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Abstract

Edge connectivity and vertex connectivity are two fun-
damental concepts in graph theory. Although by now
there is a good understanding of the structure of graphs
based on their edge connectivity, our knowledge in the
case of vertex connectivity is much more limited. An es-
sential tool in capturing edge connectivity are the classi-
cal results of Tutte and Nash-Williams from 1961 which
show that a λ-edge-connected graph contains d(λ−1)/2e
edge-disjoint spanning trees.

We argue that connected dominating set partitions
and packings are the natural analogues of edge-disjoint
spanning trees in the context of vertex connectivity and
we use them to obtain structural results about vertex
connectivity in the spirit of those for edge connectivity.

More specifically, connected dominating set (CDS)
partitions and packings are counterparts of edge-disjoint
spanning trees, focusing on vertex-disjointness rather
than edge-disjointness, and their sizes are always upper
bounded by the vertex connectivity k. We construc-
tively show that every k-vertex-connected graph with n
nodes has CDS packings and partitions with sizes, re-
spectively, Ω(k/ log n) and Ω(k/ log5 n), and we prove
that the former bound is existentially optimal.

Beautiful results by Karger show that when edges
of a λ-edge-connected graph are independently sampled
with probability p, the sampled graph has edge connec-
tivity Ω̃(λp). Obtaining such a result for vertex sam-
pling remained open. We illustrate the strength of our
approach by proving that when vertices of a k-vertex-
connected graph are independently sampled with prob-
ability p, the graph induced by the sampled vertices has
vertex connectivity Ω̃(kp2). This bound is optimal up
to poly-log factors and is proven by building an Ω̃(kp2)
size CDS packing on the sampled vertices while sam-
pling happens.

As an additional important application, we show
CDS packings to be tightly related to the throughput
of routing-based algorithms and use our new toolbox to

yield a routing-based broadcast algorithm with optimal
throughput Ω(k/ log n + 1), improving the (previously
best-known) trivial throughput of Θ(1).

1 Introduction and Related Work

Vertex and edge connectivity are two core graph-
theoretic concepts as they are basic measures for the
robustness and throughput capacity of a graph. While
by now a lot is known about edge connectivity and its
connections to related graph-theoretic properties and
problems, our knowledge about vertex connectivity is
much scarcer and many related problems remain open.

As an example, given a graph G, assume that each
edge or vertex is independently sampled with proba-
bility p. How large should p be such that the sub-
graph given by the sampled edges or the one induced
by the sampled vertices is connected (this problem is
sometimes studied under the title of network reliabil-
ity). Intuitively, the larger the connectivity of G is, the
smaller we should be able to choose p such that the
sampled subgraph remains connected. For edge con-
nectivity and sampling edges, Lomonosov and Poleskii
[32] verified this intuition already four decades ago: if
p = Ω( logn

λ ), where λ is the edge-connectivity of G,
then the edge-sampled graph is connected with high
probability (w.h.p.)1 and this threshold is optimal.
In the special case of sampling edges of a complete
graph, this corresponds to the lnn

n probability thresh-
old for connectivity in the Erdős-Rényi random graph
model. Karger [21] showed that assuming p = Ω( logn

λ ),
the edge-connectivity of the edge-sampled graph will be
around λp, w.h.p., and in fact, for such p, the size of
each edge cut remains around its expectation. In the fol-
lowing years, these results, and extensions thereof, have
emerged as powerful tools, having implications for many
problems such as graph sparsifiers [5], finding or approx-
imating minimum edge cuts [5,21,22], max-flow [21,25],

1We use the phrase “with high probability” to indicate that

an event happens with probability at least 1− 1
nc

for a constant
c ≥ 1.



network design problems [21], and getting an FPTAS
for all-terminal network reliability [23].

In contrast, prior to our work, for vertex sampling,
even the most basic of these questions remained open
and it was not even known how large p should be
for the vertex sampled graph to remain (just simply)
connected. We prove results of the same flavor as
the ones discussed above, but in the context of vertex
sampling rather than edge sampling. In particular, we
show that if each vertex of a k-vertex connected graph
G is independently sampled with probability p, then
w.h.p., the sampled vertices induce an Ω̃(kp2)-vertex-
connected graph. We also show that this is existentially
tight up to log-factors.2

The main hurdle on the way to proving these
results is that there can be an exponential number of
“small” vertex cuts. When arguing that the subgraph
induced by randomly sampled vertices is connected, one
essentially needs to show that for each vertex cut of
the graph, at least one vertex is sampled. However, it
has been shown that even the number of the minimum
vertex cuts of a k-vertex connected graph can be as
large as Θ(2k(n/k)2) [19]. Note that this is in stark
contrast to the case of edge cuts, where the number of
minimum edge cuts is known to be bounded by O(n2)
and the number of edge cuts of size α ·λ in a graph with
edge-connectivity λ is at most O(n2α) [20, 24]. This
O(n2α) bound is the main tool in studying edge cuts
after random sampling, with which a simple application
of Chernoff and union bounds solves the problem.

An essential tool in grasping edge connectivity is
the famous results of Tutte and Nash-Williams [36, 38]
from 1961 (presented independently), which shows that
a λ-edge-connected graph contains at least dλ−1

2 e edge-
disjoint spanning trees (see [29]). One way to interpret
this result is as follows: Recall that Menger’s theorem
tells us that in a λ-edge-connected graph, each pair
of vertices are connected via at least λ edge-disjoint
paths. Tutte-Nash-Williams gives us asymptotically the
same number of paths but with much stronger structure
compared to Menger’s. We get dλ−1

2 e edge-disjoint
paths between each pair of vertices, one through each
spanning tree, such that the paths of each pair are
colored via colors exactly 1 to dλ−1

2 e, and the paths of
different colors are edge disjoint (for any set of pairs
of vertices). This powerful result leads to numerous
applications for different problems concerning edge-
connectivity, e.g., the best known min-cut algorithm
and the tightest proof of the aforementioned O(n2α)
upper bound on the number of α-minimum edge-cuts

2For exact statements and a more extensive discussion of our
results, we refer to Section 1.1.

Figure 1: A CDS partition of size 2

[21], which in turn leads to the edge-sampling results.
Our main technical contribution is presenting sim-

ilar structural results for vertex connectivity instead of
edge connectivity. Thus, the focus is also on vertex-
disjointness rather than edge-disjointness. When re-
quiring vertex disjointness, obviously we can not ask for
spanning trees. The closest option which allows vertex-
disjointness is using dominating trees. For a graph
G = (V,E), a subgraph T = (VT , ET ) of G is a domi-
nating tree if it is a tree and each vertex v ∈ V \VT has
at least one neighbor in VT . As we explain next, dom-
inating trees are indeed the right substitutes for span-
ning trees: Recall that Menger’s theorem tells us that
in a k-vertex-connected graph, each pair of vertices are
connected via k internally vertex-disjoint paths. Given
k′ vertex-disjoint dominating trees, we get a system of
colored paths analogous to that of Tutte and Nash-
Williams: each pair of vertices is connected via k′ paths,
exactly one from each color 1 to k′, where paths of each
color go through one dominating tree and paths of dif-
ferent colors are internally vertex-disjoint.

It is cleaner to work with connected dominating sets
(CDSs) rather than dominating trees as then, we only
need to specify the vertices of each set and the edges
are the induced ones. It is straight-forward to see that
this transition is without loss of generality (by removing
cycle-creating edges). We note that CDSs are structures
that have been studied extensively in graph theory and
theory of computing (see e.g. [7, 8, 14,35]).

As our structural results about vertex connectiv-
ity, we present methods to decompose each k-vertex-
connected graph into Θ̃(k) disjoint (or almost disjoint)
connected dominating sets (CDSs). These results are
formalized as solutions to CDS partition and packing
problems3. A CDS partition of size K is defined as

3 We remark that CDS packing and partition are significantly

different problems from the standard study of CDSs in theory of

computing where usually the goal is to find just one CDS with
certain properties (see e.g. [7,8,14,35]), whereas CDS packing and

partition aim at finding many CDSs that are almost or completely

vertex-disjoint. Also, these problems are very different from
dominating sets problems, which have also received a vast amount



a partition of the vertices of a graph into K (vertex-
disjoint) connected dominating sets [16,17,39]. Figure 1
presents a graph with a CDS partition of size 2, where
vertices of each color form a CDS. CDS packing problem
is the natural generalization of CDS partitions, where
each vertex can be broken into smaller pieces and each
piece is given to one CDS. More formally, a CDS packing
is a collection of CDSs with positive weights such that
for each vertex v, the sum of the weights of all CDSs con-
taining v is at most 1. The size of a CDS packing is the
total weight of all CDSs in the collection. In the context
of a system of colored paths, a CDS packing provides a
relaxed version of such a path system, where paths of
different colors are allowed to have vertex-overlaps but
the weighted overlap in each vertex is bounded by 1.

It is easy to see that any CDS partition or packing
in a graph with vertex connectivity k has size at most
k [16, 39], simply because each CDS must contain at
least one vertex from every vertex cut. However,
showing any converse to this relation has remained wide
open and even for graphs with vertex connectivity as
large as, e.g., Θ(

√
n), even finding an ω(1) CDS packing

seems non-trivial. We constructively show that every
k-vertex connected graph G has a CDS packing of size
at least Ω(k/ log n). We also show that this is optimal
in the sense that for all n and k ≤ n/4, there are k-
vertex connected n-vertex graphs for which the largest
CDS packing has size at mostO(k/ log n). A generalized
version of this construction leads to the aforementioned
vertex sampling result, by building a CDS packing on
the sampled vertices while the sampling is happening.
Also, with a similar construction, we prove that every
k-vertex connected graph has a CDS partition of size at
least Ω(k/ log5 n). Surprisingly, this proof itself requires
the sampling result.

CDS packings also lead to an interesting and im-
portant result in networking algorithms. Consider the
communication model where in each time unit, each
node of a network can send one B-bits message to
all its neighbors. We show that the achievable total
throughput when globally broadcasting messages using
routing-based algorithms (that is, without network cod-
ing) can exactly be characterized by the size of the
largest CDS packing of the network graph. This exactly
corresponds to the aforementioned systems of colored
paths where now each message relates to one color. As

of attention (see e.g. [10, 18]). The CDS partition problem was

introduced in [17] where the size of a maximum CDS partition is

called the connected domatic number (CDN). [39] shows a number
of results about CDN; e.g., that it is upper bounded by the vertex

connectivity. [16] shows that the CDN of planar graphs is at most

4. [34] argues that CDS partition can help to balance energy-usage
in wireless sensor networks.

a consequence, we get that in k-vertex-connected net-
works, the (existentially) optimal routing-based broad-
cast throughput is Θ(k/ log n) messages per round.

1.1 Results

1.1.1 Vertex Connectivity vs. CDS Packing
and CDS Partition: As described, our core technical
contribution is presenting structural results for vertex
connectivity by providing efficient algorithms to con-
struct CDS packings and partitions of size close to ver-
tex connectivity k. Here, we present the exact state-
ments and some related discussions:

Theorem 1.1. Every k-vertex-connected n-vertex
graph has a CDS packing of size Ω

(
k

logn + 1
)

4.

Specifically, we show how to construct a collection
of k CDSs, each consisting of O

(
n logn
k

)
vertices, such

that each vertex is in at most O(log n) of the CDSs. We
remark that consequent to our work, Ene et al. [9] pre-
sented a nice alternative proof for Theorem 1.1, which
uses the metarounding result of Carr and Vempala [6]
and the Min-Cost-CDS approximation result of Guha
and Khuller [14]. They also show that in planar graphs
and minor-closed families of graphs, the bound can be
improved to Ω(k).

Using a similar construction style to that of Theo-
rem 1.1, we also obtain an efficient way to get a large
CDS partition, which leads to Theorem 1.2. We find it
interesting and somewhat surprising that for this CDS
partition construction, we need to use the vertex sam-
pling result (which is presented later in Theorem 1.4).

Theorem 1.2. Every k-vertex-connecgted graph G has
a CDS partition of size Ω

(
k

log5 n
+1
)
, and if k = Ω(

√
n),

then G has a CDS partition of size Ω
(

k
log2 n

+ 1
)
.

We complement these results by showing that the
Ω
(

k
logn

)
CDS packing bound is existentially optimal.

Theorem 1.3. For any sufficiently large n, and any
k ∈ [1, n/4], there exist n-vertex graphs with vertex
connectivity k where the maximum CDS packing (or
partition) size is O

(
k

logn + 1
)
.

4It is straightforward to extend Theorem 1.1 to vertex-
capacitated graphs, where for each vertex v ∈ V , the total overlap
of CDSs in v is bound to a capacity C(v) ≥ 0, instead of just 1.
This is by normalizing capacities to integers, then substitiuting

each node v with a clique of min{C(v), k} vertices. If capacitated
vertex connectivity is, e.g., k ≥ 2n2, then with scaling down and
rounding, we can keep the time complexity and the number of

vertices polynomial, without loosing more than a constant factor
in the bounds.



The proof of Theorem 1.3, presented in Appendix A,
builds on a base graph H, which has vertex connectivity
O(log n) and maximum CDS packing size O(1), and
then uses the probabilistic method [4] to show that for
any k ∈ [1, n/4], there exists a subgraph G of H which
shows the claimed logarithmic gap.

1.1.2 Vertex Connectivity and Random Sam-
pling: Using our new perspective on vertex connectiv-
ity, we analyze the vertex connectivity of the graph ob-
tained when randomly sampling a subset of the ver-
tices of a graph. Note that in the following, for a graph
G = (V,E) and set of vertices S ⊆ V , G[S] denotes the
subgraph of G induced by S.

Theorem 1.4. Consider a k-vertex-connected, n-
vertex graph G = (V,E) and let S be a subset of V
where each vertex v ∈ V is included in S (i.e., sampled)
independently with probability p. W.h.p., the graph

G[S] has vertex-connectivity Ω
(
kp2

log3 n

)
.5

We prove this result by constructing an Ω
(
kp2

log3 n

)
CDS

packing of graph G that only uses vertices in S. We do
this construction in parallel with the process of vertices
being sampled. Since the size of each CDS packing
is upper bounded by vertex connectivity, we get the
theorem. Note that this proof shows something even
slightly stronger than Theorem 1.4 as the created CDSs
are all in G[S] but they even dominate G.

The bound of Theorem 1.4 is the best possible up to
logarithmic factors: simply consider two cliques of size
k, connected via a matching of k edges. When sampling
vertices with probability p, the new vertex connectivity
is given by the number of surviving matching edges,
which has expected value of kp2 as each matching edge
survives with probability p2.

1.1.3 Vertex Connectivity and Broadcast
Throughput: Our results have an interesting appli-
cation in networking since they lead to routing-based
broadcast algorithms with optimal throughput. A
routing-based (a.k.a. store-and-forward) algorithm
corresponds to the classical paradigm of routing where
messages are viewed as atomic tokens and each node
only stores and forwards messages and can not combine
them (or parts of them). This is in contrast to the
newer (more general and complex) paradigm of network
coding (see [2] and citations thereof) where each node
can send any B-bits function of the received messages.

5Note that the theorem requires k = Ω(log3 n) to be meaning-
ful. Such a polylogarithmic lower bound on k is necessary for all

our statements to become non-trivial. This is in all cases neces-
sary as, e.g., shown by Observation D.

Consider the synchronous network model where in
each communication round (time unit), each node can
send one message of size at most B bits to all of its
neighbors. This model is motivated, e.g., by wireless
networks when working above the MAC layer (see
e.g. [27, 28]).

For instance, consider the widely-studied gossiping
problem (a.k.a. all-to-all broadcast) where each node
has one B-bits size message and each node should re-
ceive all the messages. A trivial routing-based solution
is to gather the messages in one node and then broad-
cast them in a pipe-lined fashion, leading to an O(n)
rounds solution. This only uses the fact that the graph
is connected. A similar O(n) bound follows from [28,
Lemma 6.1]. Now, as a toy example, suppose that the
graph has vertex connectivity say n/100—almost like
a clique. It follows from [15] that in this case, network
coding solves the problem in just O(1) rounds. However,
when restricted to routing, the above trivial O(n) solu-
tion remains the best we could do, prior to this work.
With CDS packing, we get an optimal O(log n) rounds
routing-based algorithm for this toy example6.

In general, CDS packing is tightly related to the
throughput of routing-based algorithms for concurrent
global broadcasts. The brief intuition is that we can
route messages along different CDSs (almost) simulta-
neously and in fact, looking at the transcript of any
high-throughput routing-based broadcast algorithm, we
can generate a large CDS-packing by following the
routes that messages take.

Theorem 1.5. A CDS packing with size K provides
a store-and-forward backbone with broadcast through-
put Ω(K) messages per round. Inversely, a store-and-
forward broadcast algorithm with throughput K mes-
sages per round induces a CDS packing of size K.

The proof is deferred to Appendix B. From The-
orem 1.5, we get that our CDS packing result (Theo-
rem 1.1) also gives a routing-based broadcast algorithm
with optimal throughput Θ( k

logn ). Techniques of [15]
show that network coding can achieve a throughput of
Θ(k). Thus, our Θ( k

logn ) CDS-packing implies that the

network coding advantage (i.e., the throughput gain pro-
vided by network coding compared to routing) for simul-
taneous broadcasts is a tight Θ(log n).

We note that network coding is studied extensively
(see [2] and its over 5000 citations) and since its gains
are usually accompanied by new complications and
costs (see e.g. [11]), determining the network coding
advantage for different networking models is one of the

6A simpler Õ(
√
n) round solution is achievable using Theo-

rem 1.7 or using the proof style of the first part of Lemma 7.2.



important related questions, which is of interest both
in theory (see, e.g., [1, 3, 13, 30, 31]) and in practice
(specially for wireless networks; see [26] and its over
1000 citations). In particular, in a seminal paper, Li
et al. [31] use the Tutte-Nash-Williams edge-disjoint
spanning trees result to show that in undirected wired
networks—the model where in each round each node
can send one distinct message to each of its neighbors—
the network coding advantage is Θ(1). Agarwal and
Charikar [1] prove an Ω(log2 n/ log2 log n) advantage
in directed wired networks, with related upper bounds
remaining wide open. Very recently, Alon et al. [3] show
an Ω(log log n) advantage for wireless network model
below the MAC layer (i.e., with collisions).

1.2 Brief Overview of Approach For all our re-
sults, we need to find or prove the existence of a collec-
tion of vertex-disjoint CDSs of some graph H. Whereas
in all cases, domination will be straightforward, obtain-
ing connectivity of all CDSs simultaneously is much
more challenging as it exactly corresponds to treating
all vertex cuts. To cope with the problem of facing
exponentially many small vertex cuts, we use a simple
layering idea, roughly explained as follows. We parti-
tion the vertices of H into Θ(log n) layers (using dif-
ferent methods). We go through the layers one-by-one
and establish connectivity by growing components as
we proceed. Growing components turns out easier than
proving connectivity directly and we can show that us-
ing this step-wise approach, it suffices to consider only
polynomially many vertex cuts of H, where cuts of each
layer are selected depending on the outcome of the cuts
of the previous layers.

Although this layering trick seems simple and in-
nocent, it is in fact quite powerful as it provides a new
almost-trivial proof for connectivity after edge-sampling
(see [21,32]). Actually, this approach proves a novel and
interesting generalization of the edge sampling results,
for which the older proofs break down:

Theorem 1.6. Let G be a λ-hyperedge connected
hypergraph with n vertices and suppose we sample
hyperedges of G, each independently with probability
p = Ω( logn

λ ). Then, the hypergraph with the
sampled hyperedges is connected w.h.p.
Proof. We view the sampling in Θ(log n) layers,
where in each layer, each hyperedge that is not
sampled in the previous layers gets sampled with
probability Θ(1/λ). Consider layer ` + 1 of sam-
pling and suppose that the factor with the sam-
pled hyperedges of layers 1 to ` is not connected.
Each connected component C of this factor has at
least λ hyperedges that connect it to other compo-
nents. Thus, with the arrival of the sampled hy-

peredges of layer ` + 1, with constant probability,
at least one of these hyperedges of C gets sampled
and so C gets connected to at least one other com-
ponent. Thus, using Markov’s inequality, we get
that with the addition of sampled hyperedges of
layer ` + 1, with constant probability, the number
of connected components goes down by a constant
factor. After Θ(log n) layers, the number of con-
nected components becomes 1 w.h.p. and connec-
tivity is achieved. �

A similarly simple argument proves a very special
case of Theorem 1.4:

Theorem 1.7. Let G be a k-vertex-connected
graph with n vertices suppose we sample each ver-
tex independently with probability p ≥ Ω( logn√

k
).

W.h.p., the sampled vertices induce a connected
graph.
Proof. [Proof Sketch] Again, we view the sampling
in L = Θ(log n) layers, where now in each layer,
each vertex that is not sampled in the previous
layers gets sampled with probability Θ(1/

√
k). It

is easy to see that the sampled vertices of the first
L/2 layers are a dominating set of the graph, w.h.p.
Having that, consider a layer ` > L/2 and con-
sider the subgraph induced by the sampled ver-
tices of layers 1 to `. From Menger’s theorem,
we know that each connected component of this
subgraph is connected to other components via at
least k vertex-disjoint paths (in total), that are
made of non-sampled internal nodes. Thanks to
the domination provided by the first L/2 layers,
we get a stronger statement: each such compo-
nent is connected to other components via at least
k vertex-disjoint paths, each with at most 2 non-
sampled internal nodes (thus the length of each of
these paths is at most 3). We call these connec-
tor paths. With the arrival of the sampled vertices
of layer `+ 1—which are sampled with probability
Θ(1/

√
k)—each component gets connected to an-

other component with at least a constant probabil-
ity. Thus, again after L = Θ(log n) layers, sampled
vertices induce a connected graph, w.h.p. �

Theorem 1.7 also shows another interesting thing:
we can get a CDS partition of size Θ(

√
k/log n) simply

by putting each vertex in a random one of Θ(
√
k/log n)

CDSs. In Observation D (proven in Appendix C),
we show that for k ≤ n1−ε for any constant ε > 0,
the sampling probability threshold of Theorem 1.7 is
indeed tight, up to an O(

√
log n) factor. For larger k,

Theorem 1.7 is tight up to O(log n).

Unfortunately, the proof of our main results are not
as simple as Theorems 1.6 and 1.7, because for them



we need to create Θ̃(k) (or Θ̃(kp2) in the case of sam-
pling) disjoint or almost-disjoint CDSs. In particular,
in each layer, while growing towards connectivity, con-
nected components of different CDSs compete to acquire
the new vertices. Resolving this competition while sat-
isfying growth of all (or most) CDSs requires careful
assignment of nodes of the new layer to the CDSs. This
also introduces probabilistic dependencies that can be
fatal and lead to incorrect proofs, if not handled care-
fully. In fact, we are loosing a Θ(log2 n) factor in the
bound of Theorem 1.4 and a Θ(log3 n) factor in that
of Theorem 1.2 to cure these dependencies. We present
a closer explanation of these issues and also the formal
construction and proofs of our results in Section 6 and
Section 7.

2 Preliminaries

Notations We usually work with an undirected
graph G = (V,E) as our main graph and define n = |V |.
For a subset S ⊆ V of the vertices, we useG[S] to denote
the subgraph of G induced by S.

Definition 3. (Dominating Set and Connected Domi-
nating Set) Given a graph G = (V,E), a set S ⊆ V is
called a dominating set iff each vertex u ∈ V \ S has
a neighbor in S. The set S is called a connected domi-
nating set (CDS) iff S is a dominating set and G[S] is
connected. If S is a dominating set of G, we also say
that S dominates V .

Definition 4. (CDS Partition) A CDS partition of
a graph G = (V,E) is a partition V1∪· · ·∪Vt = V of the
vertices V such that each set Vi is a CDS. The size of a
CDS partition is the number of CDSs of the partition.
The maximum size of a CDS partition of G is denoted
by KCDS (G).

Definition 5. (CDS Packing) Let CDS (G) be the
set of all CDSs of a graph G. A CDS packing of G
assigns a non-negative weight xτ to each τ ∈ CDS (G)
such that for each vertex v ∈ V ,

∑
τ3v xτ ≤ 1. The size

of this CDS packing is
∑
τ∈CDS(G) xτ . The maximum

size of a CDS packing of G is denoted by K ′CDS (G).

Note that a CDS partition is a special case of a CDS
packing where each xτ ∈ {0, 1}. In other words, CDS
packing is the LP relaxation of CDS partition when
formulating CDS partition as an integer programming
problem in the natural way. Consequently, we have
KCDS (G) ≤ K ′CDS (G) for every graph G.

We remark that the maximum CDS partition size of
graph G is sometimes also called the connected domatic
number of G [16, 17, 39]. Analogously, the maximum
CDS packing size can be referred to as the fractional
connected domatic number of G.

As each CDS must contain at least one vertex of
each vertex cut, we get KCDS (G) ≤ k [16,39]. Based on
the same basic argument, the same upper bound applies
to CDS packings (details in Appendix A):

Proposition 5.1. For each graph with vertex-

connectivity k, we have KCDS (G) ≤ K ′CDS (G)
(∗)
≤ k.

Note that Theorem 1.3 (proven in Appendix A)
shows that the gap in the inequality (∗) can be Ω(log n).

6 Construction of CDS Packing, and Vertex
Connectivity After Sampling

In this section, we prove our main CDS packing re-
sult, Theorem 1.1, and our main sampling result, Theo-
rem 1.4. Refer to Section 1.1 for the statements. In par-
ticular, we show an efficient construction of a CDS pack-
ing of size O(k/ log n). Recall that Theorem 1.3 (proven
in Appendix A) shows that this bound is existentially
optimal. Moreover, when vertices are independently
sampled with probability p, the same construction-style
creates a CDS packing of G with size Ω(kp2/log3 n), us-
ing only the sampled vertices. Thus, following Propo-
sition 5.1, this CDS packing acts as a witness to the
vertex connectivity of the sampled graph and it proves
Theorem 1.4.

To prove Theorems 1.1 and 1.4 together, we ex-
plain the construction in the case of vertex sampling
with probability p and give a CDS packing with size
Ω(kq2/ log n), where q = 1 − (1 − p)1/(3L) and L =
λ log n = Θ(log n) is the number of layers (as described
in Section 1.2). Since q ≥ p

6L = Θ( p
logn ), the CDS pack-

ing size is Ω(kq2/ log n) = Ω(kp2/log3 n), thus proving
Theorem 1.4. When we set p = 1 (i.e., no sampling),
we get q = 1 and thus, the CDS packing size becomes
Ω(k/log n) as claimed by Theorem 1.1.

6.1 Construction of the CDS Packing As out-
lined in Section 1.2, to construct the claimed CDS pack-
ing, we partition the vertices of the graph into L layers
and we construct CDSs as we go through the layers
one-by-one. For our arguments to work, we need the
subgraph induced by each layer to have large vertex
connectivity. This is hard to achieve when partitioning
the vertices of the original graph G into layers. Instead
of arguing directly about G, we therefore transform G
into a new graph G = (V, E) that we call the virtual
graph and which is defined next7.

7We note that the virtual graph is a basic construct used

in graph theory and it appears under various names. See,
e.g., [12, 33].



Virtual Graph G = (V, E): For each vertex v ∈ V (and
a sufficiently large constant λ), create 3L = 3λ log n
virtual vertices that are copies of v, one for each layer
` in [1, L]. Connect two virtual vertices if and only
if they are copies of the same real vertex or copies of
two adjacent real vertices. Note that for each layer `,
the virtual vertices of layer ` induce a copy of G. For
each set of virtual verticesW ⊆ V, define the projection
Ψ(W) of W onto G as the set W ⊆ V of real vertices
w, for which at least one virtual copy of w is in W.

Proposition 6.1. Two vertices in G are connected
if and only if they project to the same vertex or to
neighboring vertices in G. Thus, G[W] is connected
(resp. dominating) iff G[Ψ(W)] is connected (resp.
dominating).

To translate the sampling to G, consider the follow-
ing process: sample each virtual vertex with probability
q = 1 − (1 − p)1/(3L) and then sample each real vertex
v ∈ V if and only if at least one of its virtual copies
is sampled (i.e., the sampled real vertices are obtained
by projecting the sampled virtual vertices onto G). The
probability of each real vertex being sampled is exactly
1− (1− q)3L = p. Henceforth, we work on G assuming
that each virtual vertex is sampled independently with
probability q = 1− (1− p)1/(3L) ≥ p

6L .
To construct the promised CDS packing on the

sampled real vertices, we create a CDS partition of size
Ω(kq2) = Ω(kp2/log2 n) on the sampled virtual vertices.
Since each real vertex has Θ(log n) virtual copies, by
giving a weight of 1/Θ(log n) to each CDS, we directly
get the claimed CDS packing.

In the rest of this section, we work on G and show
how to construct t = δ · kq2 vertex-disjoint connected
dominating sets on the sampled virtual vertices, for a
sufficiently small constant δ > 0. We have t classes
and we assign each sampled virtual vertex to one class,
such that, eventually each class is a CDS, w.h.p. To
organize the construction, we group the virtual vertices
in L layers, putting three copies of graphG in each layer.
Inside each layer, the three copies are distinguished by
a type number in {1, 2, 3}.

We now present the notations that we use through-
out the construction and the analysis. Let Si` be the
set of sampled virtual vertices of layers 1 to ` that are
assigned to class i. Let N i

` be the number of con-
nected components of G[Si`]. Finally, define M` :=∑t
i=1(N i

` − 1) to be the total number of excess com-
ponents after considering layers 1, . . . , `, compared to
the ideal case where each class is connected.

Initially M1 ≤ n. The idea is to do the assignments
of vertices to classes such that M` decreases essentially
exponentially with `, until it becomes zero, meaning

each class induces a connected sub-graph.
The class assignments are performed in a recursive

manner based on the layer numbers. We begin the
assignment with a jump-start, assigning sampled virtual
vertices of layers 1 to L

2 to random classes. We show in
Lemma 6.1 that this already gives domination.

Lemma 6.1. (Domination Lemma) W.h.p., for
each class i, SiL/2 dominates V.

Proof. Since G has vertex connectivity k, each real node
v has at least k real neighbors and in these k real
neighbors, in expectation at least kq

2t = Ω(log n) virtual

nodes are sampled, have layer number 1 to L
2 , and join

class i, i.e., are in SiL
2

. Thus, the claim follows from a

standard Chernoff bound combined with a union bound
over all choices of v and over all classes. �

Note that the domination of each class follows
directly from this lemma. For the rest of this section,
we assume that for each class i, SiL/2 dominates V, and
we use this property later to get short connector paths
(in the flavor of those in the proof of Theorem 1.7 in
Section 1.2).

After the first L
2 layers, we go over the layers

one by one and for each layer ` ∈ [L/2, L − 1], we
assign vertices of layer ` + 1 to classes based on the
assignments of vertices of layers 1 to `. In the rest
of this section, we explain this assignment for layer
` + 1. We refer to vertices of layers 1 to ` as old
vertices whereas vertices of layer ` + 1 are called new
vertices. The goal is to perform the class assignment
of the new sampled vertices such that (in expectation)
the number of connected components decreases by a
constant factor in each layer (formalized by the Fast
Merger Lemma presented as Lemma 6.3. During the
recursive assignments, our main construction tool will
be the concept of connector paths (see the proof of
Theorem 1.7), defined next.

6.2 Connector Paths Consider a class i, suppose
N i
` ≥ 2, and consider a component C of G[Si`]. We use

the projection Ψ(Si`) onto graph G as defined above. A
path P in G is called a potential connector for Ψ(C) if it
satisfies the following three conditions: (A) P has one
endpoint in Ψ(C) and the other endpoint in Ψ(Si` \ C),
(B) P has at most two internal vertices, (C) if P has
exactly two internal vertices and has the form s, u, w,
t where s ∈ Ψ(C) and t ∈ Ψ(Si` \ C), then w does not
have a neighbor in Ψ(C) and u does not have a neighbor
in Ψ(Si` \ C). Condition (C) is an important condition,
requiring minimality of each potential connector path.
That is, there is no potential connector path connecting
Ψ(C) to another component of Ψ(Si`) via only u or only
w.
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Figure 2: Potential Connector Paths for component C1 in layer `+ 1 copies of G

From a potential connector path P on graph G, we
derive a potential connector path P on virtual graph G
by determining the types of related internal vertices as
follows: (D) If P has one internal real vertex w, then
for P we choose the virtual vertex of w in layer `+ 1 in
G with type 1. (E) If P has two internal real vertices w1

and w2, where w1 is adjacent to Ψ(C) and w2 is adjacent
to Ψ(Si` \C), then for P we choose the virtual vertices of
w1 and w2 in layer `+1 with types 2 and 3, respectively.
Finally, for each endpoint w of P we add the copy of w
in Si` to P. A given potential connector path P on the
virtual vertices of layer ` + 1 is called a connector path
if and only if the internal vertices of P are sampled.
We call a connector path that has one internal vertex a
short connector path, whereas a connector path with two
internal vertices is called a long connector path. Because
of condition (C), and rules (D) and (E) above, we get
the following fact:

Proposition 6.2. For each class i, each type-2 virtual
vertex u of layer `+ 1 is on connector paths of at most
one connected component of G[Si`].

Figure 2 demonstrates an example of potential
connector paths for a component C1 ∈ G[Si`]. The figure
on the left shows graph G, where the projection Ψ(Si`)
is indicated via green vertices, and the green paths are
potential connector paths of Ψ(C1). On the right side,
the same potential connector paths are shown, where
the type of the related internal vertices are determined
according to rules (D) and (E) above, and vertices of
different types are distinguished via different shapes (for
clarity, virtual vertices of other types are omitted).

The following lemma shows that each component
that is not alone in its class is likely to have many
connector paths.

Lemma 6.2. (Connector Abundance Lemma)
Consider a layer ` ≥ L/2 and a class i such that
SiL/2 ⊆ S

i
` is a dominating set of G and N i

` ≥ 2.
Further consider an arbitrary connected component C
of G[Si`]. Then, with probability at least 1/4, C has at
least t 8 internally vertex-disjoint connector paths.

Proof. Fix a layer ` ∈ [L/2, L− 1]. Let D be the set of
dominating sets of G consisting only of nodes from layers
1, . . . , L/2. Further, for all ` ≥ L/2, let D` contain all
sets T ⊆ V` such that there exists a D ∈ D for which
D ⊆ T . That is, D` is the collection of all sets of virtual
nodes in layers 1, . . . , ` that contain a dominating set
D ∈ D. Fix an arbitrary set T ∈ D` and fix Si` = T .

Consider the projection Ψ(Si`) onto G and recall
Menger’s theorem: Between any pair (u, v) of non-
adjacent nodes of a k-vertex connected graph, there are
k internally vertex-disjoint paths connecting u and v.
Applying Menger’s theorem to a node in Ψ(C) and a
node in Ψ(Si` \C), we obtain at least k internally vertex-
disjoint paths between Ψ(C) and Ψ(Si`\C) in G. We first
show that these paths can be shortened so that each of
them has at most 2 internal nodes i.e., to get property
(B) of potential connector paths. Pick an arbitrary one
of these k paths and denote it P = v1, v2, ..., vr, where
v1 ∈ Ψ(C) and vr ∈ Ψ(Si` \ C). By the assumption
that SiL/2 dominates G, we get that Ψ(Si`) dominates G.

Hence, since v1 ∈ Ψ(C) and vr ∈ Ψ(Si` \ C), either there
is a node vi along P that is connected to both Ψ(C) and
Ψ(Si` \ C), or there must exist two consecutive nodes
vi, vi+1 along P , such that one of them is connected
to Ψ(C) and the other is connected to Ψ(Si` \ C). In
either case, we can derive a new path P ′ which satisfies
(B) and is internally vertex-disjoint from the other k−1

8Recall that t = δ · kq2, for a small enough constant δ, is the
number of classes.



paths since its internal nodes are a subset of the internal
nodes of P and are not in Ψ(Si`). After shortening all
the k internally vertex-disjoint paths, we get k internally
vertex-disjoint paths in graph G that satisfy conditions
(A) and (B), as stated Section 6.2.

Now using rules (D) and (E) in Section 6.2, we get
k internally vertex-disjoint potential connector paths
on the virtual nodes of layer l + 1. It is clear that
during the transition from the real nodes to the virtual
nodes, the potential connector paths remain internally
vertex-disjoint. Now, for each fixed potential connector
path on the virtual nodes, the probability that the
internal nodes of this path are sampled is at least
q2. Hence, in expectation, C has kq2 internally vertex-
disjoint connector paths (on virtual nodes). A simple
application of Markov’s inequality shows that with
probability at least 1/2, C has at least t = Ω(kq2)
internally vertex-disjoint connector paths. �

6.3 Recursive Step of Class Assignment From
Lemma 6.2 we know that for each connected component
of each class i withN i

` ≥ 1, with probability at least 1/2,
this component has at least t connector paths. For each
such component, pick exactly t of its connector paths.
Using Markov’s inequality, we get that with probability
at least 1/4, we have at least M` · t connector paths in
total, over all the classes and components. We use these
connector paths to assign the class numbers of vertices
of layer `+ 1. This part is done in a greedy fashion, in
three stages as follows:
(I) For each type-1 new vertex v: For each class i,

define the class-i-degree of v to be the number of
connected components of class i that have a short
connector path through v. Let ∆ be the maximum
class-i-degree of v as i ranges over all classes, and
let i∗ be a class that attains this maximum. If
∆ ≥ 1: Assign v to class i∗. Also, remove all
connector paths of all classes that go through v
and remove all connector paths of all the connected
components of class i∗ that have v on their short
connector paths.

(II) For each type-3 new vertex u: For each class i,
define the class-i-degree of u to be the number of
connected components of class i which have a long
connector path through u. Let ∆ be the maximum
class-i-degree of u as i ranges over all classes and
let i∗ be a class that attains this maximum. If
∆ ≥ 1: Assign u to class i∗. Moreover, each of the
∆ long connector paths of class i∗ that goes through
u also has a type-2 internal vertex. Let these type-
2 vertices be v1, . . . , v∆. Assign v1, . . . , v∆ to class
i∗. Then, remove all the connector paths that go
through u or any of the vertices v1, . . . , v∆. Also

remove all connector paths of each component of
class i∗ that has a connector path going through u.

(III) Assign each remaining new vertex to a random
class.

Lemma 6.3. (Fast Merger Lemma) For each ` ≥ L
2

and every assignment of the sampled vertices of layers
1, . . . , ` to classes such that for all classes i, SiL/2 is a

dominating set of G, we have (a) M`+1 ≤ M`, and (b)
with probability at least 1/2, M`+1 ≤ 5

6 ·M`.

The proof is based on an accounting argument that uses
the total number of remaining connector paths over all
classes and components as the budget, and shows that
number of components that are merged, each with at
least one other component, is at least M`

3 .

Proof. For part (a) of lemma, note that since for each
class i, set SiL/2 is a dominating set of G and for each

layer ` ≥ L/2, SiL/2 ⊆ Si`, we get that Si` dominates
set V. Thus, each virtual sampled node in layer ` + 1
has a neighbor in Si` which means that each connected
component of G[Si`+1] contains at least one connected
component of G[Si`]. Hence, N i

`+1 ≤ N i
` , which also

means that M`+1 ≤M`.

For part (b), consider a class i such that N i
` ≥ 2

and let C1 be a connected component of G[Si`]. We say
component C1 is good if for at least one connector path
p of C1, all internal nodes of p — one or two nodes
depending on whether p is short or long — join class
i. Note that if C1 is good, then it gets connected to
another component of G[Si`]. In order to prove the
lemma, we first show that with probability at least
1/2, at least M`

3 connected components (summed up
over all classes) are good. This is achieved using a
simple accounting method by considering the number
of remaining connector paths as the budget.

We know that with probability at least 1/4, initially
we have a budget of M` · t. We show that the greedy
algorithm spends this budget in a manner that at the
end, we get M`+1 ≤ 5

6M`.
In each step of each of stages I or II, if respectively a

type-1 node or a type-3 nodes and some associated type-
2 nodes join a class, then at least ∆ components become
good where ∆ is defined as explained in the algorithm
description. We show that in that case, we remove at
most 3∆t connector paths in the related bookkeeping
part. Thus, in the accounting argument, we get that at
most 3∆·t amount of budget is spent and ∆ components
become good. Hence, in total over all steps, at least M`

3
components become good.

Let us first check the case of short connector paths,
which is performed in stage I. Let v be the new type-1



node under consideration in this step and suppose that
the related ∆ ≥ 2, and node v joins class i∗. For class
i∗, we remove all paths of all connected components
of i∗ that have v on their short connector paths. This
includes ∆ such connected components, and t connector
paths for each such component. Thus, in total we
remove at most ∆ · t connector paths of components
of class i∗. For each class i 6= i∗, we remove at most ∆
connector paths. This is because v can be on short
connector paths of at most ∆ components, at most
once for each such component. These are respectively
because of definition of ∆ and due to internally vertex-
disjointedness of connector paths of each component.
There are less than t classes other than i∗, so in total
over all classes other than i∗, we remove at most ∆ · t
connector paths. Therefore, we can conclude that the
total amount of decrease in budget is at most 2∆ · t.

Now we check the case of long connector paths,
performed in stage II. Suppose that in this step, we
are working on a type-3 new node u, it has ∆ ≥ 1, and
we assign node u and associated type-2 new nodes v1,
. . . , v∆ to class i∗. It follows from Proposition 6.2 that
nodes v1, . . . , v∆ are not on long connector paths of
components of class i∗ other than the ∆ components
which have long paths through u. Thus, any connector
path of class i∗ that goes through any of v1 to v∆ also
goes through u. For each component of class i∗ that
has a long connector path through u, we remove all
the connector paths. By definition of ∆, there are ∆
such components and from each such component, we
remove at most t paths. Hence, the number of such
connector paths that are removed is at most ∆ · t. On
the other hand, for each class i 6= i∗, we remove at most
2∆ connector paths. This is because by definition of
∆, removing just node u removes at most ∆ long paths
from each class. Moreover, because of Proposition 6.2
and internally vertex-disjointedness of connector paths
of each component, removing each type-2 node vj
(where j ∈ {1, 2, . . . ,∆}) removes at most one long
connector path of one connected component of class
i 6= i∗. Over all classes i 6= i∗, in total we remove
at most 2∆ · t connector paths. Hence, when summed
up with removed connector paths related to class i∗, we
get that the total amount of decrease in the budget is
at most 3∆ · t.

Now we know that with probability at least 1/4,
at least M`

3 connected components (summed up over all
classes) are good. Recall that each good component gets
merged with at least one other component of its class.
Thus, Pr

[
M`+1 ≤ 5

6 ·M` | S` = T
]
≥ 1/4. �

7 Construction of CDS Partition

We now prove our CDS partition result, Theorem 1.2.
See Section 1.1 for the statement. To achieve this CDS
partition, we use the general construction style of the
CDS packing of Theorem 1.4. Here, we explain the
key changes: since in a CDS partition, each node can
only join one CDS, we cannot use the layering style
of Theorem 1.4, which uses Θ(log n) copies of G and
where each node can join O(log n) CDSs. Instead, we
use random layering: each node chooses a random layer
number in {1, . . . , L} and a random type number in
{1, 2, 3}. The construction is again recursive, with first
assigning nodes of layers 1 to L/2 randomly to one of t
random classes. This suffices to give domination. Here,
the number of classes t = δ k

log2 n
if k = Ω(

√
n) and

t = δ k
log5 n

, otherwise. After that, for each ` ≥ 2, we

assign class numbers of nodes of layer `+1 based on the
configuration of classes in layers 1 to `, using the same
greedy algorithm as in Section 6.3. Next, we re-define
the connector paths, incorporating the random layering.

Connector Paths for CDS Partition: Let V i` be the
set of all nodes of layers 1 to ` in class i. Consider a
component C of G[V i` ]. Define potential connector paths
on G as in Section 6.2 (conditions (A) to (C)). Then, for
each potential connector path on G, this path is called
a connector path if its internal nodes are in layer ` + 1
and the types of its internal nodes satisfy rules (D) and
(E) in Section 6.2.

The key technical change compared to the CDS
packing of Section 6, appears in obtaining a Connector
Abundance Lemma, which we present in two versions—
namely Lemma 7.1 and Lemma 7.2—depending on the
magnitude of vertex-connectivity.

Lemma 7.1. (Connector Abundance Lemma) For
each class i and layer ` ≤ L/2 such that N i

` ≥ 2, for
each connected component C of G[V i` ], with probability
at least 1/2, C has at least Ω

(
k

log5 n

)
internally vertex-

disjoint connector paths, with independence between
different layers ` ≤ L/2.

To prove Lemma 7.1, we use the sampling result
of Theorem 1.4. Roughly speaking, for each layer
` ≤ L/2, from Lemma 7.1 we get that the graph induced
by layers ` + 1 to L has vertex connectivity at least
Ω( k

log3 n
) and then, we get that each component C has at

least Ω( k
log5 n

) internally vertex-disjoint connector paths

(with internal nodes of right type and layer `+ 1).

Proof. Let W ∗` be the set of all nodes with a layer
number in {`+ 1, . . . , L}. Since the probability of each
node to be in W ∗` is at least 1/2 (because ` ≤ L/2),
Theorem 1.4 shows that, w.h.p, the vertex-connectivity



of G[W ∗` ] is Ω( k
log3 n

). It is easy to see that therefore,

the vertex-connectivity of G[W ∗` ∪ V i` ] is also Ω( k
log3 n

).

Thus, for each component C of G[V i` ], we can follow the
first part of the proof of Lemma 6.2, this time using
Menger’s theorem on G[W ∗` ∪ V i` ], and find Ω( k

log3 n
)

internally vertex-disjoint potential connector paths in
graph G[W ∗` ∪ V i` ]. It is clear that the internal nodes
of these potential connector paths are not in V i` , which
means they are in W ∗` . For each potential connector
path, for each of its internal nodes, given that this
node is in W ∗` , the probability that the node is in
layer ` + 1 and has the type which satisfies rules
(A) and (B) of Section 6.2 is at least Θ(1/L) =
Θ(1/ log n). Hence, the probability of each of these
potential connector paths being a connector path is at
least Θ(1/ log2 n). From internally vertex-disjointedness
of the potential connector paths, and since there are
Ω( k

log3 n
) of them, it follows that with probability at

least 1/2, component C has at least Ω( k
log5 n

) internally

vertex-disjoint connector paths. �

We now present the second version of the Connector
Abundance Lemma which gives Ω( k

log2 n
) connectorr

paths when vertex connectivity is k = Ω(
√
n).

Lemma 7.2. (Stronger Connector Abundance
Lemma for Large Vertex Connectivity) Assume
k = Ω(

√
n). W.h.p., for each class i and layer ` ≤ L/2

such that N i
` ≥ 2, each connected component C of

G[V i` ] has at least Ω
(

k
log2 n

)
internally vertex-disjoint

connector paths.

The proof of Lemma 7.2 is more involved, compared
to that of Lemma 7.1. Intuitively, for each class i, it first
contracts components of G[V i1 ] and then argues about
all 2O(n/k) cuts of the resulting graph, using the fact
that the large vertex connectivity k = Ω(

√
n) gives a

good enough concentration to compensate for this large
number of cuts.

Proof. Fix a class i. We start by studying the connected
components of G[V i1 ]. Each node has probability 1

tL =
logn
δλk to be in V i1 . Therefore, E[|V i1 |] = n logn

δλk . Using
a Chernoff bound we get that for δ sufficiently small,
w.h.p., |V i1 | ≤

2n logn
δλk . Moreover, since each node v ∈ V

has at least k neighbors in G, the expected number
of neighbors of v in V i1 is at least Ω(log n). Using
another Chernoff bound (and δ sufficiently small) and
then a union bound over all choices of v, we get that
w.h.p., each node v ∈ V has Ω(log n) neighbors in
V i1 . Therefore, in particular, each node v ∈ V i1 has
Ω(log n) neighbors in V i1 . In other words, w.h.p., the
degree of each node in G[V i1 ] is Ω(log n). Thus, w.h.p.,

G[V i1 ] has at most 2n logn
δλk nodes, each of degree Ω(log n).

Therefore, for an appropriate choice of the constant δ,
w.h.p., the number of connected components of G[V i1 ]
is at most ε · nk for a given constant ε > 0. Let Σi be
the set of all connected components of G[V i1 ].

We call each nonempty set A which is a strict subset
of Σi, i.e., A ⊂ Σi, a component cut of G[V i1 ]. Since,
w.h.p., we have |Σi| ≤ εnk , the number of component

cuts of G[V i1 ] is at most 2εn/k, w.h.p.
For each layer ` ∈ [2, L2 ] and each component cut

A of G[V i1 ], we say A is `-rich if there are at least
k
8 internally vertex-disjoint paths p which satisfy the
following conditions: (1) p has one end point s ∈ A and
the other endpoint t ∈ S \ A, (2) p has at most two
internal nodes, (3) if p has two internal nodes and has
the form s, u, w, t, then u does not have a neighbor
in S − A and w does not have a neighbor in S, (4) all
internal nodes of p are in layers [`+ 1, L]. We first show
that with high probability, for each layer ` ∈ [2, L2 ] and
each component cut A of G[V i1 ], A is `-rich.

Consider an arbitrary component cut A of G[V i1 ].
Since graph G is k-vertex connected and because V i1 is
a dominating set (cf. Lemma 6.1), there are at least k
internally vertex-disjoint paths which satisfy conditions
(1) and (2). The details of this argument are similar to
the first part of the proof of Lemma 6.2. Each of these
k paths can be trimmed to also satisfy condition (3).
To see this, consider a path p as described in condition
(3). If v has a neighbor in S \A then there is a trimmed
path p′ from some node in A to v to some node in S \A,
which satisfies (3). Similarly, if w has a neighbor in A,
then there is a trimmed path p′ from A to w to some
node in S \ A, which satisfies (3). In either case, the
trimmed path p′ remains internally vertex-disjoint from
the other k − 1 paths.

Thus far, we have found k internally vertex-disjoint
paths of component cut A satisfying conditions (1) to
(3). Now, each internal node u on each of these k
paths has probability at least 1

2 to be in one of layers
[`+ 1, L]. Formally, this is because, the layer number of
u is chosen randomly and so far, the only information
exposed about u is that it is not in V i1 . Let layer(u) be
the layer number of u. We get

Pr[layer(u) ∈ [`+ 1, L]|u /∈ V i1 ]

=
Pr[layer(u)∈[`+1,L]∧u/∈V i1 ]

Pr[u/∈V i1 ]

= Pr[layer(u)∈[`+1,L]]
Pr[u/∈V i1 ]

=
L−`
L

1− 1
Lt

≥ L−`
L ≥ 1

2 ,

where the last inequality holds because ` ≤ L
2 . Hence,

each internal node u on each path p out of the k
internally vertex-disjoint paths for A has probability at
least 1/2 to be in layer [`+ 1, L]. The expected number



of paths that also satisfy condition (4) therefore is at
least k

4 . Since the paths are internally vertex-disjoint
and layer numbers are chosen independently, we can use
a Chernoff bound and conclude that with probability at
least 1−e−k/32, at least k

8 of the paths satisfy condition

(4). Consequently, with probability at least 1− e−k/32,
the component cut A of G[V i1 ] is `-rich.

Now there are at most 2εn/k component cuts for
G[V i1 ]. Thus, using a union bound, the probability that
there exists one of them that is not `-rich is at most
2εn/k ·e−k/48. Since k = Ω(

√
n), for ε small enough, this

probability is less than 2−Ω(
√
n) = 2−ω(logn). Hence,

w.h.p., each component cut of G[V i1 ] is `-rich. Using a
union bound over all choices of ` ∈ [2, L2 ], we can also
conclude that for each such `, each component cut of
G[V i1 ] is `-rich.

We are now ready to show that each connected com-
ponent C ofG[V i` ] has at least Ω(k/L2) internally vertex-
disjoint connector paths. Note that each component C
is composed of a subset of the connected components of
G[V i1 ] and some nodes of layers 2, . . . , `. Hence, there
is a component cut A′ of G[V i1 ] such that C ∩ V i1 = A′.
Since the component cut A′ is `-rich w.h.p., there are at
least k

8 paths which satisfy conditions (1) to (4) above.
Each such path p satisfies conditions (A), (B). However,
path p might not directly satisfy condition (C). This is
because, it is possible that p is defined as s, v, w, t
which satisfies condition (3) but in graph G[V i` ], node v
has a neighbor in W i

` −C or node w has a neighbor in C.
Though, in either case, we can get a path p′ of length
2 which satisfies conditions (A), (B), and (C) with just
one internal node, either v or w. Note that p′ still re-
mains internally-vertex-disjoint from the other paths.
Moreover, the internal node of p′ is in layers [`+ 1, L].

Now we have k
8 potential connectors for C which

have their internal nodes in layers in [`+ 1, L]. For each
internal node v of any of these paths, it holds that v is in
layer `+1 with probability greater than 1

L . Formally this
is true because, given that node v is in a layer in [`+1, L],
the exact layer number of v can be chosen after making
all the decisions for the first ` layers. Therefore, each
of the paths that we have found so far has probability
at least 1

L2 to satisfy the corresponding rule conditions
(D) or (E) such that it would be a connector path for
C. Hence, the expected number of connector paths of
C is at least k

8L2 . Since the potential connectors we
found (which have internal nodes in layers ` + 1 to L)
are internally vertex-disjoint, the events of them being
connector paths for C are independent. Thus, using
a Chernoff bound we get that w.h.p., C has at least
Ω(k/L2) = Ω(k/ log2 n) = ω(log n) connector paths. A
union bound over all connected components of class i,
over all layers ` ∈ [2, L2 ], and over all choices of the class

i completes the proof. �

8 Open Questions

As the most important follow-up research direction, it
is certainly interesting to try to use the new perspec-
tive on vertex connectivity provided in this paper to
approach other problems related to vertex connectivity.
Besides that, this paper leaves a number of interest-
ing and important open questions. Most of our results
are only tight up to logarithmic factors and it would be
interesting to close these gaps. In particular, when sam-
pling each node with probability p, assuming that kp2

is large enough, we suspect that the remaining vertex
connectivity should be Θ(kp2). We also believe that
construction from Section 7 to compute a CDS parti-
tion should actually allow to obtain a CDS partition
of size Ω(k/ log2 n) for all values of k and not just for
k = Ω(

√
n). Note that our approach would immedi-

ately give this if we could prove that when sampling
with probability 1/2, the remaining vertex connectiv-
ity is still Ω(k) rather than Ω(k/ log3 n) as we get from
Theorem 1.4. Note that even proving an Ω(k/ log2 n)
lower bound on the size of a maximum CDS partition
would still leave a logarithmic gap with respect to the
upper bound of Theorem 1.3.
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A Upper Bounding the Size of CDS-Packing

In this section, we first present the missing proof of
Proposition 5.1, and then, in the more interesting part,
prove Theorem 1.3, which shows that in some graphs,
the maximum CDS packing size is a Θ(log n) factor
smaller than the vertex connectivity.

Proof. [Proof of Proposition 5.1] Consider a vertex cut
C ⊆ V of G that has size exactly k. Each CDS τ
must include at least one node in C. For each CDS
τ ∈ CDS (G), pick one node v ∈ C as a representative
of τ in the cut and let us denote it by Rep(τ). Thus,
for any CDS-Packing of G, we have∑
τ∈CDS(G)

xτ =
∑
v∈C

∑
τ∈CDS(G)
s.t. v=Rep(τ)

xτ ≤
∑
v∈C

1 = |C| = k.

Since the above holds for any CDS-Packing of G, we get
that K ′CDS (G) ≤ k. �

We now prove Theorem 1.3. First, in Lemma A.1
we present a graph H with vertex connectivity k,
size between 2k and 4k, and K ′CDS (H) < 2. This
lemma proves the theorem for k = O(log n). To prove
the theorem for the case of larger vertex-connectivity
compared to n, in Lemma A.2, we look at randomly
chosen sub-graphs of H and apply the probabilistic
method [4].

Lemma A.1. For any k, there exists an n-node graph
H with vertex connectivity k and n ∈ [2k, 4k] such that
K ′CDS (H) < 2.

Proof. We obtain graph H by simple modifications to
the graph presented by Sanders et al. [37] for proving
an Ω(log n) network coding gap in the model where
network is directed and each node can send distinct
unit-size messages to its different outgoing neighbors.

The graph H has two layers. The first layer is a
clique of 2k nodes. The second layer has

(
2k
k

)
nodes,

one for each subset of size k of the nodes of the first
layer. Each second layer node is connected to the k
first-layer nodes of the corresponding subset. Note that
the total number of nodes is

(
2k
k

)
+ 2k ∈ [2k, 4k]. Let

A and B denote the set of nodes in the first and second
layer, respectively.

First, we show that H has vertex connectivity k.
Since the degree of each second layer node is exactly k,
it is clear that the vertex connectivity of H is at most
k. To prove that the vertex connectivity of H is at least
k, let u and v be two arbitrary nodes of H. We show
that there are at least k internally vertex disjoint paths
between u and v. If u and v are both in A, then there
is one direct edge between v and u and there are 2k− 2

paths of length 2 between them. If exactly one of v and u
is in A, e.g., suppose u ∈ A and v ∈ B, then u is directly
connected to k neighbors of v. Otherwise, if both u and
v are in B, then let p be the size of the intersection of
the neighbors of v and u. Note that these neighbors are
all in A. It is clear that u and v have exactly p paths of
length 2 between themselves and k− p paths of lengths
3, and that these paths are internally vertex disjoint.

To see that K ′CDS (H) < 2, first note that each
CDS τ must include at least k + 1 nodes of A. This is
because, otherwise, there are at least k nodes of A that
are not included in τ and thus, there is a node in B—
corresponding to a subset of size k of these uncovered
nodes of A—which is not dominated by τ . Thus we
have, ∑

v∈A

∑
τ∈CDS(H)
s.t. v∈τ

xτ ≥ (k + 1) ·
∑

τ∈CDS(H)

xτ .

On the other hand we have,∑
v∈A

∑
τ∈CDS(H)
s.t. v∈τ

xτ ≤
∑
v∈A

1 = |A| = 2k,

and thus we can conclude that
∑
τ∈CDS(H) xτ ≤

2k
k+1 <

2. Since this holds for any CDS-Packing of H, we get
K ′CDS (H) < 2. �

Note that in the above construction, we have
KCDS (H) = 1 as H is connected and KCDS (H) has to
be an integer.

Lemma A.2. For each large enough k and η ∈ [4k, 2k],
there exists a sub-graph H ′ ⊆ H that has η nodes and
vertex connectivity k but K ′CDS (H ′) = O( k

log η ).

Proof. Pick an arbitrary k ≥ 64, fix an η ∈ [4k, 2k] and
let β = log η

8 . Consider a random subset Vz ⊆ V , where
Vz includes all nodes of A and for each node u ∈ B, u is
independently included in Vz with probability p, where

p =
65β2(
2k−β
k

) .
We now look at the sub-graph Hz of H induced on Vz.
With the same argument as for H, we get that for any
such Vz, the graph Hz has vertex connectivity exactly
k. We show that (a) with probability at least 1

2 , Vz
is such that K ′CDS (Hz) <

2k
β = O( k

log η ), and (b) with

probability at least 3
4 , we have |Vz| ≤ η. A union bound

then completes the proof.
Property (a) We first show that with probability

at least 1
2 , Vz is such that there does not exist a subset

of size β of the nodes of A that dominates Vz. For each



subset W ⊂ A such that |W | = β, there are
(

2k−β
k

)
nodes in B which are not dominated by W . Thus, for
W to dominate Vz, none of these second layer nodes
should be included in Vz. The probability for this to
happen is

(1− p)(
2k−β
k ) ≤ e−65β2

There are
(

2k
β

)
possibilities for set W . Hence, using a

union bound, the probability that there exists such a
set W that dominates Vz is at most

e−65β2

(
2k

β

)
≤ e−65β2

· (2ek

β
)β

(†)
< e−65β2

· (η2)β

= e−65β2+64β2

≤ 1

2
,

where Inequality (†) follows since 64 ≤ k ≤ η
4 , which

gives 2ek < k2 < η2.
Thus, with probability at least 1

2 , Vz is such that
each CDS of Hz includes at least β+1 nodes of A. From
this, similar to the last part of the proof of Lemma A.1,
we have that,

∑
τ∈CDS(H) xτ ≤

2k
β+1 < 2k

β . Since this
holds for any packing ofHz, we get that with probability
at least 1

2 , Vz is such that K ′CDS (Hz) <
2k
β .

Property (b) Note that E[|Vz|] = 2k + p ·
(

2k
k

)
.

Substituting p = 65β2

(2k−β
k )

and noting that β ≤ k
2 , we get

E[|Vz|]− 2k = p ·
(

2k

k

)
= 65β2 ·

(
2k
k

)(
2k−β
k

)
= 65β2 · 2k

2k − β
· 2k − 1

2k − β − 1
. . .

k + 1

k − β + 1

≤ 65β2 · (1 +
2β

k
)k

≤ 65 log2 η

64
· η 1

4 ≤ η

4
.

As the second-layer nodes are picked independently, for
η sufficiently large, we can apply a Chernoff bound to
get Pr[|Vz|−2k > η

2 ] ≤ 1
4 . Since 2k ≤ η

2 , we then obtain
Pr[|Vz| > η] ≤ 1

4 . If desired, we can adjust the number
of nodes to exactly η by adding enough nodes in the
second layer which are each connected to all nodes of
the first layer. �

B Missing Proof of Theorem 1.5: CDS Packing
vs. Throughput

In this section, we prove Theorem 1.5.

Proof. [Proof of Theorem 1.5] First consider a CDS τ
and suppose that the graph induced by τ has diameter
Dτ . Using τ , we can perform p broadcasts (or multicast
or unicasts) in time O(p + Dτ ). This can be seen as
follows: Since τ is a dominating set, we can deliver

each message to a node of τ in at most p rounds.
Because τ is connected, O(p + Dτ ) rounds are enough
to broadcast the messages to all nodes in τ . Finally,
because τ is a dominating set, at most p more rounds
are enough to deliver the messages to all the desired
destination nodes. Hence, a CDS structure allows for
performing broadcasts with an (amortized) rate of Ω(1)
messages per round. In other words, a CDS can be
viewed as a communication backbone with throughout
Ω(1) messages per round.

Consequently, K vertex-disjoint CDS sets form a
communication backbone with throughput of Ω(K)
messages per round. Intuitively, we can use those
K vertex-disjoint sets in parallel with each other and
get throughput of Ω(1) message per round from each
of them. For a more formal description, consider
p broadcasts such that no more than q broadcasts
have the same source node. We first deliver each
messages to a randomly and uniformly chosen CDS
set. This can be done in time at most q. With high
probability, the number of messages in each CDS is
O( pK +log n) and thus, we can simultaneously broadcast
messages in time O( pK + log n + Dmax) where Dmax is
the maximum diameter of the CDSs. Thus, the total
time for completing all the broadcasts is O(q + p

K +
log n+Dmax). That is, we can perform the broadcasts
with a rate (throughput) of Ω(min{K, p/q}). Note that
since each source can only send one packet per round, if
q ≤ K, then the maximum achievable throughout with
any algorithm including network coding approaches is at
most q packets per round. In other words, in that case,
the bottleneck is not the communication protocol but
rather the sources of the messages. As long as no node
is the source of more than Θ(p/K) messages, K vertex-
disjoint CDS sets form a communication backbone with
throughput Ω(K).

Similarly one can see that a CDS packing with size
K provides a backbone with a throughput of Ω(K)
messages per round. The only change with respect to
above description is that now each node v spends a xτ -
fraction of its time for sending the messages assigned
to CDS τ for every τ such that v ∈ τ . Further,
messages are assigned to each CDS τ with probability
proportional to xτ . We remark here that even though
this scheme provides a backbone with throughput Ω(K),
if the weights xτ are too small, the outlined time sharing
might impose a considerably large additive term on the
overall time for completing the broadcasts. In fact since
the number of potential CDS sets can be exponential,
the time sharing might lead to exponentially large
additive terms. Note that in the CDS packing we
present in Theorem 1.1, each CDS has weight at least
Ω(1/ log n) and thus using the partition also leads to



an asymptotically optimal throughput for a relatively
small number of broadcast messages.

Let us now argue that a broadcast protocol with
throughput K also leads to a CDS packing of size K.
Suppose that there exists a (possibly large enough)
number p and a store-and-forward algorithm which
broadcasts p messages (originating from potentially dif-
ferent sources) in T ≤ p

K rounds. For each message
σ that is being broadcast, define set S(σ) to be the
set of nodes that send σ in some round of the algo-
rithm. Clearly S(σ) induces a connected sub-graph and
because every node needs to receive the message S(σ)
also is a dominating set. For each node v and message
σ, let Nσ(v) be the number of rounds in which node v

sends message σ and let yσ(v) = Nσ(v)
T . Moreover, for

each CDS τ such that v ∈ τ , let

zτ (v) =
∑
σ

S(σ)=τ ∧ v∈τ

yτ (v).

Finally, let xτ = minv∈τ{zτ (v)}. Given these parame-
ters, first notice that for each node v, we have∑
τ
v∈τ

xτ ≤
∑
τ
v∈τ

zτ (v) =
∑
τ
v∈τ

∑
σ

S(σ)=τ

yσ(v) =
∑
σ

Nσ(v)

T

(†)
≤ 1.

Here, Inequality (†) is because in each round, node v can
send at most one message and thus,

∑
σ Nσ(v) ≤ T . On

the other hand, we show that
∑
τ xτ ≥

p
T = Ω(K). For

this purpose, consider a CDS τ and let u∗ be a node
such that zτ (u∗) = xτ . Since each message σ such that
S(σ) = τ is sent at least once by u∗, we have∑

σ
S(σ)=τ

1 ≤
∑
σ

S(σ)=τ

Nσ(u∗) =
∑

σ
S(σ)=τ

yσ(u∗) · T

= zτ (u∗) · T = xτ · T

Moreover, we have that

p =
∑
σ

1 =
∑
τ

∑
σ

S(σ)=τ

1 ≤
∑
τ

xτ · T

Thus,
∑
τ xτ ≥

p
T . Since T ≤ p

K , we get that
∑
τ xτ ≥

K. �

Remark We remark that in the general formula-
tion of CDS packings, each node might participate in ar-
bitrarily many (in fact up to exponentially many) CDSs.
This would make CDS packing inefficient from a prac-
tical point of view if the number of messages is small
compared to the number of CDSs used. Fortunately,
in our construction (cf., Theorem 1.1), each node only
participates in O(log n) CDSs, which makes the CDS
packing efficient even for a small number of messages.

C Observation D

Now we prove Observation D, which shows that the
bound of Θ( logn

k ) which we proved in Section 1.2 for
vertex-sampling probability so that the sampled vertices
induce a connected graph is optimal up to an O(

√
log n)

factor.

Observation D. For every k and n, there exists an n-
vertex graph G with vertex connectivity k such that if
we independently sample vertices with probability p ≤√

log(n/2k)/
√

2k, then the subgraph induced by the
sampled vertices is disconnected with probability at least
1/2.

Proof. [Proof of Observation D] Consider a graph G
composed of a chain of n

k cliques, each of size k, where
each two consecutive cliques on the chain are connected
by a matching of size k. For simplicity, assume that
n
k is an even integer. Clearly, this graph has vertex
connectivity k. Suppose that the sampling probability
p is less than

√
log( n2k )/(2k). We show that, with

probability at least 1/2, the graph induced on the
sampled vertices is disconnected.

Let us number the cliques from 1 to n
k . First note

that some nodes of each clique are sampled w.h.p. Let
J =

{
j|j ∈ [1, nk ] ∧ j ≡ 0 (mod 2)

}
, i.e., the set of even

numbers in the range [1, nk ]. If the sampled graph is
connected, then for each j ∈ J , at least on of the edges
of the matching connecting clique j−1 with clique j has
to be in the sampled graph. For this, there have to be
two adjacent nodes u from clique j−1 and v from clique
j that are both sampled. We call such a pair of nodes
connecting. For each j ∈ J , there are k possible choices
for a connecting pair and each choice has probability 1

s2

to be sampled (to be connecting). Moreover, these pairs
are vertex disjoint. Thus, for each j ∈ J , the probability
that the sampled graph has a connecting pair between
cliques j − 1 and j is

1−
(

1− 1

s2

)k
≤ 1−4−k/s

2

< 1−4− log( n2k )/2 = 1−2k

n
.

Since J only contains even values, the pairs of conse-
quent cliques that we consider are disjoint. Thus, the
events whether they have a connecting pair or not are
independent. Therefore, the probability that we have
at least one connecting pair for each value of j ∈ J is at

most
(
1− 2k

n

)|J|
=
(
1− 2k

n

) n
2k < 1

e < 1/2. �
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