ
mi

m
ln mi+1+ 2

log ξ

i

=
∑

Ci∈C

γ

m
ln mi+

2
log ξ

i

.

Now consider a phase Pj , and denote by βj :=∑
ri∈Pj

E [Ui] the expected number of bad nodes during all
rounds ri of this phase. In phase Pj , all active disks have at
least mi ≥ log(j)n active nodes in neighboring disks. Be-
cause the term E [Ui] is maximized for small mi, we have

βj =
∑

ri∈Pj

∑
Ci∈C

γ

m
ln mi+

2
log ξ

i

≤
∑

ri∈Pj

∑
Ci∈C

γ

(log(j)n)ln log(j)n+ 2
log ξ

<
Lemma 5.3

∑
ri∈Pj

γα(i)

(log(j)n)ln log(j)n+ 2
log ξ

.

We now bound α(i) (Lemma 5.3) in terms of log(j)n,

α(i) ≤ η(log n)
2

log ξ

22i

=
η(log n)

2
log ξ · (log(j)n)

2
log ξ

(log n)
2

log ξ · 22(i−logξ log n+log(j+1)n)

< η(log(j)
2 n)

2
log ξ < η(log(j)n)

2
log ξ .

The second inequality follows because by definition of
phase Pj , it holds that i ≥ logξ log n + log(j+1)n. Plug-
ging this value in the expression for βj , we get

βj <
∑
i∈Pj

γη(log(j)n)
2

log ξ

(log(j)n)ln log(j)n+ 2
log ξ

=
∑
i∈Pj

γη

(log(j)n)ln log(j)n

<
γη log(j+1)n

(log(j)n)ln log(j)n
<

γη

log∗ n
.

for large enough n. Notice that the second inequality fol-
lows from the fact that phase Pj consists of log(j+1)n −
log(j+2)n < log(j+1)n rounds.

Having bounded the expected number of bad nodes, we
now consider the number of good leaders E [W ]. Good
leaders never occur in a bad disk and hence, their number
decreases in each round as indicated in Lemma 5.2. In case
a disk is inactive, its mi is bounded by mi < log(j)n by
definition. Let Wi be the set of good leaders that exist after
round ri. Because good leaders always successfully fulfil
Lemma 5.2, we can bound |Wi+1| as

|Wi+1| ≤ α(i) · max {δ
√

|Wi| ln |Wi|, log(j)n},

where Pj is the phase containing round ri. For a large
enough constant τ , the function

√
x ln x is bounded by

τx2/3. Therefore,

|Wi+1| ≤ α(i) · max {δτ |Wi|2/3, log(j)n}. (2)

In the sequel, we use this recursion in order to bound E[W ].
Ignoring the second argument of the maximum function for
the moment and denoting |W0| by n0, this recursion leads
to the following upper bound for the size of |Wi+1|, which
can be proven by induction,

|Wi+1| ≤ α(i) · (δτ)3 · n(2/3)i

0

≤ η(log n0)
2

log ξ

22i
· (δτ)3 · n(2/3)i

0 ,

where the second inequality follows from Lemma 5.3.
Therefore, the expected number of good dominators at

the end of the algorithm is E[W ] ≤ |Wlogξ log n|, where
ξ = 3/2. Plugging in i = logξ log n yields

E[W ] ≤ η(log n0)
2

log ξ

22 logξ log n0
· (δτ)3 · n(2/3)logξ log n0

0

≤ η(log n0)
2

log ξ

(log n0)
2

log ξ

· (δτ)3 · n
1

log n0
0

≤ 2η(δτ)3 ∈ O(1).

In general, we cannot simply ignore the second argument
of the maximum function in (2). Assuming that Pj is a
phase at the end of which log(j)n > δk

√
|Wi| ln |Wi|, i.e.,

|W�| = α(
) log(j)n, where r� is the last round of phase
Pj . By the definition of phase Pj , the number of rounds
remaining after round r� until the end of the algorithm is
logξ log n − 
 = log(j+2)n. That is, in this case we can

compute E[W ] analogously by setting n0 = log(j)n and
E[W ] ≤ |Wlog(j+2)n|. That is,

E[W ] ≤ η(log(j+1)n)
2

log ξ

22 log(j+2)n
(δτ)3(log(j)n)(2/3)log

(j+2)n

≤ η(δτ)3
(

log(j)
2 n

log2 ξ

) 1

log(j+1)
2 n

∈ O(1).

Finally, putting the results for both bad and good nodes to-
gether, we obtain

E [S ∩ C] ≤
logξ log n∑

i=1

E [Ui] + E [W ]

=
log∗n∑
j=1

βj + E [W ] ∈ O(1),

because in the sum
∑log∗ n

j=1 βj , all but the last term (which
is constant) are at most 1/ log∗n for large enough n and
therefore

∑log∗n
j=1 βj ∈ O(1).
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This result on Part I leads to a bound on the expected
number of leaders at the end of Algorithm 3.

Lemma 5.6. After Part II of Algorithm 3, the expected num-
ber of leaders in an any disk C of radius 1/2 is O(k).

Proof. We first prove that as soon as the number of lead-
ers in a disk C of radius 1/2 exceeds k at the beginning
of an iteration of the while loop of Part II of Algorithm 3,
no more nodes in C are selected as leaders. Because the
nodes in C form a clique—they are all within distance one
of each other—, the ‘coverage’ c(v) is lower-bounded by
the number of leaders in C for all v ∈ C. We therefore
have c(v) ≥ k for all v ∈ C if there are at least k leaders
in C. Because only nodes u ∈ U(v) for some leader v are
selected in Part II and because we have c(u) < k for all
u ∈ U(v), nodes w for which c(w) ≥ k cannot become
new leaders in Part II.

All leader nodes v which select new leaders in C have
to be in a disk C ′ with radius 3/2 around the center of C.
Because C ′ can be covered with a constant number of disks
of radius 1/2 (cf. Figure 1), by Lemma 5.5 and by linear-
ity of expectation, the expected number of leader nodes v
selecting new leaders in C is constant. Because every such
node selects at most k new leaders, the expected number
of new leaders in C is O(k) in every iteration of the while
loop.

Using Lemma 5.6, we can now derive the main theorem.

Theorem 5.7. Algorithm 3 runs in time O(log log n) and
uses messages of size O(log n) bits. In expectation, it com-
putes an O(1) approximation to the minimum k-fold domi-
nating set problem in UDGs.

Proof. Running time and message size follow directly from
the definition of Algorithm 3. The running time of Part II
is constant because every leader v from Part I can select at
most O(k) new leader nodes until all disks of radius 1/2 at
distance at most 1 from v contain at least k leader nodes. As
for the approximation ratio, the number of dominators in a
disk C is O(k) in expectation by Lemma 5.6. The theorem
follows from the linearity of expectation and the fact that
the optimal algorithm has to choose at least k dominators in
a disk C ′ of radius 3/2 in order to cover the nodes in C.
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