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ABSTRACT
Devices in a cognitive radio network use advanced radios to iden-
tify pockets of usable spectrum in a crowded band and make them
available to higher layers of the network stack. A core challenge in
designing algorithms for this model is that different devices might
have different views of the network. In this paper, we study two
problems for this setting that are well-motivated but not yet well-
understood: local broadcast and data aggregation.

We consider a single hop cognitive radio network with n nodes
that each has access to c channels. We assume each pair of nodes
overlaps on at least 1 ≤ k ≤ c channels.

We first describe and analyze COGCAST, a randomized algo-
rithm that solves local broadcast in O((c/k) ·max{1, c/n} · lgn)
time, with high probability, by spreading information in an epi-
demic manner through the network.

We then propose COGCOMP, a randomized algorithm that solves
data aggregation in O((c/k) ·max{1, c/n} · lgn+ n) time, with
high probability. The COGCOMP algorithm uses COGCAST as a
key primitive to establish a spanning tree among the nodes, so that
data can be aggregated from leaves to root.

We conclude with a collection of lower bounds that show COG-
CAST is near optimal (in particular, within a lgn factor) in many
cases. These bounds introduce new techniques of potential stan-
dalone interest for those concerned with proving fundamental lim-
its in the cognitive radio network setting.

Categories and Subject Descriptors
C.2.1 [Computer Communications Networks]: Network Archi-
tecture and Design—Wireless communication
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1. INTRODUCTION
In a traditional wireless network, devices are assigned with one

(or a set of) dedicated channel(s) for their network communica-
tion. In a cognitive radio network, by contrast, each device is
equipped with an advanced radio (called a cognitive radio) that
surveys a crowded spectrum band to identify available fragments.
These fragments are partitioned into appropriately sized frequency
bands, and are then presented to the higher layers of the stack as a
set of abstract communication channels. Cognitive radio networks
are increasingly relevant due to two scenarios: allowing secondary
users (e.g., mobile wireless devices) to use leftover spectrum in li-
censed bands assigned to primary users (e.g., television broadcast-
ers) [10, 21, 22], and improving the number of networks that can
practically coexist in an unlicensed band.

A core challenge of cognitive radio networks is that network
conditions can vary between devices. A pair of devices, therefore,
might end up with two different channel sets that overlap in only a
limited number of unknown positions. This challenge is bad news
for network practitioners, as it complicates their efforts to provide
reliable services, but it is good news for distributed algorithm de-
signers, as it generates many practically-motivated, interesting, and
tractable theory problems well-suited to our analytical strengths.

Rendezvous and Beyond
The majority of algorithmic results for cognitive radio network
models focus on the problem of deterministic rendezvous. In its
basic form, this problem assumes two devices (called “nodes” be-
low), u and v, have access to channel sets Cu and Cv , respectively.
Both sets are of size c and |Cu ∩ Cv| ≥ k, for some 1 ≤ k ≤ c.
Executions proceed in rounds. In each round, each node can par-
ticipate only on a single channel in its set. Nodes do not know each
other’s channel set in advance. The rendezvous problem is solved
in the first round that u and v choose some common channel in
Cu ∩ Cv .

Many papers have focused on creating deterministic channel se-
lection schedules that guarantee a rendezvous in bounded time [6,
11, 12, 15, 16, 19]. The best solutions achieve an O(c2) bound [6,
11]. It is straightforward to show that basic uniform randomized



channel hopping would improve this bound to O(c2/k) (which is
better for non-constant k).1

In this paper, we turn our attention to two related problems in a
generalization of this model with n nodes where every pair of nodes
maintains a channel overlap of size at least k. These problems are
equally as useful as rendezvous but much less well-understood. In
both cases, we deploy randomization to achieve high efficiency and
simple algorithms. We present our results below.

Result #1: Local Broadcast
We begin by studying local broadcast: a designated source node
must disseminate a message to all other n − 1 nodes in the net-
work. This problem is a key primitive in cognitive radio networks
because it allows a source to synchronize the remaining nodes in
the network (e.g., perhaps disseminating shared random bits or net-
work configuration parameters). A simple strategy to solve local
broadcast is for all nodes to run (randomized) rendezvous with the
source transmitting its message in each slot. Given the rendezvous
bound from above, this would solve the problem in O(c2/k) slots
(with perhaps an extra lgn factor if high probability with respect
to n is required).

In this paper, we describe and analyze a broadcast algorithm
COGCAST that solves the problem inO((c/k)·max{1, c/n}·lgn)
slots, with high probability. For n ≥ c, this time bound reduces to
O((c/k) · lgn) slots, which is a factor of c faster than the straight-
forward solution.

The COGCAST algorithm itself is simple: in each time slot, each
node randomly chooses a channel among its channel set, all nodes
that know the message broadcast, and all other nodes listen.2 This
algorithm gains its complexity advantage by embracing, like a bi-
ological virus, an epidemic spread of information through the net-
work: the more nodes that know the message, the faster it dissem-
inates. The advantage of our algorithm’s simplicity is that it is ro-
bust: because nodes do the same thing in every slot, it can grace-
fully handle changes to the network conditions, temporary faults,
and so on—suitable properties for such a basic primitive.

Result #2: Data Aggregation
We next turn our attention to a more general problem: data aggre-
gation. In this case, each node in the network has some data (e.g., a
sensor reading), and a designated source node wants to compute a
function based on these data. A solution to this problem can be used
to solve many theoretical tasks (e.g., reaching consensus to main-
tain consistency) as well as practical tasks (e.g., analyzing network
condition snapshots to calculate a quality of service metric), and is
therefore widely useful.

As before, a straightforward solution would be for each node
to once again run basic (randomized) rendezvous. In this case, the
source node should listen while the non-source nodes transmit their
data. As noted, each non-source node will rendezvous with the

1The preference for determinism in this literature is common but
should not be seen as a necessity. A main justification in these
papers is that determinism guarantees success, whereas random-
ized solutions have a failure probability. While true in many cases
(see discussion section for more details), we argue that these er-
ror bounds can be easily tuned in practice to be negligible. An-
other justification for determinism is that once a pair of nodes swap
information, they can calculate each other’s schedule going for-
ward, simplifying subsequent rendezvous. The same result can be
achieved with randomization; e.g., nodes can swap the seed for a
pseudorandom number generator.
2A detail we are skipping here but is addressed in the model section
is contention. In particular, we assume that if multiple nodes trans-
mit on the same channel simultaneously, one message succeeds.

source within O(c2/k) slots. However, if multiple nodes share the
same channel during the rendezvous, only one can succeed in its
transmission. As n grows, this crowding will also grow. Assuming
that the contention resolution is fair, the obvious upper bound for
this straightforward strategy is O(c2n/k).

In this paper, we describe and analyze a new data aggregation
algorithm COGCOMP that instead solves the problem in O((c/k) ·
max{1, c/n} · lgn + n) slots, with high probability. For n ≥ c,
this reduces to O (n lgn/k + n), which can be significantly faster
than the straightforward solution.

The COGCOMP algorithm operates in multiple phases and uses
COGCAST as a key subroutine. In more detail, the source begins
by broadcasting an initiation message using COGCAST. This exe-
cution of COGCAST constructs a spanning tree among the n nodes,
with the source node being the root. The phases that follow co-
ordinate nodes sufficiently so that they can use this tree to aggre-
gate data to the root (i.e., the source node) efficiently. This process
is complicated by the lack of a common control channel and the
corresponding inability for the aggregation to proceed in a well-
synchronized manner: the structure of the tree depends on which
processes overlap on which channels.

Result #3: Lower Bounds
A natural follow-up question given our local broadcast solution is
whether more complex algorithms could beat COGCAST’s perfor-
mance. We answer this question in the negative by proving two
lower bounds. First, we prove that Ω((c/k) · max{1, c/n}) slots
are necessary to solve local broadcast with constant probability,
matching our upper bound within an O(lgn) factor. This bound,
however, requires the assumption that local channel labels are ar-
bitrary (e.g., if u and v share channel q, they might each have a
different local label for this channel)—an assumption for which
COGCAST works. Under the assumption of global channel labels,
our third lower bound proves the necessity of Ω(c/k) slots, (nearly)
matching our upper bound in the c ≤ n case. The first lower bound
leverages arguments based on the properties of randomized match-
ings generated in bipartite graphs, while the second leverages a
careful treatment of expectations. We note that lower bounds are
relatively rare to date in the related cognitive radio network litera-
ture, especially for randomized algorithms.

2. MODEL
We consider a single-hop cognitive radio network containing n

nodes (each with a unique identity) andC channels. We divide time
into synchronous slots and assume all nodes are activated simulta-
neously. We assume each node has access to c of the C channels,
for some 1 ≤ c ≤ C, and that each pair of nodes overlap on at
least k channels, for some 1 ≤ k ≤ c. Each node knows the value
of k and its own set of available channels. However, nodes do not
know anything about the channels assigned to other nodes. We as-
sume that this channel assignment is static. (Nevertheless, as we
shall later see in the discussion section, COGCAST can also toler-
ate changing (dynamic) channel assignments and provide similar
guarantees.)

We assume nodes assign local labels to their c channels. These
labels are assigned arbitrarily and are not necessarily uniform among
nodes: i.e., for a given channel q, it might be labeled as i at node u,
and as j 6= i at node v. This assumption highlights the reality that
nodes in cognitive radio networks are not dealing with a uniform
view of the network or pre-assigned channels (e.g., as discussed
in [11].) This assumption strengthens our upper bounds but poten-
tially weakens our lower bounds. (With this in mind, we explicitly
address the channel label assumption when presenting our lower



bounds and prove results for both local channel label and global
channel label assumptions.)

In each time slot, each node can operate (i.e., broadcast or listen)
on one of its c available channels. If only one node broadcasts on
a channel, then all nodes listening on that channel will receive the
message. For the case of multiple broadcasts, we use a collision
model that abstracts away a standard backoff procedure: if mul-
tiple nodes send messages concurrently on one channel, then one
of these messages—chosen uniformly at random—is received by
all nodes that are listening on the channel. Each broadcaster gets
feedback as to whether it has succeeded or failed, and failed ones
receive the message that was sent.3 This behavior can be imple-
mented via standard backoff protocols, with poly-logarithmic cost
(with respect to n), in almost all reasonable radio network mod-
els.4 Interested readers can refer to the appendix of the full version
of this paper for more implementation details.

3. RELATED WORK
Cognitive radio networks is an area under active research. From

our point of view, in this domain, researchers usually focus on two
sub-areas. In the first sub-area, the goal is to build cognitive radios,
with an emphasis on physical layer issues such as detecting spec-
trum use. (E.g., see [4, 8], also see survey papers from Akyildiz et
al. [2], and Yucek et al. [23].) In the second sub-area, researchers
assume there exists a low-level cognitive radio providing a simple
model in which each node has access to a subset of all channels; the
question at hand is to develop algorithms to solve various problems
(typically, rendezvous). This paper belongs to the second sub-area,
where we focus on solving broadcast and aggregation. We will pro-
vide a short review of related work below, along with a discussion
of rendezvous in cognitive radio networks.

Broadcast
Broadcasting is a fundamental problem in computer networking.
Although it has been extensively studied in the context of tradi-
tional wireless networks, there has been limited research address-
ing it in the cognitive radio network setting.

For example, in a system paper [14], the authors consider a multi-
hop cognitive radio network. They construct a “minimal neighbor
graph” for each node—which contains the minimum set of chan-
nels through which the node can reach all its neighbors—so broad-
cast can be efficiently conducted. More recently, in a paper by Song
et al. [20], by carefully constructing channel hopping sequences,
the authors were also able to accomplish broadcast in multi-hop
cognitive radio networks. Both of these papers focus on simula-
tions to show the effectiveness of their protocols. In this paper,
we focus on an algorithmic approach, guaranteeing successful lo-
cal broadcast with high probability and analyzing our algorithms
for worst-case performance.

Another approach for tackling the broadcast problem is to as-
sume that all necessary information is known in advance (e.g., sets
channels that are available to nodes in each slot, sets of overlap-
ping channels that are available to pairs of nodes in each slot), and
3In the cognitive radio network community, the collision model
is usually stronger: even if multiple nodes are sending messages
concurrently on one channel, all of these messages will be received
by all nodes that are listening on this channel (e.g., [6, 11]).
4For example, broadcasting with exponentially decreasing prob-
abilities (e.g., [1, 3]), will ensure a message succeeds with high
probability within O(log2 n) rounds. Whenever a message suc-
ceeds, everyone else receives it and aborts. The only node that
does not abort is the node that succeeded, and hence it knows that
it succeeded.

then focus on developing efficient algorithms which can find good
schedules to solve the broadcast problem. Both [17] and [13] be-
long to this category. In this paper, we focus on assuming minimal
a priori environmental knowledge.

Rendezvous
Rendezvous is perhaps the most studied problem today in cogni-
tive radio networks (e.g., see [16] for a short survey). The basic
requirement is that each pair of nodes in the network must meet ev-
ery so often. The performance of rendezvous protocols is usually
measured in terms of the time it takes for two nodes to meet. Ren-
dezvous can be used to solve local broadcast: once the source node
has met all its neighbors, broadcast is complete.

There are several important earlier papers on rendezvous worth
mentioning, including [19] by Shin et al., [15] by Lin et al., and
[12] by Gu et al. These algorithms typically have time complexity
that is polynomial of the total number of channels.

A more recent paper from Gu et al. [11] presents an algorithm
that can guarantee rendezvous between two users inO(max{cu, cv}2)
time, where cu and cv are the number of channels available to the
two users, respectively. The key novelty of this work is that the
proposed algorithm only relies on local information. Another re-
cent paper from Chen et al. [6] guarantees rendezvous between
any two users in O(cu · cv · lg lgC) time, where C is the to-
tal number of channels. Although authors of [6, 11] have shown
that their algorithms are (near) optimal when solving rendezvous,
COGCAST proves that more efficient algorithms exist when solv-
ing local broadcast, as the time complexity of COGCAST is only
O((c/k) ·max{1, c/n} · lgn).

Data Aggregation
Data aggregation provides a powerful tool for performing generic
computation. Although there exist numerous works on aggrega-
tion in traditional wireless networks (e.g., see [7] for a survey), we
are only able to identify one paper [5] that explicitly targets ag-
gregation in cognitive radio networks. However, the models and
approaches employed by [5] are very different from the ones con-
sidered in this paper. Lastly, we note here that although rendezvous
algorithms can potentially be used to solve data aggregation, COG-
COMP is more efficient in many (if not all) cases.

4. THE COGCAST PROTOCOL
In this section, we will describe the COGCAST protocol and

prove its correctness. Pseudocode and omitted proofs can be found
in the full version of the paper.

Protocol Description
COGCAST takes a classic epidemic approach: each node that has
previously received the message simply chooses a random chan-
nel on which to broadcast the message. (We say that a node is
informed if it has previously received the message; otherwise it is
uninformed.) More specifically, each node repeats the following for
Θ((c/k)·max{1, c/n}·lgn) slots: it chooses a channel uniformly
at random from its set of c available channels; if it is uninformed,
then it listens; otherwise, it broadcasts.

Analysis
We now show that, after Θ((c/k) ·max{1, c/n} · lgn) slots, every
node is informed. The proof divides into two cases, depending on
the relationship between n and c. Here we focus on the c ≤ n case
(as the analysis for the c ≥ n case is similar); the complete proof
is in the full version of this paper.



The high-level strategy is similar to traditional epidemic analy-
sis: we divide the protocol execution into two stages, and show that
by the end of each stage, the set of informed nodes will reach cer-
tain size. However, the unknown underlying channel overlapping
pattern complicates detailed analysis. For example, if all the nodes
share the same k channels, then finding one overlapping channel is
hard, yet each overlapping channel is likely to have many nodes.
On the other hand, if every pair of nodes share a distinct set of
channels, then finding one overlapping channel is easy, yet each
overlapping channel is likely to have only a few nodes. As a re-
sult, a key challenge in the analysis is to correctly bound the vari-
ous probabilities so that they hold despite the underlying pattern of
overlap.

We now focus on stage one, which is defined to last as long as
there are at most c/2 informed nodes. In this stage, the message
spreads fast: since the number of informed nodes is low, in each
slot, each informed node is likely to meet some uninformed node,
yielding a typical exponential doubling process. One potential is-
sue, however, is that two broadcasters may choose the same chan-
nel and attempt to inform the same uniformed node. We have to be
careful to give “credit” to only one of them. We say that a node u
independently informs v in a slot if, in that slot: u is informed, v
is uniformed, u and v both choose the same channel, and no other
informed node chooses the same channel.

We now describe the analysis for stage one in more detail. As-
sume there are at most c/2 informed nodes. Fix an informed node
u and a time slot. For channel i, define zi to be the random variable
for the number of uniformed nodes that share channel i with u in
this slot. We claim:

CLAIM 1. When c ≤ n, if there are at most c/2 informed nodes
in some fixed time slot, then for an informed node u, the probabil-
ity that u independently informs an uninformed node is at least
Θ(1/c2) ·

∑C
i=1 min{zi, c}.

PROOF. Consider a fixed time slot. Assume there are n−c/2 ≤
x ≤ n − 1 uninformed nodes, and 1 ≤ n − x ≤ c/2 informed
nodes.

For a given informed node u, assume it overlaps the x unin-
formed nodes on y different channels in total. (Recall that it over-
laps each of the uninformed nodes on at least k channels.) More-
over, assume for the ith overlapping channel, there are zi unin-
formed nodes that overlap with u on this channel. On the other
hand, assume for the ith overlapping channel, there z′i other in-
formed nodes that overlap with u on this channel. Since there are
at most c/2 informed nodes, we know z′i ≤ c/2.

Based on the above definition, we know in a slot, the probability
that u informs at least one uninformed node and no other informed
nodes have picked the same channel, is:

Σyi=1(1/c) · (1− (1− 1/c)zi) · (1− 1/c)z
′
i

≥ Σyi=1(1/c) · (1− (1− 1/c)zi) · (1− 1/c)c/2

≥ Σyi=1(1/c) · (1− (1− 1/c)zi) · (e−1)

= Θ(1/c) · Σyi=1(1− (1− 1/c)zi)

≥ Θ(1/c) · Σyi=1

(
1− (1− 1/c)min{zi,c}

)
≥ Θ(1/c) · Σyi=1min{zi/c, 1− e−1}
= Θ(1/c2) · Σyi=1min{zi, c}

This immediately leads to the claim.

Notice that the summation here depends on the pattern of over-
lap, i.e., whether the set of shared channels is highly congested or

widely distributed. At this point, there are two cases, depending on
whether many channels have min{zi, c} = zi or min{zi, c} = c.
For both cases, we show that:

CLAIM 2. When c ≤ n, during the execution of COGCAST, if
there are at most c/2 informed nodes, then for an informed node u,
in a slot, Θ(1/c2) ·

∑C
i=1 min{zi, c} = Ω(kc).

PROOF. Assume there are n − c/2 ≤ x ≤ n − 1 uninformed
nodes, and 1 ≤ n− x ≤ c/2 informed nodes.

Fix a time slot. For a given informed node u, assume it overlaps
with the x uninformed nodes on y different channels. Moreover,
assume for the ith overlapping channel, there are zi uninformed
nodes that overlap with u on this channel. Based on this definition,
we know

∑y
i=1 zi ≥ kx, as we have assumed each pair of nodes

overlap on at least k channels.
To calculate

∑y
i=1 min{zi, c}, consider two cases: (a) for at

most y − k/2 − 1 different i, min{zi, c} = zi; or (b) for at
least y − k/2 different i, min{zi, c} = zi. In the first case, we
know for at least k/2 + 1 different i, min{zi, c} = c. Hence,∑y
i=1 min{zi, c} ≥ (k/2 + 1) · c = Θ(kc). In the second case,

we claim
∑y
i=1 min{zi, c} is at least kx/2 ≥ k(n − c/2)/2 ≥

kc/4 = Θ(kc). This is because, for each channel that u overlaps
with some uninformed nodes, u will overlap with at most x unin-
formed nodes on that channel. I.e., for any i, we have zi ≤ x.
Hence, for any k/2 overlapping channels, the sum of zi on those
channels is at most kx/2. As a result, for the remaining y − k/2
overlapping channels, the sum of zi on those channels is at least
kx− kx/2 = kx/2. (Recall the sum of all zi is at least kx.)

Hence we conclude that during stage one, in a slot, with probabil-
ity at least Ω(k/c) an uniformed node u will independently inform
an uniformed node. From this we can prove (via a Chernoff bound)
that with high probability, within O((c/k) · lgn) slots, at least c/2
nodes will be informed.

From this point onwards, the epidemic doubling process slows
down since the number of channels limits the number of new nodes
that can be uniquely informed in each slot. As a result, we enter
stage two, in which we focus on the uninformed nodes. In particu-
lar, with a similar calculation as in Claim 1, we show:

CLAIM 3. When c ≤ n, if there are at least c/2 informed nodes
in some fixed time slot, then for an uninformed node u, the proba-
bility that u becomes informed is at least Θ(1/c2)·

∑C
i=1 min{zi, c} =

Ω(kc).

As before, the key part here is bounding the summation of the
channel distributions. Via a union bound, we see that in O((c/k) ·
lgn) slots everyone is informed.

The case where n ≤ c proceeds similarly, where stage 1 con-
tinues until n/2 nodes are informed. In this case, during stage 1
each informed node uniquely informs at least one informed node
with probability Ω(kn/c2); in stage 2, each uninformed node is
informed with probability Ω(kn/c2).

Combining the the analysis from both cases, we conclude that:

THEOREM 4. After executing COGCAST for Θ((c/k)·max{1, c/n}·
lgn) time slots, all nodes will be informed, w.h.p.

Discussion
Notice, due to the simple randomized structure of the algorithm,
there is no need to assume a static fixed channel assignment. As
long as each pair of nodes, in each slot, share at least k common
channels, the process completes in the same manner. Similarly,



the algorithm itself does not depend explicitly on n or k except to
determine the running time. In a long-lived system where there
is no need to terminate, the algorithm has no dependence on any
non-observable system parameters.

5. THE COGCOMP PROTOCOL
In this section, we will describe and analyze the COGCOMP

protocol, which solves the data aggregation problem in O((c/k) ·
max{1, c/n} · lgn + n) slots. COGCOMP contains four phases.
We will first give an overview of the protocol, and then explain each
phase in more detail.

Protocol Overview
Executing COGCAST (described in Section 4) constructs an im-
plicit spanning tree among the n nodes, with the source node be-
ing the root: each node designates as its parent the first node from
which it was informed. (In fact, each node is informed only once,
because after that it broadcasts in each slot.) We call this tree the
distribution tree. The goal of COGCOMP is to aggregate values
from the leaves of the tree to the root: each child will pass the ag-
gregated information from its subtree to its parent.

Even after the tree is built (via COGCAST), there are several
challenges in aggregating data. First, nodes do not know their po-
sitions in the distribution tree: each node initially knows only its
parent. Thus, after building the tree in the first phase, we proceed
in the second and third phases to exchange “local” information on
a node’s neighborhood in the tree. By the end of these two phases,
each node will know how many direct children it has. The second
problem has to do with contention during the aggregation process.
Each channel can be used by only one node at a time, but many
parent-child pairs may be sharing that same channel. If this con-
tention is not handled carefully, one might imagine being delayed
by Θ(n/c) time (for example) at each level of the distribution tree.
Hence, in the fourth phase where we carry out aggregation, we use
a coordination mechanism to limit contention.

We now describe and analyze each phase in more detail.

Phase One
In phase one, each node executes the COGCAST protocol. The
source node broadcasts a fixed message called INIT. Each node
records all its actions in phase one. I.e., for each node, for each
slot, a node records whether it broadcasts or listens; if it listens
in that slot, it records whether it receives INIT; if it broadcasts in
that slot, it records whether its message is successfully transmitted.
This yields the following lemma:

LEMMA 5. After phase one of COGCOMP, a distribution tree
is constructed among nodes, with the source node as the root, w.h.p.

Phase Two
We first introduce the notion of an (r, c)-cluster.

DEFINITION 6. An (r, c)-cluster is the set of nodes that were
first informed in slot r on channel c during phase one.5

Each node, except the source, belongs to one (r, c)-cluster. The
(r, c) tuple will help nodes to recognize their parent, children, and
siblings.

In phase two, each node will determine the size of its cluster.
Another goal in phase two is to elect a mediator for each channel
5Since nodes may have different labels for same channel, the chan-
nel label inside an (r, c) tuple can be considered as the label from
a global oracle’s perspective.

on which some nodes were informed during phase one. As we
shall see in phase four, mediators will help avoid contention among
nodes so that the aggregation process can quickly make progress.

We now describe phase two in more detail. Phase two contains
n slots. Assume that u is a non-source node that was first informed
in slot r on channel c during phase one. In each slot during phase
two, u goes to channel c and broadcasts the tuple 〈u, r〉. Notice,
either u’s broadcast succeeds, or some other node succeeds (as per
the assumption that collisions are resolved at a lower layer of the
protocol stack). If u fails, then it checks the information within
the succeeded message. In particular, if the sender and u are in
same cluster, u will add one to a counter that is initially set to one.
Otherwise, if u succeeds, then it remains silent and only listens for
the rest of the phase, keeps counting number of nodes in its cluster.
By the end of the phase, each node has a count of the number of
nodes in the same (r, c)-cluster.

Recall we also elect mediators in phase two. In particular, for a
channel c on which some nodes were informed during phase one,
let r be the last round in which any node was informed on channel
c; the mediator is the node with the smallest identifier in the (r, c)-
cluster (i.e., the nodes informed in round r on channel c). For each
mediator, it will record the size and slot number (i.e., the r within an
(r, c) tuple) of each (r, c)-cluster that was informed (during phase
one) on its channel.

The following lemma summarizes the properties of phase two:

LEMMA 7. After phase two of COGCOMP, the following guar-
antees hold, w.h.p.: (a) for each (r, c)-cluster, each node within the
cluster knows the size of the cluster; and (b) for each channel on
which some nodes were informed during phase one, one unique me-
diator is elected for that channel, and this mediator knows the size
and slot number of each (r, c)-cluster that were informed (during
phase one) on this channel.

Phase Three
We now introduce the notion of an (r, c)-informer:

DEFINITION 8. (r, c)-informer is the node which informed the
nodes in the (r, c)-cluster during phase one.

Obviously, for each node that is not the source node, it has only
one informer: the informer of its cluster (i.e., its parent in the dis-
tribution tree). A node may, however, be the informer for multiple
different clusters, as it may have informed different sets of nodes in
different slots. The purpose of phase three is to let each node know
the size of the clusters for which it is the informer.

Phase three is implemented as the reverse of phase one, i.e., it is
a “rewind” of phase one. More specifically, assume phase one took
l slots. Then in slot i of phase three, for a node u, it will go to the
channel that it used in slot l− i+ 1 during phase one. Moreover, if
u broadcast in slot l− i+ 1 during phase one and succeeded, then
it will listen in this slot and record the information it has heard.
Otherwise, if u listened in slot l − i+ 1 during phase one and was
informed (for the first time), then it will broadcast the size of its
cluster.

Notice, not every broadcast will succeed, as a cluster may con-
tain multiple nodes. At least one succeeds, however, as is guaran-
teed by our collision model, and is sufficient to yield the following:

LEMMA 9. After phase three of COGCOMP, for each (r, c)-
cluster, the corresponding informer will know that it is the informer
of this cluster, and the size of this cluster, w.h.p.



Phase Four
In phase four, nodes’ values are propagated to the source node:
each node will first collect values from its children (in the distribu-
tion tree), and then pass them along with its own value to its parent.

Phase four contains multiple steps, each of which contains three
slots. For a node u, it will stay on the same channel within a step.
In a step, a node’s role is either a sender or a receiver: if u is still
trying to collect values from its children, then it is a receiver in this
step; otherwise, if u is trying to pass values to its parent, then it is a
sender in this step. In the following description, if u is a receiver in
the current step, then we assume it is the informer of cluster (r, c).
Otherwise, if u is a sender, then we assume it is in cluster (r, c).

During phase four, a sender can also be a mediator. In particu-
lar, if a node u was chosen to be the mediator for a channel during
phase two, it runs phase four as a non-mediator until it starts send-
ing values to its parent. From that point on, its mediator duties start.
Notice, unlike a normal sender—which can terminate after its val-
ues have been sent to the corresponding parent, a mediator needs to
continue execution until all nodes that were informed on its channel
during phase one have passed their values to their parents.

We now describe each step in more detail.
Slot 1. In the first slot within a step, if u is a receiver or a non-

mediator sender, then it will listen on channel c in this slot. Oth-
erwise, if u is a mediator, it will broadcast a slot number r′ on
channel c, indicating nodes in cluster (r′, c) should send values to
their parent in the following slot. It chooses r′ from the list of
(r, c)-clusters for which it is the mediator on channel c in reverse
order of r.

Slot 2. In the second slot within a step, if u is a receiver, it will
listen. Otherwise, if u is a sender and has heard r′ in the previous
first slot (or knows r′, if u is the mediator) such that r = r′, it will
broadcast the values it has collected from its children along with its
own value, and its identity.

Slot 3. In the last slot within a step, if u is a receiver that is the
informer of cluster (r, c), and has heard a message from some node
v in cluster (r, c) in the previous second slot, it will broadcast v’s
identity.

If this message is the last message it needs to collect from cluster
(r, c), then after this step, it will start collecting values from the
next cluster, in descending order of slot number, or start sending
values to its parent if there are no more clusters from which it needs
to collect values, or terminate if the node itself is the source node
and there are no more clusters from which it needs to collect values.

On the other hand, if u is a non-mediator sender, then it will
listen in slot three. If it has heard its own identity, then it will
terminate as it knows its message has been delivered to its par-
ent. Finally, if u is a mediator, then it will also listen in slot three.
Moreover, if it has heard an identity which is the last identity that
needs to send values in cluster (r′, c), then after this step, it will let
next cluster (in slot number’s descending order) start aggregation,
or terminate if there are no more clusters need aggregation on this
channel.

In the following theorem, we argue that phase four will finish
within O(n) slots (and correctly aggregate all data to the source
node), which implies the total time of COGCOMP is O((c/k) ·
max{1, c/n} · lgn + n). The high-level strategy we employ in
the proof is as follows: Assume the length of phase one is l slots.
During phase four, let ri be the first step after which the values of
nodes that were informed in slot l − i + 1 during phase one have
been aggregated. We prove that ri = ri−1 +O(ki), where ki is the
size of the largest cluster that was informed in slot l− i+ 1 during
phase one. Hence, we know the total time consumption of phase
four is O(

∑l
i=1 ki) ≤ O(n).

THEOREM 10. COGCOMP aggregates data to the root inO((c/k)·
max{1, c/n} · lgn+ n) slots, w.h.p.

PROOF. To prove this theorem, we need only to show that since
the start of phase four, every node will terminate withinO(n) steps
(as each step contains Θ(1) slots); and when the source node ter-
minates, it knows the values of all other nodes.

In the reminder of this proof, for the ease of presentation, we use
ri to denote the first step (during phase four) after which the values
of nodes that were informed in slot l− i+ 1 during phase one have
been aggregated (i.e., the values of these nodes’ descendants, along
with their own values, have been passed to their parents). Here, l is
length of phase one. Notice, for 1 ≤ i ≤ l, ri is well defined. For
i = 0, we define r0 = 1: at the first step of phase four, nodes that
were informed in the last slot of phase one are ready to pass their
values to their parents. We further define the term section i to refer
to the steps (during phase four) in which nodes that were informed
in slot l − i + 1 during phase one are aggregating. I.e., section i
refers to the steps between step ri−1 and step ri. Here, 1 ≤ i ≤ l.

Key Claim. We first show a key claim regarding phase four which
bounds the time it takes to aggregate: for any 1 ≤ i ≤ l, ri =
ri−1 + O(ki), where ki is the size of the largest cluster that were
informed in slot l − i+ 1 during phase one.

We prove the above claim by induction. We first consider the
base case, where i = 1. If at the beginning of step one, the aggre-
gation for section one is already done, then r1 = r0 = 1, and we
have our base case.

Thus let us assume that at the beginning of step one, the aggre-
gation for section one is not yet complete. In particular, consider
a channel c on which a node u needs to pass values to its parent
v. According to Lemma 7, we know u must be in cluster (l, c).
Assume w is the mediator for channel c.

First, notice u must be on channel c. This is because it was
informed in the last slot during phase one, hence it must not have
informed anyone else in phase one. Hence, from the beginning of
phase four, it must be on channel c trying to pass its value to v.

Similarly, we know v must be on channel c as well. This is be-
cause, by Lemma 9, v knows it needs to collect values from u (more
precisely, from cluster (l, c)), and cluster (l, c) has the largest slot
number among all clusters it needs to collect values from. Hence,
from the beginning of phase four, it must be on channel c trying to
collect values from nodes in cluster (l, c).

Lastly, w must be on channel c too. This is because, slot l is the
last slot in phase one, and the existence of cluster (l, c) implies the
mediator for channel c must be in cluster (l, c). The fact that slot l
is the last slot in phase one also implies w will not need to collect
values from other nodes. Hence, from the beginning of phase four,
w must be on channel c playing the role of mediator.

Now, according to our protocol, from the beginning of phase
four, in slot one of each step, w announces that cluster (l, c) is
currently being aggregated. (There cannot exist cluster (l′, c) such
that l′ > l. Similarly, for any cluster (l′, c) where l′ < l, it will
not be processed until cluster (l, c) is done.) Moreover, after each
step, on channel c, one node in cluster (l, c) will pass its value to
its parent. Since the size of cluster (l, c) is at most k1, we know
that by the end of step r0 +k1− 1 nodes in cluster (l, c) must have
passed their values to their parent. This completes the proof for the
base case.

We now consider the inductive step. Assume for all j ≤ i − 1,
we have rj = rj−1 + O(kj). Consider j = i. If at the beginning
of step ri−1, the aggregation for section i is already done, then
ri = ri−1, and we have our inductive step. Assume, then, that at
the beginning of step ri−1, the aggregation for section i is not done
yet. In particular, consider a channel c on which a node u needs



to pass values to its parent v. According to Lemma 7, we know
u must be in cluster (l − i + 1, c). Assume w is the mediator for
channel c.

Firstly, notice u must be on channel c. This is because, by the
above assumption, at the beginning of step ri−1, u must have al-
ready collected all values from its descendants, and is ready to pass
these values (along with its own value) to v. Similarly, we know
v must be on channel c as well. This is because, by Lemma 9, v
knows it needs to collect values from u (more precisely, from clus-
ter (l− i+ 1, c)), and by the inductive hypothesis, at the beginning
of step ri−1, it must have finished collecting values from any clus-
ter (l′, c′) where l′ > l − i + 1. Hence, at the beginning of step
ri−1, it must be on channel c trying to collect values from nodes in
cluster (l − i+ 1, c).

Lastly, w must be on channel c too. This is because, by the
inductive hypothesis, at the beginning of step ri−1, for any cluster
(l′, c′) where l′ > l − i + 1, its aggregation process must have
already completed. Hence, at the beginning of step ri−1, if w is the
informer for any cluster (l′, c′) where l′ > l − i + 1, it must have
already finished collecting values from these clusters. On the other
hand, the existence of cluster (l− i+ 1, c) implies the mediator for
channel c must be in cluster (l̂, c) such that l̂ ≥ l − i + 1. Thus,
w will not be a receiver during the aggregation process of cluster
(l − i + 1, c). As a result, we know at the beginning of step ri−1,
w must be on channel c playing the role of mediator.

Now, according to our protocol, from the beginning of step ri−1,
in slot one of each step, w announces that cluster (l − i + 1, c) is
currently being aggregated. (As, by the inductive hypothesis, for
any cluster (l′, c) where l′ > l − i + 1, its aggregation process
is already completed. Similarly, for any cluster (l′, c) where l′ <
l − i + 1, it will not be processed until cluster (l − i + 1, c) is
completed.) Moreover, after each step, on channel c, one node in
cluster (l− i+ 1, c) will pass its value to its parent. Since the size
of cluster (l−i+1, c) is at most ki, we know that by the end of step
ri−1 + ki− 1 nodes in cluster (l− i+ 1, c) must have passed their
descendants’ values, along with their own values, to their parent.
This completes the proof for the inductive step.

Termination. For a non-source node that is not a mediator, as-
sume it was informed in slot r during phase one. Then according
to our protocol and the above analysis, by the beginning of step
rl−r+1, it must have terminated. For a non-source node that is a
mediator. Assume it is the mediator for channel c, further assume
during phase one, slot r was the first slot in which some node were
informed on channel c. Then according to our protocol and above
analysis, by the beginning of step rl−r+1, it must have terminated.
Lastly, for the source node, according to our protocol and above
analysis, by the beginning of step rl, it must have terminated.

Time consumption. According to our above analysis, it is easy
to see the time consumption of phase four is bounded by O(rl) =

O(
∑l
i=1 ki). Notice, for any node, it will only be counted once

in one unique ki, as, for each non-source node, it belongs to one
unique (r, c)-cluster. Therefore, we know

∑l
i=1 ki ≤ n. Hence,

the time consumption of phase four is at most O(n) slots.

Discussion
Before proceeding to the next section, we would like to highlight an
advantage of COGCOMP: small message overhead. In particular, if
the nodes’ values are used to compute a function that is associative
(e.g., min/max, count), then each node in the tree can locally
compute this function based on the values it has already known
(i.e., values from its children and itself), and only pass the outcome
(instead of all values) to its parent. This still guarantees the source

node will eventually get the correct result, yet the message size can
be restricted to O(polylog(n)).

Another point to note is that there is a simple Ω(n/k) lower
bound for aggregation: if all the nodes share the same k channels,
and each channel can only be used by one node at a time, then it
takes Ω(n/k) slots for every node to reports its data. Thus, our ag-
gregation protocol is near optimal for small values of k (i.e., O(1))
when c ≤ n; and there is room for improvement for larger k.

6. LOWER BOUNDS
In this section, we will derive two lower bounds for the local

broadcast problem, considering both local and global channel la-
bels. These lower bounds show that the time complexity of COG-
CAST is near optimal in many cases.

The Local Channel Label Case
In this section, we consider the local channel label model, i.e.,
each node may assign a different name to each channel. To prove
the Ω((c/k) · max{1, c/n}) bound, our strategy is to first iden-
tify a simple game that captures the core difficulty of the problem.
The structure of the game will allow us to generate a strong lower
bound. We then connect the game to the local broadcast problem
by a reduction argument. To obtain the needed bound, the game we
consider is slightly different when k ≤ c/2 and c/2 < k ≤ c. We
will first focus on the k ≤ c/2 scenario.

The k ≤ c/2 Scenario
In this setting, we consider a game called the (c, k)-bipartite hit-
ting game. In this game, we fix β ≥ 2 as a global constant.
The input is two integers c, k such that 1 ≤ k ≤ c/β. Con-
sider two sets of nodes each of size c: A = {a1, a2, · · · , ac} and
B = {b1, b2, · · · , bc}. Let G be a complete bipartite graph on
bipartition (A,B). The game is played between a player and a ref-
eree. At the beginning of the game the referee privately selects a
matching M of size k from G. The game then proceeds in rounds.
In each round, the player proposes an edge e in G. If e ∈ M , the
player wins. Otherwise, the game moves on to the next round. We
allow the player to be an arbitrary probabilistic automaton. (I.e.,
we place no restrictions on how it uses probabilistic behavior to
generate its proposals).

In the lemma below, we show a lower bound for winning the
(c, k)-bipartite hitting game. In particular, we first calculate the
player’s losing probability. Then, through a series of inequalities,
we show that within O(c2/k) rounds, the player’s losing probabil-
ity is larger than 1/2.

LEMMA 11. Let P be a player that wins the (c, k)-bipartite
hitting game in f(c, k) rounds with probability at least 1/2, for
some 1 ≤ k ≤ c/β, and some constant β ≥ 2. It follows that
f(c, k) ≥ c2/(αk) = Θ(c2/k), where 2 < α = 2(β/(β−1))2 ≤
8.

PROOF. We consider P’s performance against a referee which
chooses each of the k edges in its matching M with uniform and
independent randomness. (I.e., it chooses the first edge, removes
those endpoints from consideration, then chooses a second edge,
and so on.) Assume P runs for l = c2/(αk) rounds, where α =
2(β/(β − 1))2. This generates a sequence P = {e1, e2, · · · , el}
of l edge proposals. Notice, for the ease of presentation, we assume
the referee makes its choice of edges after the player has generated
the l proposals. This is possible as the referee makes its choices
independent of the player’s behavior.

Define L to be the event that the referee’s k edge selections are
not included in these l proposals. We consider the probability that



L happens. To calculate this probability, define ni = (c − i +
1)2 to be the number of edges that is available for the referee to
select when it is choosing the ith edge for M . The probability that
the referee’s ith selection is in P is therefore less than or equal to
l/ni. (Notice, this probability is not necessarily equal to l/ni as the
number of edges in P that is eligible for the referee to select might
be less than l.) Hence, it follows that the probability that the player
does not win with its ith proposal is as least 1 − l/ni. Therefore,
we have P(L) ≥ Πk

i=1(1− l/ni).
We now lower bound this probability:

P(L) ≥ Πk
i=1(1− l/ni)

≥ Πk
i=1(1/4)l/ni

≥ Πk
i=1(1/4)l/nk ≥ (1/4)

k· c
2

αk
· 1
(c−k+1)2

> (1/4)
c2

α(c−k)2 = (1/4)
1
α
· 1
(1−k/c)2

≥ (1/4)
1
α
· 1
(1−1/β)2 = (1/4)

1
α
·
(

β
β−1

)2

= (1/4)1/2 = 1/2

Before proceeding, we will provide some explanations for the
second inequality in the above derivation. Firstly, notice that l/ni ≤
1/2 as l/ni = c2

kni
· 1
α

= c2

kni
· 1
2
·
(
β−1
β

)2
= c2

2kni
· (1−1/β)2 ≤

c2

2kni
· (1 − k/c)2 = c2

2kni
·
(
c−k
c

)2 ≤ c2

2k·(c−k+1)
·
(
c−k
c

)2
<

1/2k ≤ 1/2. Secondly, notice that it is easy to verify the inequal-
ity that for any probability p ≤ 1/2, we have 1−p ≥ (1/4)p. With
these two observations, we can obtain the second inequality.

The above result implies: within the first l rounds, the probability
that the player wins is 1− P(L) < 1/2.

We then reduce (c, k)-bipartite hitting to local broadcast by demon-
strating a strategy for using a fast broadcast algorithm to create a
fast solution to the (c, k)-bipartite hitting game—a relationship that
allows our above lower bound to transfer over. Notice, the follow-
ing lemma does not restrict k ≤ c/2.

LEMMA 12. LetA be an algorithm that solves local broadcast
with local channel labels in g(c, k, n) slots in a cognitive radio
network, with probability at least 1/2. Then, one can use A to
construct a player PA that wins the (c, k)-bipartite hitting game in
min{c, n} · g(c, k, n) rounds, for any 1 ≤ k ≤ c, with probability
at least 1/2.

PROOF. We construct our playerPA to simulate the n nodes in a
network where the n−1 initially uninformed nodes share the same
channel set which overlaps with the source node’s channel set in ex-
actly k locations. Let A = {a1, a2, · · · , ac} be the source node’s
channel set and B = {b1, b2, · · · , bc} be the channels shared by
the remaining n − 1 nodes. Since we consider local channel label
model, we assume the source node sees each ai labeled as i, and
the other n− 1 nodes see each bi labeled as i.

The first key observation for our simulation is that a k-matching
M over the complete bipartite graph with bipartition (A,B) also
describes a valid overlap of k channels between the source node and
the remaining n− 1 nodes (i.e., each (ai, bj) ∈M corresponds to
the source node’s local channel i being the same as other nodes’
local channel j). The second key observation for our simulation
is that in order for A to solve local broadcast in such a network,
there must exist a round in which the source node lands on a shared
channel with at least one other node (until this happens, the mes-
sage starting at the source node makes no progress). When the
overlaps are viewed as a matching, this is the same as saying that

there must exist a round in which the source node chooses some ai
and some other nodes choose bj such that (ai, bj) ∈M .

Pulling together these pieces we are ready to describe our sim-
ulation and establish its correctness. The player PA simulates the
source node running with channel setA, the other n−1 nodes run-
ning with channel set B, and the (unknown to the player) matching
M chosen by the referee for this execution defining the k over-
lapping channels. In each simulated round r, for each simulated
non-source node u, PA guesses (ar, b

u
r ) if it has not tried this pro-

posal before, where ar is the channel selected by the source node in
this round, and bur is the channel selected by node u in this round.
Notice, this implies player PA can get at most min{c, n} unique
guesses in each simulated round: when c ≤ n, every channel in B
may be picked by some non-source nodes, giving at most c unique
guesses; and when c ≥ n, every non-source node may be able to
pick a different channel in B, giving at most n unique guesses.

If none of these guesses win the game, it follows that the source
node has failed to land on a shared channel with some other nodes,
soPA can correctly complete the simulated round by simulating no
communication between the source node and other nodes. (If some
non-source nodes share a channel, PA, of course, will simulate
their communication correctly.)

As noted, to complete local broadcast, their must be a round in
which the source node shares a channel with some other nodes.
During that round,PA’s guesses will win the bipartite hitting game.
Because PA gets up to min{c, n} unique guesses per simulated
round, its time complexity is at most a factor of min{c, n} slower
than the time complexity of A.

Lastly, by combining Lemma 11 and Lemma 12, we immedi-
ately have the following result.

LEMMA 13. For any algorithm, when 1 ≤ k ≤ c/2, to solve
local broadcast under the local channel label model with prob-
ability at least 1/2, the time consumption is at least Ω((c/k) ·
max{1, c/n}).

The k > c/2 Scenario
In this setting, we use a similar strategy as the k ≤ c/2 scenario,
but focusing on a different hitting game. In particular, we con-
sider a game called the c-complete bipartite hitting game. The in-
put to this game is an integer c ≥ 1. Consider two sets of nodes
A = {a1, a2, · · · , ac} and B = {b1, b2, · · · , bc}. Let G be a
complete bipartite graph on bipartition (A,B). The game is played
between a player and a referee. At the beginning of the game the
referee privately selects a maximum matching M in G (M can be
interpreted as a bijection from from A to B). The game then pro-
ceeds in rounds. In each round, the player proposes an edge e inG.
If e ∈M the player wins. Otherwise, it moves on to the next round.
We allow the player to be an arbitrary probabilistic automaton.

Again, we first show a lower bound for the c-complete bipartite
hitting game.

LEMMA 14. Let P be a player that wins the c-complete bipar-
tite hitting game in f(c) rounds with probability at least 1/2, for
some positive constant c. It follows that f(c) ≥ c/3.

Now, notice Lemma 12 is also applicable to the k > c/2 sce-
nario (as the (c, k)-bipartite hitting game becomes the c-complete
bipartite hitting game when k = c). This implies there exists a
strategy for using a fast broadcast algorithm to solve c-complete
bipartite hitting fast. Therefore, by combining Lemma 12, 13, and
14, we can immediately have the following theorem. As can be
seen, it proves that under the local channel label model, COGCAST
is near optimal (within a multiplicative O(lgn) factor).



THEOREM 15. For any algorithm, to solve the local broadcast
problem under the local channel label model with probability at
least 1/2, the time consumption is at least Ω((c/k)·max{1, c/n}).

The Global Channel Label Case
In this subsection, we will turn our attention to the global channel
label model, in which all nodes assign the same label to a given
channel. It is an easier model, and hence yields a stronger lower
bound. Of course, COGCAST and COGCOMP work in this setting
without any modification, as the global channel label model is just
a special case of the local channel label model.

In the following theorem, we show a lower bound for solving
local broadcast in the global channel label model. It is derived from
calculating the time consumption it will take for the source node to
find a channel (among the set of channels that is available to it) on
which it overlaps with other uninformed nodes.

THEOREM 16. For any algorithm, the expected time consump-
tion to solve the local broadcast problem under the global channel
label model is at least Ω(c/k).

PROOF. Firstly, notice aside from nodes’ coins (if the algorithm
is randomized), the expectation is over the network setup: (a) for
each node, what is the set of channels that is available to it; and (b)
for each pair of nodes, what is the set of channels they overlap.

We consider the following setup: there are C = k + n(c − k)
channels in total. Among these C channels, k channels are chosen
uniformly at random, and all nodes have access to these channels.
For the remaining n(c − k) channels, they are partitioned into n
disjoint parts (each of which contains c − k channels) uniformly
at random. Each node has access to the channels in one part; and
different nodes have access to different parts. In this setup, we
ensure each node has access to c channels, and each pair of nodes
overlap on at least k channels. Therefore, this setup is legitimate.

With the above setup, we begin to prove the lower bound. No-
tice, for any algorithm A, to accomplish local broadcast, a neces-
sary (but not sufficient) condition is that the source node chooses
an overlapping channel in one slot. Therefore, the expected number
of slots forA to accomplish local broadcast is at least the expected
number of slots until the source node lands on an overlapping chan-
nel (for the first time).

Let Xi be an indicator random variable which takes value one
if the source node chooses the ith non-overlapping channel before
it chooses any overlapping channel, where 1 ≤ i ≤ c − k. We
know P(Xi = 1) = 1/(k + 1), in spite of the strategy employed
by A. (Notice, the randomness comes from the unknown net-
work setup, and the algorithm A itself if it is randomized.) On the
other hand, we know the expected number of slots until the source
node lands on an overlapping channel (for the first time) is at least
E(
∑c−k
i=1 Xi)+1 =

∑c−k
i=1 E(Xi)+1 =

∑c−k
i=1 P(Xi = 1)+1 =∑c−k

i=1 1/(k + 1) + 1 = (c + 1)/(k + 1) = Θ(c/k). Hence, the
expected number of slots for A to accomplish local broadcast is at
least Ω(c/k), which proves the lemma.

As can be seen, for the c ≤ n case, COGCAST is only away
from the optimal by an O(lgn) factor. For the c ≥ n case, un-
fortunately, the gap is bigger. In fact, when c � n, we can con-
firm there exist other algorithms that can out-perform COGCAST
in some cases. For example, consider the following network setup:
there are C = k+n(c−k) channels in total, and all pairs of nodes
overlap on the same k channels. Imagine an algorithm in which
all nodes hop among these channels using the same predefined
hopping sequence (e.g., a sequential scan). Under such scenario,
in expectation, within O(C/k) slots, all nodes will hop to one of

the k overlapping channels and hence complete the broadcast pro-
cess. Now, if we assume c = n2 and c = k + 1, then the sim-
ple hopping-together algorithm can solve broadcast in O(C/k) =
O((k + n)/k) = O(1) slots (in expectation); whereas COGCAST
will needO((c2/nk) · lgn) = O(n lgn) slots. By contrast, notice,
in the local channel label model, such hopping-together algorithm
is not possible.

Intuitively, the above result is not surprising: when most of the
channels are overlapping channels and all nodes are hopping to-
gether, nodes can quickly find one overlapping channel and hence
become informed. On the other hand, in COGCAST, each node is
independently and randomly hopping among the channels that are
available to it. As a result, when c � n, a lot of time will be con-
sumed before uninformed nodes and informed nodes can land on
some common channel.

7. DISCUSSION
In this paper, we have developed a simple yet efficient local

broadcast algorithm for cognitive radio networks. Building on the
broadcast algorithm, we then developed an algorithm for data ag-
gregation. We have also derived two lower bounds, which prove
our broadcast algorithm is near optimal in many cases. These re-
sults provide answers for several open questions. We also believe
the techniques used in this paper can be helpful when designing or
analyzing other algorithms in cognitive radio networks.

One point worth discussing is the correctness guarantee provided
by COGCAST. As we have mentioned earlier, in the cognitive radio
network community, there is a tendency of favoring determinism
over randomization, as deterministic algorithms can usually guar-
antee correctness. However, consider a dynamic setting in which,
sets of channels that are available to nodes, and sets of channels
on which pairs of nodes overlap, can change over time. In such
setting, COGCAST works as stated, and provides the same guar-
antees without any modification. (In particular, proof of Theorem
4 is still valid.) Nevertheless, under such model, when k < c, it
is easy to see that no algorithm exists that can guarantee to solve
the local broadcast problem within a finite time period, as (even for
a randomized algorithm) there is always some possibility that the
channel availability will conspire to prevent communication:

THEOREM 17. Under the dynamic model, when k < c, no al-
gorithm exists that can guarantee to solve the local broadcast prob-
lem within a finite time period.

Another interesting point worth discussing is the potential close
connection between broadcast in cognitive radio networks and n-
uniform jamming resistant broadcast in multi-channel wireless net-
works.6 In the current literature, there only exists limited research
(e.g., [9, 18]) which attempts to achieve communication in the pres-
ence of an n-uniform jamming adversary. Moreover, these few al-
gorithms all focus on single-channel wireless networks. Under-
standing the relationship between these two not well understood
problems may allow researchers to find more solutions and insights.

According to our preliminary analysis, it turns out that if an al-
gorithm is able to solve local broadcast in dynamic cognitive radio
networks with only local channel labels, then it is also able to solve

6An x-uniform jamming adversary is capable of partitioning n
nodes into x disjoint groups, and make jamming decision for each
group individually. For example, for a 3-uniform jamming adver-
sary, she may jam channel one for group one, jam channel one and
six for group two, and do nothing for group three. Thus, an n-
uniform jamming adversary can make jamming decision for each
node individually.



n-uniform jamming resistant broadcast in multi-channel wireless
networks. More specifically, we have the following theorem:

THEOREM 18. AssumeN ′ is a multi-channel wireless network
which contains n nodes and c channels. Assume there is an n-
uniform jamming adversary Eve in N ′ that can jam at most 0 <
k < c/2 channels in each time slot. AssumeN is a dynamic cogni-
tive radio network in which nodes only have local channel labels.
Assume there are n nodes inN , each of which has access to c chan-
nels, and each pair of nodes overlap on at least 0 < c − 2k < c
channels. If an algorithm A exists that can solve local broadcast
in N in T (n, c, k) time with probability p, then there must ex-
ist another algorithm A′ that can solve local broadcast in N ′ in
T (n, c, k) time with probability p.

This result implies COGCAST can also be used to solve local
broadcast in traditional multi-channel wireless networks, even if an
n-uniform jamming adversary is present.
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