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ABSTRACT 1. INTRODUCTION

We study several variants of coordinated consensus in dynamic net- Coordinating the actions of distributed computing devices or mo-
works. We assume a synchronous model, where the communica-bile agents is an essential distributed task. Applications of coordi-
tion graph for each round is chosen by a worst-case adversary. Thenation for instance abound in robotics and swarm protocols, where
network topology is always connected, but can change completely many mobile agents cooperate to jointly accomplish some global
from one round to the next. The model captures mobile and wire- Objective. In such examples, nodes must jointly agree to execute
less networks, where communication can be unpredictable. some common action (movement, data collection, or even some-
In this setting we study the fundamental problems of eventual, thing so simple as resetting their clocks or starting a protocol) at
simultaneous, and\-coordinated consensus, as well as their rela- the same or almost the same time.
tionship to other distributed problems, such as determining the size  Global coordination is a challenging task, made all the more dif-
of the network. We show that in the absence of a good initial upper ficult in dynamic settings, where the agents move around and the
bound on the size of the network, eventual consensus is as hard a§ommunication links between them can behave unpredictably. In
computing deterministic functions of the input, e.g., the minimum this paper we study the problems of consensus, simultaneous con-
or maximum of inputs to the nodes. We also give an algorithm Sensus, and\-coordinated (i.e., “almost simultaneous”) consensus
for computing such functions that is optimal in every execution. in dynamic networks. Our goal is to characterize the time complex-
Next, we show that simultaneous consensus can never be achievedty of these tasks, as well as to investigate the relationship that they
in less tham - 1 rounds in any execution, whereis the size of bear to higher-level tasks, such as computing functions of inputs to
the network; consequently, simultaneous consensus is as hard a$he nodes and determining the number of nodes.
computing an upper bound on the number of nodes in the network. We study the above problems in the dynamic network model of
For A-coordinated consensus, we show that if the ratio between [18]. The model is round-based; in each round, the communication
nodes with inpud and inputl is bounded away from, it is possi- network is an adversarially-chosen graph over a vertek s#tsize
ble to decide in time, — @(\/E), whereA bounds the time from n. The_seﬁ/ of network nodes is assumed to be fixeql t_hroughout an
the first decision until all nodes decide. If the dynamic graph has di- €xecution, although we do not assume that the participants khow
ameterD, the time to decide imin{O(nD/A),n - Q(nA/D)}, (or evenn, in some ca_ses). The communication graph is assumed
even if D is not known in advance. Finally, we show that (a) there t0 be connected, but it can change completely from one round to
is a dynamic graph such that for every input, no node can decide be-the next. Nodes communicate by broadcasting messages to their

fore timen — O(A%?%n%7); and (b) for any diameteb = O(A), immediate neighbors. Similar dynamic network models have pre-
there is an execution with diamet& where no node can decide  Viously been considered in, e.g,, [1, 16, 17, 22], and many others.
before time©2(nD/A). To our knowledge, our work constitutes Our main objective in this paper is to understand the complexity
the first study ofA-coordinated consensus in general graphs. of consensus and of coordinating actions and decisions in dynamic

networks. We begin by studyireyentual consenspis which each
node receives an initial input, and all nodes must eventually agree
on the input to one of the nodes. We show that eventual consensus
is closely related to knowing when a node has been causally influ-
- . enced by all nodes in the graph; namely, in certain settings, no node
G.2.2[Discrete Mathe_matlcs]: Graph Theorpetwork problems can deciiie on an output 8aIL§)e until it hyas been causallyginfluenced
General Terms: Algorithms, Theory by all nodes. Although the decision value in a consensus protocol
Keywords: distributed algorithms, dynamic networks, consensus, is not a deterministic function of the inputs, our result implies that
coordination, common knowledge in many settings it is equivalent in difficulty to computing a deter-
ministic function such as the minimum or maximum of inputs. We
also give an optimal criterion for determining when a node knows
it has been causally influenced by all nodes, and so can decide.
Permission to make digital or hard copies of all or part of thagkafor Next we turn our attention to the problem sifnultaneous con-
personal or classroom use is granted without fee providatidbpies are sensuswhere nodes are required to output their decision value si-
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protocol completes (that is, the protocols cannot be sequentially during the execution, the nodes do not know in advance that this
composed). It is known that achieving simultaneous consensus iswill be the case, and informally, they must assume the worst-case
tightly related to obtaining common knowledge in a distributed sys- dynamic behavior. We note also that the three lower bounds we
tem [8, 15]. Informally, a factp is common knowledge whenever  give in this paper are in some sense incomparable with each other.
 is known to all nodes, and everyone knows that everyone knows 4 Then — A — 1 lower bound asserts, in a non-constructive

¢, and (everyone k”9W§)P- and so on (a more rigorous definition manner, the existence of a particular combination of dynamic
is presented in Section 2). When nodes must execute an action at network and input assignment for whigkrcoordinated con-
the same time, the fact that the action is being performed must be sensus is hard.

common knowledge. We show that achieving common knowledge
is costly in dynamic networks: it always requires 1 rounds. This
holds even in executions where the communication graph is well-
behaved, e.g., when it is static and has a small diameter. In partic-
ular, this result implies that simultaneous consensus can never be
achieved before time — 1, even ifn is knowna priori. (Compare

to eventual consensus, which can be solved in two rounds if the
graph is fully-connected.) If the number of nodesa knowna
priori, thenn rounds are required. This implies that solving simul-
taneous consensus in this model is as hard as computing an uppel.1 Related work
bound on the size of the network: given a protocol for simultaneous
consensus, we can obtain an upper boundh doy simply having
each node output the round number in which it decides.

In light of the cost of simultaneous consensus, it is desirable to
find a trade-off between the time it takes to achieve coordination
and the quality of coordination achieved. We show that such a
trade-off exists by considering-coordinated consenspa variant
of consensus in which all nodes are required to output their decision
values withinA rounds of each other. In particular, simultaneous
consensus is equivalent @scoordinated consensus, and eventual
consensus teo-coordinated consensus.

One might initially expect that a protocol fds-coordinated con-
sensus would not be able to improve upon the running time of a
simultaneous consensus protocol by more tharounds, and in-
deed we show that this is true in the worst-case: for some input
and some executior)-coordinated consensus requires A — 1
rounds. However, surprisingly, there are many cases in which even
1-coordinated consensus can decide significantly faster than simul-
taneous consensus. For example, we give a protocol that halts in
©(+/nA) rounds if the ratio of the number of zeroes to the number
of ones in the input is bounded away framand we give another
protocol that halts imin {O(nD/A),n - Q(nA/D)} rounds in

e Inthen — O(A%28n% ™) lower bound we construct a spe-
cific network in whicheveryinput assignment is hard. This
network has diameted(n).

e TheQ(nD/A) lower bound also gives a specific network in
which every input assignment is hard. While the bound is
smaller than the previous one, it applies to every diameter
D =0(A).

Consensus and knowledgeonsensus is a central topic in
distributed computing, initiated by the seminal paper by Pease,
Shostak and Lamport [23]. Most of the literature on the subject in
the context of message-passing systems assumes that the network
is a complete graph, with direct channels connecting every pair of
nodes. For more general networks, there has been work on the con-
nectivity requirements for reaching consensus under various failure
models (see, e.g., [7]), as well as work on implementing consensus
in bounded-degree networks with special properties, such as ex-
panders [14, 9]. We are not aware of a study of the efficiency of
consensus protocols in general graphs. The current paper €onsid
ers an even weaker network model, where the graph can possibly
change completely from one round to the next.

While most of the literature on consensus is concerned with tol-
erating node failures, in the dynamic network model that we con-
sider here the nodes themselves are assumed to be reliable, but the
protocol must overcome potentially drastic changes in topology be-
tween rounds. Santoro and Widmayer studied consensus in the con-
text of edge failures [24], and showed that it is unsolvable if more
thann — 2 (arbitrarily chosen) edges can be down in every round.

hs wh h K l[h q The dynamic network model allows a much broader set of execu-
graphs where each message takes no more fhaounds to tra- tions, since almost all (in fact, all but- 1) edges can be down in

verse the network (we calb thedynamic diameteof the network). g\ery round, and their choice is almost arbitrary. The only require-
Hence, for the purpose of achieving coordinated consensus, havmgment is that the network in each round be connected
a small-diameter network does help significantly, whereas for si-  g4me of our results concern cases in which the number of nodes
multaneous consensus it does not help at aI_I. . in the network is unknown, or in which there is a rough but inexact
On the negative S'd_e’ we show that there ISa static networl_< SUChbound on the number of nodes. These are unusual assumptions in
that for everyA-coordinated consensus algorithm and every input e context of consensus. A number of standard consensus proto-
a55|gnr|:1ent, no node c_;lec':qlels bEfOE,e tm:r?(A di n""). The cols (e.g., [2]) can easily be modified to handle such assumptions,
net_wor we cc_)n_struct in t ls_o_wer" oundhas a mmet_e@@i), but this is only due to the fact that the network there is a complete
which makes it inherently “difficult”. To complete the picture, we o501 ‘54 that a node hears from all correct nodes in every round.

3!50 show thathfor: e\;ery)”: IO('Ah)l ther% i_s a static ne:jwodrk c_); Simultaneous coordination has been shown to be closely related
lameterD) such that for all algorithms and inputs, no node decides , \he notion of common knowledge [15, 10]. Thus, for example, in

before timeQ2(nD/A). Both _Iower bounds use a novel Va'f'at'on a simultaneous consensus protocol [8, 21], when the nodes decide
on the standard _proof techm_que used in, e.g., [8] to obtain lower on v, it must be common knowledge that some initial value.is
bounds on the time to_ acquire common k_nowledge_. In _[8]' 0_n_e This is much stronger than for regular consensus, in which a node
freely moves between |nd|st|ngwshable points (conflgurauons_), in decidingv must (individually) know that one of the initial values
contrast, here we pay a cost each time we move to some new indiss 55, * |t has been shown that deciding in simultaneous consensus
tlngws_hable p0|_nt, and our goal is to minimize the total number of (and in a large class of simultaneous coordination tasks) can be
pomtshlnvolved :n the groofa hilsitati ks in which reduced to the problem of computing when facts (and which facts)
:n_t eze twod(_)werd ounds we ex Ih ZC r_‘EtW‘?V S In whic are common knowledge at any given point in an execution. For
solving A-coordinated consensus is hard (i.e., it requires many g iraneous tasks, this enables the design of protocols thall-are

Lounds). IEhe hha_r dness _arisES ikl H‘Eemial' for dynamic bﬁ' caseoptimal: foreverybehavior of the adversary, in the execution
avior: although in practice the network topology does not change of the all-case optimal protocol, nodes decide as fast as they do for



that behavior under any other protocol. (All-case optimality does the only constraint on the adversanjfter messages are delivered,

not exist for eventual consensus, as shown in [21].) each node processes the messages it received, and transitions to a
Part of our analysis centers on the problemAofcoordinated new state (its state at tini§. Then the next round begins.
consensus, in which decisions must be taken at mosbunds The adversary’s behavior in a given execution is described by a

apart. In the standard literature, many protocols for eventual agree-dynamic graphG = (V, E, o), where|V| > 2 is a set of nodes
ment are 1-coordinated in this sense: because the network is as{or processes)f : N* — (‘2/) is adynamic edge functiowhich

sumed to be fully-connected, once some correct nodiecides, all assigns to each rounda setF (r) of undirected edges ovéf, and
other correct nodes find out abouls decision in the next round; o is thesignatureof the execution. The signature is an assignment
it is then safe for all correct nodes to decides well. For net- of a unique identifier (UID) and an input (or initial value) to each

works that are general graphs, we know of no work develoging node inV. If nodes have access to an upper bound on the count

coordinated consensus protocols. As in the case of simultaneougV|, this upper bound is also part of the signatareln particular,

coordination, the property oh-coordination has a natural coun- if o always includes the exact number of nodes, then we say that

terpart in knowledge theory, callel-common knowledge. Very  the countis knowm priori. We are frequently concerned only with

roughly speaking, if: knows that a fact i&\-common knowledge, the dynamic network topology; in this case we omit the signature

then within A rounds everyone will know that this is the case. In o from our notation.

order to decide, a node must know that the decision valuk-is A dynamic graphG = (V, E) induces acausal order denoted

common knowledge [15, 10]; the analysis in Section 6 is the first (u,t) ~¢ (v,t'), where (u,t) and (v,t') aretime-nodesep-

case in which such coordination is analyzed and nontrivial bounds resenting the states of nodesand v at timest andt’, respec-

are obtained as a result. tively. Informally, the causal order captures the idea that a time-
node(u,t) can only influence another time-no(le t') in a given

Dynamic networksin an increasingly networked world, in ~ execution if there is a chain of messages starting fioat time

which various kinds of computing devices of all sizes are connected ¢ and ending aw at time¢'. Formally, the causal order is de-

to form large networks, understanding dynamic networks has be- fined in the usual way: it is the transitive and reflexive closure of

come all the more important. It is thus not surprising that in recent the order(u,t) —¢ (v,t + 1), which holds iff eitheru = v or

years there has been a significant amount of work on dynamic net-{u,v} € E(t + 1). We omit the subscrip& when it is clear from

work algorithms, for a large variety of different dynamic network the context.

models. Our discussion here is restricted to models similar to the At time ¢, nodew has direct information only about the states

one we consider in the current paper; we refer the interested readeof nodesw at timet’ such that(v,t") ~ (u,t). This motivates

to [19] for a discussion of a few alternative models. the next definition, which defines all the information a node can

Some initial results on distributed computations in completely Possibly acquire about an execution.

adve_rsa_rial c_iynamic netw_orks were o_btained in[22]. The model_as DEFINITION 1 (VIEW). Theview of nodeu at timet in dy-

studleq in this paper was |ntroduceq |n_[18], where the complexn_y namic graphG, denotedviewc ., 1), is defined as the restriction

_of basic (_:omputatlon and communlcathn tgsks sugh as determln-of G to the time-nodes and edges along paths from time 0 nodes

ing the size of the n_etwork or exchanglng information among all 4 (u,t) in G (see Fig. 1). In particularyiew ¢ ., 1) includes the

the nodes Was.studled. Ip [1], Avin et. al. study the behavior of i i0q of all nodes at timet’ such that(v, ') e (u, 1).

random walks in a very similar dynamic network model. Some

basic information dissemination tasks, such as globally broadcast-In particular, nodeu cannot know the input value of any node

ing a message, have also been considered in a probabilistic versiorv such that(v,0) + (u,t). A common strategy in consensus

of the graph model in which edges are independently formed and lower bounds and impossibility proofs is to create a situation where

removed according to a simple random process; e.g., [3, 5, 6]. An- (v,0) + (u,t), and then flip the input value af, without nodeu

other problem related to distributed coordination is clock synchro- being able to tell the difference (at least until tirje Thus we

nization. In [16, 17], the problem of clock synchronization was in- are often interested in the set of nodes whose input valuesn

vestigated in a partially-synchronous variant of the dynamic graph potentially know at time (see Fig. 1 for an illustration.)

model we study here. Related dynamic network models were also

X X DEFINITION 2 (PasT SET). Thepast sebf atime-nod€w, t)
considered in, e.g., [4, 11, 12, 13], and others.

from timet’ in graph G is defined by

past(GW,,t)(t') = {U | (v,t') ~ (u,t)}.
2. MODEL AND DEFINITIONS If ve past(Gyuyt)(O) (i.e., if (v,0) ~a (u,t)), then we say that

We now formally introduce the dynamic graph model, originally at timet nodew hasheard fromnodewv. As usual, we omit the
introduced in [18]. As explained above, we consider a synchronous-subscript from our notation where it is clear from the context.
round based model of computation, in which the set of nodes (pro-  In static networks, the performance of distributed algorithms of-
cesses) is not knowa priori. The set of nodes that participate ina ten depends on thdiameterof the network. In a dynamic network,
given execution is, however, fixed for the duration of the execution, the diameter of the communication graph can change from round
and each of them has a unique identifier (UID). The nodes share ato round, and is not a good measure of the amount of time required

global clock, which starts at 0 and advances in unit steps. for information to spread through the network (see [19] for dis-
Communication proceeds in synchronous rounds; we think of cussion). Thus, we use a more general definition, which explicitly
roundk (for k = 1,2,...) as taking place between tinfe— 1 captures the amount of time required for any node to hear from any

and timek. Roundk proceeds as follows: first, each node gen- other node:
erates a single message to broadcast, based on its local state at time
k — 1. The adversary then selects a communication graph (i.e., a - o . )
set of edges) for rounkl, and delivers each message to the sender’s glrlaf,’icz R (dv’ E) h;s a c:]ynamlc dlamt(e)ti’r (bTDup to t'mett, if for
neighbors in accordance with the edges it chose. The communi-21 % <t andu, v e V we have(u, max {0, - D}) ~ (v,t).
cation graph for each round is assumed to be connected, but this is*This assumption was callédinterval connectivityn [18].

DEFINITION 3 (DYNAMIC DIAMETER). We say that dynamic
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Figure 1: 4 rounds of a 6-node dynamic graph: The nodes and edtesgray area together formiew . 4, the 4 nodes inside the dashed
ellipse are the nodes in the gaist . 4)(1).

(In other words, for any tim¢’ < ¢ and any node: € V, we have fact is true. We now formalize this intuition with a minimal amount
past, ¢ (t'=D)=V.) of logical notation.

In our lower bounds and knowledge analysis we assume that Given a systenR = R(P) (that is, a collection of all runs of
nodes execute fll information protoco) where the state of each  some protocolP), we start out with some s of basic factsof
nodeu at timet is exactlyview(, ). This state is then broadcast interest; each basic fact is associated with a set of p¢its) in
by v at timet, allowingu’s neighborsy to combine the views they  which it is satisfied. We uséR, G, t) = ¢ to denote the satisfac-
receive and computeiew, ,.1y. Any lower bound on full infor- tion of facty in (G, ).
mation protocols extends, of course, to protocols that are not full  Now let K, stand for the fact thatodeu knows thaty holds
information. Our upper bounds typically require nodes to send at We call K, aknowledge formulaand its satisfaction is formally
least the inputs of all the nodes they have heard from, and some-defined as follows:
times more information as well.

(R,G,t) e Kyp iff
2.1 Knowledge and Common Knowledge (R,G',1) £ ¢ holds for all(G’, t) ~u (G, t).

Knowledge theory, and specifically the notion of common knowl-
edge and its variants, is central to the study of coordinated actions.
This connection has been developed and described in [8, 10, 15, 20
21]. This literature shows, in particular, that simultaneous coordi-
nation is closely related to common knowledge. In this section we
review the basic definitions, focusing on the elements needed for
our analysis of dynamic networks. For a more complete exposition
of knowledge theory see [10]. ;

Given a distributed protocaP, let R = R(P) be the set of all (R,G.t)=Ep i
runs (executions) of. A point of R is a pair(G,t), represent-

Note thaty does not have to be a basic formula; it can itself be a
knowledge formula. For example, the formuta, K¢ asserts that
“nodeu knows that node knowsz".

It is convenient to define additional knowledge operaf@rand
C, which can also be combined and nested. The opefagiands
for everyone knowsnd it is formally defined by

(R,G,t) = Kyp holds forallu € V,

ing the global state of the execution at timehen protocolP is whereV is the node set of;.
executed in dynamic graph. The operator” stands forrommon knowledge facty is com-

The fundamental notion underlying the concept of knowledge is mon knowledge ifo holds, and everyone knows thatholds, and
indistinguishablityamong points. We writ¢G, ¢) ~. (G',t) and everyone knows that everyone knows thdtolds, and so on. The
say that the two points afedistinguishable to node, if nodeu’s C operator can be formally defined as a fixpoint (see [10]), but here
view is the same in both runs, that iBew(c 1) = View(cr 1) we give a more semantic definition, in terms of the similarity graph:
(Recall from Section 2 that a node’s view represents all the infor-
mation it can possibly acquire about the execution.) Notice that (R,G,t) = Cop iff

two points may be indistinguishable to even though the runs ’ ’
are quite different; for example, the number of nodes may differ (R,&,t) = ¢ holds forall(GF, 2) ~ (G, ).
between the two runs, as well as the inputs and UIDs of some According to this definition, a facp is not common knowledge
of the nodes. The point§G,t) in a systeniR, and the individ- at (G, t) whenever there is a graflt’, ¢) such that(G’, t) # ¢,
ual indistinguishability relations.,, for all nodes that appear in  and a chainu, . .., u, such that(G,t) = (Go,t) ~uy (G1,1) ~u;
the runs ofR, define an undirected, edge-labelled graph that is ... ~., (Gks1,t) = (G',t). Informally this means thap is not
called thesimilarity graphfor R. We are particularly interested = common knowledge if some nodg suspects that some node
in the connected components of the similarity graph; we denote suspects that. .. some nogdgsuspects that might not hold. (Here

(G,t) ~ (G',t) if points (G,t) and (G',t) are in the same con-  “u, suspects)” is to be formally understood asK,, -, that is,

nected component, that is, there is a sequemce. . , uj such that u; does not know thap is not true.)

(G,t) = (Go,t) ~up (G1,t) ~uy -+ ~uyp (Grar,t) = (G',1). Common knowledge is known to be closely related to simultane-

(Note that fori = 0,...,k — 1 we must have:; € V; n Vi;1, where ous coordination. For example, in simultaneous consensus, a node

V; is the node set off;.) cannot decidey before it is common knowledge thatis the in-
Intuitively, nodeu will knowa facty at (G, t) exactly if o holds put to some node. In general, any actiothat must be performed

at all points(G’, t) such that(G,t) ~, (G',t). In other words, a simultaneously can only be performed when it is common knowl-
fact is known byu if u's view implies that the fact must be true.  edge that: is being performed. The simultaneity @fimplies that
odeu knows a given fact iff the node’s information implies that the whenevera is performedeveryone knowthat a is performed; a



straightforward induction on the length of paths in the similarity
graph shows that is common knowledge, that is,is performed

at all points in the connected component of the similarity graph.
We review the argument relating common knowledge and simulta-
neous consensus in Section 6.1.

3. CAUSALITY IN DYNAMIC GRAPHS

As we saw in the previous section, at tima nodeu can only
know the input of another nodsif v € past, ,)(0), i.e.,if (v,0) ~
(u,t). Globally-sensitive functions, such as the minimum or max-
imum of inputs to all nodes, require a node to know when it has
heard from everyonenodeu is only guaranteed that it has the true
answer at time if past, ;,(0) = V.2 In this section we give an
optimal condition that allows a node to test when it has heard from
all nodes in the graph, even if it does not knawpriori how many
nodes there are.

The problem of determining when a node has heard from every-
one was already considered in [18], and@fn )-round algorithm
was presented. Whike(n) is a trivial lower bound on the problem,
the algorithm of [18] has the drawback alfivaysrequiring®(n)

Lemma 3.1 yields an all-case optimal algorithm: by forwarding all
input values (or sufficient information about them to allgvto be
computed), and stopping as soonpast,, ,,(0) = past, , (1),
we obtain an algorithm that cannot be beaten by any other algo-
rithm in any execution.

In fact, it turns out that knowing whepest,, ,,(0) = V' is cru-
cial not only for computing deterministic functions of the input but
also for eventual consensus, as we show below.

4. CONSENSUSAND CAUSALITY

In this section we show that when nodes do not have an initial
upper bound on the count that is tight to within a factor of 2 of
the true count, eventual consensus is in some sense equivalent to
knowing whenpast,, ,,(0) = V. Specifically, for either the all-
zero or all-one input assignment (or both), no node can decide until
it hears from all the other nodes.

For simplicity, the statement we include here applies only to
comparison-basedlgorithms, in which nodes can only compare
UIDs to each other (but they cannot, e.g., execute a different pro-
gram based on the UID they are assigned).

rounds, even when the network has small dynamic diameter. Here Fori € {0,1}, letoy,; denote the signature where all node/in

we give an algorithm which is all-case optimal, and in particular,
requiresO( D) time in networks with dynamic diameté».

The test is surprisingly simple; it only requires the node to keep
track of its past sets from time 0 and from time 1.

LEMMA 3.1. Nodeu knows at time that past,, ,,(0) = V' iff
paSt(u,t)(O) = paSt(u,t)(l)'

PROOF. First, suppose thatast, ,,(0) = past, ,(1). This
implies thatpast,, ;,(1) = V: if V'~ past, ;) (1) is non-empty,
connectivity in round 1 implies that there is some edgew} ¢
E(1) such thatv € past, ,(1) andw ¢ past, ,)(1). But this
means thatw,0) ~ (v,1) ~ (u,t), and hencev € past, ,,(0)
andpast,, ;,(0) # past(, ,(1). Thus,past, ;) (1) = V, which
also implies thapast,, ;) (0) = V.

For the other direction, suppogest, ,)(0) # past(, ;(1).
This does not necessarily imply thadst, ,,(0) = V; however,
there is some node ¢ past, ;)(0) \ past, (1) thatu has not
heard from since time 0. At tim@& no communication rounds have
occurred yet, sa does not yet know who its neighbors will be.
The adversary can conceal arbitrarily many nodes ffant) by
connecting them only to node throughout the execution. Since
u never hears fromv from time 1 onwards, it cannot distinguish
(for example, in the graph from Fig. 1, node (c) cannot tell whether
node (f) is part of the network or not). Therefore nadeannot
knowit has heard from everyone (even if in fact it has). |

We remark that ibastm,t)(o) + V andwu has noa priori upper
bound on the count, them has no upper bound di’| at timet¢:
as we saw above, any noddrom whichu has not heard could be
“concealing” arbitrarily many other nodes that are connected to the
rest of the graph only through Thus, ifpast, ,(0) # V, then
at time ¢ nodew cannot know the value of a wide class of func-
tions, including majority, minimum or maximum with unbounded
inputs, and in general any functigh: (U,-, D") — D (whereD
is the data domain) satisfying the following condition: for any in-
put assignment € D™ there exists a size’ > n and an extension

I' e D" of I, such thatf(I) # f(I'). For each such function,

2This assumes that inputs are unbounded. If inputs are boundedIa

from above or below, then a node knows it has the true minimum or

receive: as their input, and the upper bound on the couBis

THEOREM 4.1. If nodes are given an upper bound on the count
that is loose to a factor of at least 2, then for any comparison-based
algorithm there is ani € {0,1} such that in any executio' =
(V, E,ov,), no nodeu can decide at timeif past g ,, +(0) # V.

PROOF SKETCH Suppose not. Then there exist executiéhs
(Vi, Eqi,04) fori = 0,1, such that; assigns to all nodes df; in-
put s, the sets of UIDs used iap ando; are disjoint, and there
exist nodes.;, v; and timeg; such thatu; decides at time;, even
thoughv; ¢ past g, ., +,)(0) (that is,u; does not hear from;
before it decides).

Because:, andu; do not hear from all the nodes in their respec-
tive executions, we can “stitch togethe¥, andG; without these
nodes noticing. Consider the executiin= (VouVi, Ex,00Uo1),
where for alls > 1 we setEx(s) := Eo(s) U E1(s) U {vo,v1}. In
H, nodes are provide® as an upper bound on the count. Because
uo anduy do not hear fromy andv; respectively, they cannot dis-
tinguishH from Gy andG, respectively, and they each decide the
same as they would in the original execution. Butdn all nodes
must decide, including u, and inG, all nodes must decidg,
includingu.; therefore agreement is violated . O

The assumption that the upper bound provided to the nodes is
loose to within a factor of 2 is nearly tight: if nodes have access
to an upper boundv < 2(n - 1), then the claim no longer holds,
and nodes can halt without being causally influenced by everyone
on both the all-zeroes and all-ones input assignments. One sim-
ple protocol illustrating this is the one where nodes decide on the
majority input. To know that it has the true majority valugit is
sufficient for a node to hear ¢fV/2| + 1 copies ofv in the input;
whenN < 2(n - 1) we have]| N/2| + 1 < n, SO a node can some-
times decide before it has heard from all the nodes, even in the case
of the all-zeroes or the all-ones input assignment.

5. COMPUTING COMMON KNOWLEDGE

As noted in Section 2, simultaneous coordination is closely re-
ted to common knowledge: a simultaneous action can only be

maximum if it has heard the smallest or largest possible value (re- Performed when itis common knowledge thatitis being performed.
spectively). However, if this smallest or largest value is not present To understand simultaneous consensus in dynamic networks, we
then the node cannot halt until it hears from everyone. characterize the time required to achieve common knowledge.



The results in this section hold for common knowledge in gen- before we remove edges we choose some nogeX u {u} and
eral; see Section 6.1 for a discussion of how they apply to simulta- add edges betwean and all nodes in the graph. Then we remove
neous consensus. Roughly speaking, we prove the following: all edges from nodes iX to all nodes excepX u {w}. In the

o o ) resulting graph, only nodes if¥ u {w} hear from nodes iX in
e Even ifn is knowna priori, it takesn — 1 rounds to acquire  qund¢ - k + 1. Our final step is to use the induction hypothesis
common knowledge of any fact that is not “trivially common {5 nide X U {w} at timet — k + 1 from (u,t), so that we have

n3
knowledge™: past, (t-k)nX = @. O
e If n is not knowna priori, then it takes: rounds to acquire An immediate consequence of Theorem 5.1 is that all initial val-
common knowledge of any fact about time O that is not ini- ues become common knowledge precisely at time 1 if n is
tially common knowledge (such asitself). known a priori. Thus, a simultaneous consensus protocol that is

all-case optimal can be designed. It decides at time1l in all
executions, and no protocol for this task can ever decide earlier. In
fact, Theorem 5.1 implies that simultaneously acting based on any
nontrivial function of the initial values can be done at time- 1
(whenn is known), and this is all-case optimal.

We also note that Theorem 5.1 implies that solving simultaneous
consensus is as hard as computing an upper bound on the count,
because a simultaneous consensus protocol can only decide at time
tif t > n represents an upper bound on the count.

For simplicity, we focus here on facts pertaining to time 0, such as
the inputs to consensus. However, the result holds for other times
as well; any fact about timecannot become common knowledge
until timet¢ +n - 1.

Recall that a fact is common knowledge(i@¥, ¢) iff it holds at
all points (H,t) ~ (G,t) in the similarity component of G, t).

of the dynamic grapl&; at timeso0,...,n — 2 (and in particular,
in roundsl,...,n — 2) while still remaining inside the similarity

component of G, t). Formally, we show the following. 6. A-COORDINATED CONSENSUS
THEOREM 5.1. For every full-information protocol and all dy- Since simultaneous consensus is expensive and requires
namic graphsz and H, rounds even in very well-behaved executions, it is interesting to
consider a trade-off between the performance of the consensus al-
1. (G,t)~(H,t)forall t <n-2;and gorithm and the degree of coordination it achieves. To this end we

2. If n is not known a priori then in addition(G,n — 1) ~ consider the following problem:

(H,n-1). DEFINITION 4 (A-COORDINATED CONSENSUY. A protocol
solvesA-coordinated consensifsit solves consensus, and in ad-

PROOF SKETCH The main conceptin the prooffisding: given dition, all nodes decide no later thah rounds after the first node

asetX c V, timest’ <t and a node: € V, we say thatX at time

¢ can be hidden fron{u, ¢) if there is a point(G’,¢) ~ (G, t) decides.
such thatpast ., 1 (t') N X = @. Hiding X at timet’ means In the sequel we assume, unless stated otherwise, that the count is
that we move inside the similarity component(@f, ¢) to a point initially known. (An upper bound on the count can be used instead,

(G',t) ~ (G, t) where node: knows nothing about the states ofthe  or one can combine the algorithm in this section with the criterion
nodes inX from timet’ onwards. Once we have done this, we can from Section 3.)

add or remove any edges adjacent only to nodes im roundt’, One might expect thaf\-coordinated consensus should not be

while still remaining in the similarity component ¢, ¢), because much easier than simultaneous consensus. For example,Avken

u does not learn of these changes by time 1, we require all nodes to decide within one round of each other;
To prove the theorem, we show by inductionfog n —2 that for it seems that if we can achieve this, then simultaneous coordina-

any setX of size at most: — k — 1 and for any nodes ¢ X, setX tion can be achieved at not much extra cost (a cost aefiditional

attimet — k can be hidden fronfu, t), without altering any round rounds, perhaps). Indeed, in the worst case this expectation is borne

preceding time — k — 1. We hide sets oflecreasing sizas we out by the following theorem.

go back in time; essentially, we “use up” one node for each round
we go back. The case whekte= n — 2 yields the theorem, since it
shows that we can hide any single node at timén —2), and then
change its state. In particular, we can hide any node at time 0 from

THEOREM 6.1. For any A-coordinated consensus algorithm,
there exists an execution in which no node decides before round
n — A -1, even whem is knowna priori.

any other node at time — 2, so the state of no node is common PROOF. Suppose that there exists/&coordinated consensus
knowledge at time: — 2. Moreover, ifn is not knowna priori, then algorithm.A, such that in every execution some node decides before
we can hide any node at time 1 from some node # w at time time R <n-A-1. TheninA, all nodes decide no later than time

n—1and proceed to add more nodes to the network, as in the proof £ + A < n — 1 in every execution. We can obtain an algorithm
of Lemma 3.1. By adding more nodes we can increase the dynamicfor Simultaneous consensus in fewer thar 1 rounds by simply
diameter of the network to more than- 1, which again shows that ~ having each node rud and outputA's decision value at timé +
the state of no node is common knowledge (nor is the size of the & <7 - 1, contradicting the lower bound from Section 5. [

network common knowledge). This result shows the existence of only one “bad” execution where
To hide a seX” at timet—k we must remove all edges fromnodes g node can decide until time- A — 1. Given the general similar-

in X to nodeu and to other nodes thatis causally influenced by ity petweenA-coordinated consensus and simultaneous consensus,

inroundst —k+1,t -k +2,...,1. ("Removing” here means that - gne might expect that A-coordinated consensus protocol would
we move to a poin¢G’, ¢) ~ (G, ) where these edges do not exist, neverbe able to decide before time— A — 1 (just as simultane-
by first hiding both endpoints of the edge at tihe k + 1 from ous consensus can never decide before timel). However, we

some node at tim¢.) To ensure that connectivity is preserved, now show that even in 1-coordinated consensus, nodes can some-

3For example, the current round number is trivially common times decide significantly earlier than time- A — 1. Consider the
knowledge. following protocol.




Clear-Majority Protocol. Fix some integekmax, and for each
k=1,...,kmax, letty :==n—k-A - 1. In each round the nodes

forward the set of all node UIDs they have heard from so far, along

with the input to each node. At timig, an undecided node decides
v iff it has heard of at leastn/2] + 1 + (5)A inputs equal ta.
Finally, at timen — 1, all the nodes know all the inputs; at this point

any undecided node decides on the majority input (breaking ties in

some consistent way if there is no majority).

LEMMA 6.2. The clear-majority protocol solves-coordinated

that is, if it is known that everyone will decide no later than
timen - 1.

e Decidev attimen — 2A -1 if
(R(A),Gyn—2A 1) £ K B DESD (A = 4),

that is, if it is known that everyone will know at time— A - 1
that everyone will decide no later than time: — 1.

consensus. Furthermore, when the fraction of identical inputs is at N 9éneral, attime—k-A -1, anode decidesif it has not decided

least(1/2 + e)n for some constant, and if A < (en —1)/2, all
nodes can decide after— ©(v/nA) rounds.

PrROOF Agreement and validity follow immediately from the

fact that nodes always decide on the majority value (or, if there is

no majority value, all nodes reach time- 1 and decide in some
consistent way). To show that the protocoliscoordinated, sup-
pose that in some execution, the earliest nodiecides on value

already and

(R(A),G,n-k-A-1) e KB FDAD
E@(n—A—l)E@(n—l) (A/ _ ’U) ]

It is easy to see that any instantiation of this scheme satigfies
coordinated consensus; this is in some sense the optimal strategy.
However, it requires nodes to keep track of information about the

at timet;.. We must show that all nodes decide no later than time full dynamic graph, and to evaluate complex knowledge criteria;

tr + A= tr_1.

the clear-majority protocol uses less precise rules, but they are sim-

Because the communication graph in every round is connected, pler and easier to evaluate. In general, any approximation for the

forall s < n -1, attimen — s — 1 in the execution each node
has heard all but at most of the inputs. In particular, by time
ty—1 = n— (k—1)A -1 each node has heard all b{it - 1)A
of the inputs. Since: decidesv at timet,, the input assignment
contains at leagtn/2| + 1 + (’;)A values equal t@, and hence by
timet,_1 each node hears at ledst/2] + 1 + (5)A - (k- 1)A =
[n/2] + 1+ (')A inputs equal tw. Thus, all nodes that do not
decide at timej, decidev at timet,_1 = tx + A, as required.

Now suppose that for some constantthe input assignment
contains at leas{1/2 + ¢)n copies of some value. By time
tr =n —k-A -1 each node hears all biat A of the input values,
i.e., atleast1/2+¢)n — k- A copies ofv. If A < (2en-1)/4, we

Setkmax = |/ (2en —1)/A - 1], and then simple algebra shows
that (1/2 + €)n — kmax - A > ("32%) + [n/2] + 1; thus, by time

trmax » €ach node hears sufficiently many copies & decide. For
this value ofkmax We havety,.. =n-0(vVnA). |

knowledge criteria above can be used, as long as the same approx-
imation is applied consistently at each decision peintk - A — 1.

ApproximateA-Ladder. Let A be an eventual consensus al-
gorithm with round complexity at most— 1, let kmax € N, and fix

. k,v -
a collection{®} }uEV,ke[kmax],ve{O,l} of local knowledge formu

las, such that, can evaluate the satisfaction ®f'* based on its
local state. These formulas represent the decision rules, and they
must satisfy:

(a) Consistency: for all u,
R(A) E P20 - (A=0)andR(A) £ d0 - (A=1).
(b) Timeliness: for all executiongs,
(R(A),G,n-1) e ®%° vl

The clear-majority protocol can be viewed as an instance of a (c) Coordination: forall 1 < k < kmax andv € {0, 1}, if

more general scheme, in which nodes decide as soon as they know

that everyone else will decide the same value withirounds. Us-

ing this abstract scheme, any eventual consensus algorithm can be
transformed into a\-coordinated consensus protocol as follows.

Let“A = v" stand for the formula that asserts ttiét, ¢ ) is v-valent
with respect to algorithr (that is, in any possible extension of the
first ¢ rounds ofG, all nodes decide). Let K¢ denote the for-
mula that means “node knows that at time fact  will hold”, and

let E®p = Ao K2 . Now we can state the protocol:

The A-Ladder. Given an eventual consensus algoritbénin
which all nodes decide no later than round- 1, we first trans-
form A into a full-information algorithmA’. Nodes executed’,

(R(A), G,n-k-A-1) = K,9%?, then
(R(A)v Gvn - (k - 1)A - 1) = /\weV Kw(I)ﬁ;L’U-

Then a protocol forA-coordinated consensus is given by the fol-
lowing: the nodes simulate algorithpd with their local inputs,
but do not outputd’s decisions immediately. Instead, for each
= kmax, - - -, 1, @ nodeu (which has not decided already) decides
vattimen-k-A-1if (R,n-k-A-1) e K,05°,

LEMMA 6.3. Any instantiation of theé\-ladder protocol solves
A-coordinated consensus.

Finally, let us give another instantiation of the approximAte

but do not immediately output its decisions. Instead, each unde-ladder, which decides quickly in graphs where all nodes hear from
cided node: evaluates the following decision rules at each decision €veryone quickly.

pointt, = n— A -k — 1 (the rules are given here in reverse order

w.r.t. the time each rule is evaluated):

e Decidev attimen-1if (R(A"),G,n-1) £ K, (A" =v), that
is, if it is known that the run is-valent for.A".

e Decidev attimen - A -1 if
(R(A),G,n-A-1)E K, B9 (A’ = v) ,

Dynamic Diameter-Based Protocdlet f : {0,1}" —
{0,1} be any function that satisfie§(0™) = 0 and f(1") = 1.
Nodes always forward their full view of the execution so far. At
timen — k- A — 1, a node decideg(z) if it knows that the input
assignment i, and it knows that there exists somesuch that
the dynamic graph had a dynamic diameter of at nidsintil time
(k-1)D (where(k-1)D<n-k-A-1).



To see that this decision rule is consistent with the requirements, This reasoning, applied repeatedly, yields the following lemma.
suppose that the rule for deciding at time- & - A — 1 holds at .
nodeu, i.e.,u knows the input assignment and dynamic diameter ~ LEMMA 6.4. Let G, Go, G be runs, where irGo and G, all
of the graph is at mosD until time (k — 1)D. If k > 2, then for nodes receive input 0 anq 1, respectively. Assume that for some
any two nodesu, w’ we have(w, (k - 2)D) ~ (w', (k - 1)D):; €21 _and timet, th_e following two sequences of steps (i.e., edges)
consequently at timék — 1)D, all nodes know that the dynamic ~ €Xistin the similarity graph:
graph had diameter at most up to time(k - 2) D and all nodes (Gyt+A) ~yy (Hiyt+A),
know the input assignment. When time- (k—1)A -1 arrives the
decision rule fork — 1 is satisfied. Ifk = 1, then the decision rule (Hi,t+24) ~up (Ha,t +24),
for timen - (k- 1)A - 1 = n — 1 holds trivially, because it only

requires nodes to know the input assignment. (Hpo1,t +LA) ~y, (Go,t +LA)
The value we choose fOty.x should satisfy(kmax — 1)D <

1 — kmax - A — 1, otherwise the decision rule for timg__ would and

be unsatisfiable. If we choo$g..x > [n/(D+A) ], nodes can stop (Gt + A) ~y (Hi E+A),

asearly astime—kmax-A-1 <n(1-A/(D+A))+A =nD/(D+ , ! ,

A) + A. For example, if the communication graph is always a (Hi,t+2A) ~y (Ha,t+24A),

clique, then the running time is slashed by a factoAofNote that
the algorithm does not commit in advance to some diamBter
nodes always evaluate the stopping condition with respect 8,all
and check if some bound satisfies the requirement.

(Hé,l,t#—éA) ~ (G17t+£A);

Then in anyA-coordinated consensus algorithm, no node can de-
6.1 Lower Bounds cide by timet in G.

In the following, we prove two lower bounds that complement PROOF SKETCH As outlined above, if some node decidem
the upper bounds from the previous section. (G, t), we show by induction on the path lengt)) that some node
In Section 5 we proved a lower bound on common knowledge. decides in (G1-.,t + ¢A), violating validity. O

Viewed through the lens of simultaneous consensus, we can in-

terpret our strategy as follows: to show that simultaneous consen-The condition of Lemma 6.4 involves many different timess
sus cannot decide ifG, t), we showed that there exist two points A, +2A,...,t+¢A. A simpler condition that implies the lemma
(Go,t) and(G1,t) such that can be obtained by replacing all times with the last time{A (to
still obtain a lower bound for timé). We show the existence of the
following two walks in the similarity graph:

(Gt +0A) = (Hoyt + LA) muy (Hyyt+0A) ~y ...
~ug (He,t +LA) = (Go,t+€A), and

(&) In Gy the input to all nodes is 0, and i#; the input to all
nodesin 1; and

(b) (Go,t) ~ (G7t) ~ (Glat)'
To briefly review the argument, suppose that some node decides

in (G,t). Consider the path betwedi, t) and(G1_,,t) in the (Gt +EA) = (Hot + EA) ~yy (Hy b+ LA) vy -
similarity graph; denote this path by ~u (Hy,t+0A) = (Gi,t+LA).

(G1) = (Ho,t) ~ur (H1,t) ~uz oo~y (Het) = (Gro, ). This only strengthens the condition, sin@®, t) ~., (G’,t) implies
We show that some node decidesn (G1-.,t), violating valid- (G,t") ~, (G,t") forall t’ < t. Thus the existence of these walks
ity, by employing the following argument at each siep1,...,¢ is sufficient to apply Lemma 6.4.
along the path: When a full-information protocol is used, all information about
1. Some nodev decidesv in (H;,t); therefore, the input becomes common knowledge at time 1; therefore we

cannot hope to have+ /A > n — 1 when we apply (the simpli-

fied version of) Lemma 6.4. In order to maximizand obtain the

) ) ) o strongest possible lower bound, we must minimizehat is, we

3. Nodeu; also decides in (Hi.1,t), because it cannot distin- )¢ find short walks in the similarity graph. Since our ultimate
guish(Hi.1,t) from (H;, t). goal is to span betweef and two runs where the inputs arend

This argument hinges on simultaneity, and we cannot employ it as- 1 (respectively), the walk should allow us to flip the inputs of as

is to prove lower bounds oi-coordinated consensus. However, many nodes as possible in each step.

A-coordination allows us to make the following weaker argument:

2. From simultaneity and agreement, nedelecides in (H;,t);
therefore,

1. Some nodev decidesv in (H;,t); therefore, Lower bound for static pathsae now apply the strategy
2. From A-coordination and agreement, node w; decides v in described above to obtain an- O(A"**n°™) lower bound in
(H;,t+ A);* therefore static paths of lengtl. A path is a natural candidate for proving

strong lower bounds: we can flip the inputs of nodes at one end
of the path, and the nodes at the other end do not find out for a
long time. However, to use Lemma 6.4, we must be able to flip

3. If (Hiyt + A) ~u, (Hiv1,t + A), nodew; also decides in
(H;s1,t+A), because it cannot distingui$lf;.1, ¢ + A) from

(Hi’”_A)' ] _ the inputs ofall the nodes in the network, not just the nodes at
The key difference is that unlike before, now we have to pay for the ends of the path. Thus, we start with some path . ., u,,,
each step we take in the similarity graph; our lower bound is weak- and flip the inputs in some prefix, . . . ,ug of the path; node,,
ened byA rounds at each step, as we move forward in time. cannot distinguish the two cases until time roughly 3. Then
“Technically, there exists sones< ¢ + A such that; decidesv in we find a short walk in the similarity graph from our original path
(H:,t'). The essential property is that by time A nodewu; has U1, ..., un 10 @ new pathug.i, ..., un+p (i-e., we preserve the

already decided in H;. order of nodes, but we rotate the path so that now it staris.at
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Figure 2: lllustration of Lemma 6.5. The shaded arcs indicate
which nodes can distinguisty from G’. Switching from P, to
Py, “cuts off” the spread of information about the missing edge,
and prevents it from reaching node+ s — 1.

note that here and in the sequel, node indices are given madulo
The parametep will be fixed later). Now we can flip the inputs
of nodesug.1,. .., u2g; Nodeug = u,.g, located at the end of the
new path, cannot distinguish until time roughly- 5. We require

at most[n/8] such steps to flip any input assignment into either
the all-zero or the all-one input assignment.

The strength of the lower bound is determined by the length
of the walk from one pathy;.g+1,...,un+i.3, 10 the next path,
U(i+1)-B+15 - - - » Un+(i+1).3- 1O construct the walk we use an intri-
cate recursion. During the walk between paths we do not change
any input values; in the sequel we focus on the dynamic graph and
assume some fixed signature for all the executions we consider.

Let Py := ug+1, - - -, un+x denote the path starting at nodg, 1,
and letC denote the cycleu, ..., u,,uq. It is convenient to use
the cycleC to bridge between paths: we cannot remove any edge
of a path without violating connectivity, but a cycle is 2-vertex con-
nected, so we can drop any of its edges. Intuitively, to move from
a pathP; to a different pathPy.s (for s # 0), we first closeP;, to
form the cycleC, then drop edg€vy.s, Vk+s+1} tO obtain Py.s.

The following lemma shows how we can move from a path to the
cycle while ensuring that some node cannot distinguish the two ex-
ecutions; it represents an intermediate step which will be used later
to move between two paths.

LEMMA 6.5. Letk € {0,...,n—1},s€Z,and let0 < a < |s|
andb > 0 satisfya + b < n — s. Fixatimeb < t < n - 1. Consider
two graphsG, G’ that agree on the firshax {0, — b — a} rounds,
such that

e Inroundsr € [t-b-a+1,t-b], G(r) = C andG'(r) = Py;
e Inroundsr € [t —b+1,t], G(r) = G'(1) = Pgss.
Then(G,t) ~u,,., (G',t).

PROOF SKETCH Assume that > 0 (the other case is symmet-
ric). Ateachtimer = (t-b-a+1)+ifori=1,...,a, only
nodesuy—,. .., ur+i+1 Might have learned of the missing edge,
{uk,ur+1}. Thus, at timet — b, only nodeSuy—q, ..., Uk+a+1
can distinguishG' from G’. Next, both graphs switch t@.,
where the distance between any nade,, ..., uk+q.+1 and node
Uk+s—1 = Uk—(n—s+1) IS @t l€astr — s —a. Sinceb < n - s —a, node
uk+s—1 does not learn of the difference by timésee Fig. 2). [

Next, we show how to use Lemma 6.5 to recursively transform a
suffix of the execution from one patf, to a different pathP. .

(Our eventual goal is to transform the entire execution from one
path to another.) Let((G,t),(G’,t)) denote the distance be-
tween(G, t) and(G’, t) in the similarity graph.

LEMMA 6.6. Fix atime0 <t <n -1 and avaluel < 8 <
n - 1. LetG, G’ be dynamic graphs that agree up to time (n -
1-p), suchthatinrounds € [t — (n-1-8) +1,t], G(r) =
P, andG'(r) = P (for somek, k'). Thend((G,t),(G’,t)) <
9(n/B)=".

PROOF SKETCH Definelg := [log,(n/3)]. We show by in-
duction on/; thatd((G,t),(G’,t)) < 34** — 1. The claim then
follows, because

323+1 1< Blogz(n/5)+2 _9 (E)logz 3
< 3 .

Let us denotels := 3 + 1. Note that we are transforming the
suffix [t — (n—-1- ) +1,t] of the execution; hence, smaller values
of 3 (or equivalently, larger values ég) are “harder” because they
require us to transform a longer suffix.

The induction base is straightforward; it is omitted here. For the
step we use Lemma 6.5. Set g andb =n -1 -23. Given static
graphsH1, H», let G[ H1, H2] be the dynamic graph defined by

G(r) r<t-(n-1-p5),
G[H:,H2](r) :=={ Hy t-(n-1-B)<r<t-b,
Ho t-b<r<t.

Sinceb = n -1 - 24 andlsg = €3 — 1, the induction hypothesis
shows that for any grapH and for any two path®,, P,; we have
d((G[H, P,],t),(G[H, Py],t)) < d(28). Further, Lemma 6.5
shows thatd((G[ Py, Py+s],t), (G[C, Pys],t)) = 1 for any ¢
(because these points are indistinguishable to some node). Thus,
we construct the following walk (see Fig. 3):

d(28)

(G.1) = (GLP Pil.t) " (GLPe, Progl )|

enTG.S
d(2p)
(GG, Priglit) 7 (GO, Pyripl,t)

=
Lem. 6.5

d(2p)
(G[Pyr, Pyriplit) - =7 (G[Pyrs Pyr]

1) = (G, 1)
The length of the walk is at mog(28) + 2 = 3(3% - 1) +2 =
3ta*t 1, U

THEOREM 6.7. In the static line graph, for any input assign-
ment, noA-coordinated consensus algorithm can decide by time

n - O(ATRES ! T3 ) wn - (A0 72),

PROOF SKETCH Let o be any signature, and let, o1 be the
corresponding signatures where all nodes receive input O or 1, re-
spectively. LetP®™ denote the dynamic graph definedB§™ (r) =
P, for all r, using signature € {o, 0,01 }. Also sett := n—23-1.

Forwv € {0,1}, we span betweePP-?,t) and(P™ 7" t) by
repeating the following step3(n/j3) times:

1. Flip the inputs of the leftmost nodes on the path toin one
move (the endpoint of the line cannot distinguish),
2. Applying Lemma 6.6, move from our current po{@”", ¢) to

(P**P ) in O((n/B)"#2°) steps.

The total length of the walk i¥ = O((n/B) - (n/B)*52°) =
O((n/B)*1°823) Now, fix 8 such that3 > ¢- A - (n/B) *'°82¢,
For this setting of the parameters, Lemma 6.4 shows that no node

decides by timé — £A = n — O(A o3 51~ 553 ), O



t— bI -a tf b 7i‘

crrd 1 Q)1 Q)|

1 1 1 I.H. (d(23) steps)
ctrepal: | () 1 (O

t t { )Lem. 6.5 (one step)
cerst: | OO U

+ } | I.H. (d(23) steps)
G[C, Pyrsp] : O : O : (8]

+ + O | ) Lem. 6.5 (one step)
G[Pkupkuﬁ]: : : :

: Q : : I.H. (d(2p) steps) (9]
C:[F)kr7 Pkr] : | Q | Q |

[10]

Figure 3: The recursion from Lemma 6.6. The two graphs shown
for each step represent the communication graph for rounds-

a,...,t—bandforroundg -b+1,...,t. [11]

The final theorem states that the dynamic diameter-based proto-
col is asymptotically optimal for diameter3 = O(A), even for
static executions. The proof uses Lemma 6.4 with(A ~ n/2,
that is, we construct a short walk in the indistinguishability graph [13]
for time roughlyn/2 (recall thatt is the time for which we wish
to show the lower bound, antlis the length of the walk we con-
struct in the similarity graph). We start with an execution whose
firstt rounds are a static graph with diameferand the remaining
n/2 -t are a static path. Thig:/2 - t)-round suffix means that the
nodes at the end of the path require roughisounds to learn what
the communication graph was in each of the fitg2 — ¢ rounds.

In £ = O(t/D) steps in the similarity graph, we move from this
execution to a static path. Because we need only maintain indis-
tinguishability until time roughlyn/2, once we have reached the
static path we can flip the inputs of nodes. ., n/2 on the path in

one step; node does not find out by time/2. By repeating this
process twice we can flip all the inputs. Since we haveO(¢/D)

and we are constrained by ¢A < n/2 (as indistinguishability is
only maintained until time:/2), we can apply Lemma 6.4 to obtain
the lower bound at time= Q(nD/A).

[12]

[14]

[15]

[16]

[17]

THEOREM 6.8. For everyD = O(A), there is a static graph
H = (V,Eg) with diameter at mosD such that for every\-
coordinated consensus algorithm, every inpatnd every dynamic
graphG = (V, E, o) with E(r) = E for all roundsr until the first
node decides, no node can decide at a time befgreD/A).

(18]

[19]
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