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Abstract
We introduce a communication model for hybrid networks,
where nodes have access to two different communication
modes: a local mode where (like in traditional networks)
communication is only possible between specific pairs of
nodes, and a global mode where (like in overlay networks)
communication between any pair of nodes is possible. Typi-
cally, communication over short-range connections is cheaper
and can be done at a much higher rate than communica-
tion via the overlay network. Therefore, we are focusing on
the LOCAL model for the local connections where nodes can
exchange an unbounded amount of information per round.
For the global communication we assume the so-called node-
capacitated clique model, where in each round every node
can exchange O(logn)-bit messages with O(logn) arbitrary
nodes.

We explore the impact of hybrid communication on
the complexity of distributed algorithms by studying the
problem of computing shortest paths in the graph given
by the local connections. We present the following results.
For the all-pairs shortest paths problem, we show that an
exact solution can be computed in time Õ

(
n2/3

)
and that

approximate solutions can be computed in time Θ̃
(√

n
)

but
not faster. For the single-source shortest paths problem an
exact solution can be computed in time Õ

(√
SPD

)
, where

SPD denotes the shortest path diameter. Furthermore, a(
1+o(1)

)
-approximate solution can be computed in time

Õ(n1/3). Finally, we show that for every constant ε > 0,
it is possible to compute an O(1)-approximate solution in
time Õ(nε).

1 Introduction

Many existing communication networks exploit a com-
bination of multiple communication modes to maximize
cost-efficiency and throughput. As a prominent ex-
ample, hybrid datacenter networks combine high-speed
optical or wireless circuit switching technologies with
traditional electronic packet switches to offer higher
throughput at lower cost [14, 20]. In the Internet, dy-
namic multipoint VPNs can be set up to connect dif-
ferent branches of an organization by combining leased
lines (offering them quality-of-service guarantees for
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their mission-critical traffic) with standard, best-effort
VPN connections (for their lower-priority traffic) [34].
Alternatively, an organization may also set up a so-
called hybrid WAN by combining their own communi-
cation infrastructure with connections via the Internet
[36]. Finally, the emerging 5G standard promises to al-
low handheld devices to not only communicate via the
cellular infrastructure, but also directly with other de-
vices via their wireless interface. This allows them to
set up a hybrid network consisting of connections via
base stations as well as device-to-device (D2D) connec-
tions [26], which is particularly interesting for vehicular
networks.

Despite the advantages that have been experienced
with hybrid communication networks in practice, rigor-
ous theoretical research on hybrid networks is still in its
infancy. In this paper, we propose a simple model for hy-
brid networks. In our model, we assume that each node
has two different communication modes: a local com-
munication mode that allows it to send messages along
each of its edges in the given (private, leased, trusted, or
ad-hoc) communication network, and a global commu-
nication mode, which allows a node to send messages to
any node in the network, but to only exchange a limited
number of messages in each round using this mode.

We explore the power of the model for a funda-
mental problem in graph theory as well as commu-
nication networks: computing shortest paths. While
shortest paths problems are interesting from a purely
theoretical standpoint, this class of problems has con-
crete applications in practice (e.g., IP-routing). In par-
ticular, we consider the problem of computing all-pair
and single-source shortest paths (exactly and approxi-
mately) in the local network (weighted and unweighted).
We demonstrate that by making use of both local and
global communication, we can achieve significant run-
time improvements for this class of problems compared
to using local or global edges alone, which highlights
the importance of exploiting hybrid communication ca-
pabilities of modern networks.

Before we present our detailed results in Section 1.2,
we formally introduce our model. We conclude this
section with a discussion of related work in Section 1.3.
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1.1 Hybrid Communication Model We assume
that we are given a fixed set V of n nodes1 that are
connected via two kinds of edges: local edges and
global edges. The local edges form a fixed, undirected,
weighted graph G = (V,E,w), where the edge weights
are given by w : E → {1, . . . ,W} ⊆ N for some W that
is at most polynomial in n. Thus, every weight and
length of any shortest path can be represented using
O(log n) bits. The graph G is said to be unweighted if
w : E → {1}. The global edges form a clique, i.e., every
node can potentially send a message to any other node
with the help of a global edge. We assume that each
node u has a unique identifier id(u). For simplicity, we
assume that the node identifiers are 1, . . . , n.2

We use the standard synchronous message passing
model, where time is divided into synchronous rounds,
and in each round every node can send messages of size
O(log n) to other nodes using its local and global edges.
In the most general form of our model, the number of
messages that can be sent with either communication
mode is restricted by parameters λ and γ: the local
capacity λ is the maximum number of messages that can
be sent over each local edge in a round, and the global
capacity γ is the maximum number of messages any
node can send and receive via global edges in a round.
When in some round more than λ (or γ) messages are
sent over an edge (or to a node, respectively), we assume
that an adversary delivers an arbitrary subset of these
messages and drops the other messages. All of our
algorithms ensure that with high probability3, a node
never sends or receives too many messages.

Note that whereas λ imposes a bound on the num-
ber of messages that can be sent over each edge, γ
effectively restricts the amount of global communica-
tion at each node. This modeling choice is motivated
by the idea that local communication rather relates
to physical networks, where an edge corresponds to a
physical connection (e.g., cable- or ad-hoc networks),
whereas global communication primarily captures as-
pects of logical networks that are formed as an overlay
on top of some shared physical infrastructure. For ap-
propriate choices of λ and γ, our model captures vari-
ous established network models: LOCAL (λ=∞, γ=0),

1Throughout the paper, we assume that n ≥ n0 for a

sufficiently large constant n0.
2Although assuming that ids are from 1 to n is a fairly strong

assumption (which allows each node to sample nodes from V
at random), all our results can be obtained in the same way

if nodes have arbitrary O(logn)-bit IDs and have access to a
sampling service that allows them to contact a node that is chosen

approximately uniformly at random via a global edge.
3An event holds with high probability (w.h.p.) if it holds with

probability at least 1− 1
nc

for an arbitrary but fixed constant c > 0.

CONGEST (λ = O(1), γ = 0), congested clique4 (λ =
O(1), γ = 0 where G is a clique but the input graph
is given separately), and the recently introduced node-
capacitated clique model (λ=0, γ=O(log n)) [4].

In order to demonstrate the power of combining lo-
cal and global communication, we will focus on the vari-
ant of the model in which local edges are fully uncapac-
itated (λ = ∞), and global communication is heavily
restricted (γ = O(log n)). Thus, our model is a com-
bination of the most permissive LOCAL model for local
edges and the very restrictive node-capacitated clique
model for the global edges, which makes it particularly
clean and well-suited to investigate the power of hybrid
networks from a theoretical perspective. Moreover, we
believe that the practical relevance of this model is justi-
fied by the fact that direct connections between devices
are typically highly efficient and offer a large bandwidth
at comparatively low cost, whereas communication over
a shared global communication network such as the In-
ternet, satellites, or the cellular network, is costly and
typically offers only a comparatively small data rate.

We remark that any choice of γ in the range
from Θ(1) to Θ(logc n) would not significantly change
our upper bounds, as it would only affect them by
polylogarithmic factors, which we mostly neglect by
using the Õ(·)-notation.5 The maximally permissive
choice of λ = ∞ is mainly for proving lower bounds
(which we do for APSP) and most of our algorithms
make no overly excessive use of it. In fact, we show
that most of our algorithms work for some λ between
Θ(1) and Θ(n) (with one exception, c.f., Table 1).

1.2 Contributions The overarching goal of this pa-
per is to achieve significantly faster solutions for shortest
path problems than what would be possible if only ei-
ther the local or the global network could be used. Note
that by just using the local network (LOCAL model), all
graph problems can trivially be solved in time at most
D, where D is the diameter of the graph G. Therefore,
any upper bound Õ(f) we give in the following for some
function f , can be read as Õ

(
min(D, f)

)
. Shortest path

problems also clearly have an Ω(D) lower bound using
only the local network (note that D = Ω(n) in the worst
case). Our objective is to understand to what extent a
limited amount of global communication (given by the
global network) helps in solving shortest path problems
faster. To that end, we will briefly discuss our contri-
butions. A summary of our results is given in Table 1.

Token Dissemination. First we consider the to-
ken dissemination problem. It represents the task of

4The congested clique model refers to the unicast variant, i.e.,
the CONGEST model on a clique topology.

5The Õ(·)-notation suppresses factors poly-logarithmic in n.
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APSP SSSP

Approx. Weights Complexity Local Capacity† Approx. Weights Complexity Local Capacity†

Exact weighted Õ(n2/3) O(n) Exact weighted Õ
(√

SPD
)

Õ
(
n2
)

(1+ε) unweighted Õ
(√
n/ε
)

O(n)
(
1+ε

)
weighted Õ(n1/3/ε6) Õ(n2/3ε6)

3 weighted Õ(
√
n) O(n) (1/ε)O(1/ε) weighted Õ(nε) O(1)

Ω(
√
n) unweighted Ω̃(

√
n) ∞ s(n)‡ weighted s(n)‡ O(1)

† Local capacity λ for which the corresponding runtime can still be achieved.

‡ s(n) = 2O(
√
logn log logn) = o(nc) for arbitrary c > 0.

Table 1: Overview of the contributions of this paper.

broadcasting a set of tokens of size O(log n) bits, each
of which is initially only known by one node. We de-
velop a protocol, tailored to the hybrid model, which
we use as a subroutine throughout the paper. The
main idea behind the algorithm is to randomly dis-
seminate the tokens via global edges. This is sufficient
for each node to afterwards collect all the tokens in a
relatively small neighborhood using local edges. The
runtime compares favourably to the respective lower
bounds of the problem in case only the global or lo-
cal network would be available. Specifically, we show
an upper bound of Õ

(√
k + `

)
, where k is the number of

distinct tokens and ` is the initial maximum number of
tokens per node (see Section 2.1). Note that the lower
bound is Ω

(
(k+`)/ log n

)
if only the global network can

be used (since there are nodes that need to send ` or
receive Ω(k) tokens, respectively) and Ω(n) if only the
local network is available (for graphs with D = Ω(n)).

All-Pairs Shortest Paths (APSP). Our primi-
tives to solve APSP are based on combining the token
dissemination scheme with the classic approach [37] of
building skeleton graphs.6 The basic idea is to sample a
set of nodes with some probability 1

x and then compute
virtual edges among pairs of sampled nodes connected
by a path of at most h ∈ Õ(x) hops. We then em-
ploy our token dissemination protocol to broadcast (the
length of) all virtual edges of the skeleton graph. Token
dissemination is also used to make distance information
between any node and its skeleton nodes within h hops
global knowledge. With the global knowledge gained
in this way, any node can compute its distance to any
other node with sufficient hop distance.

While the approach of using skeleton graphs is not
new, we demonstrate how the amount of work on the
local and global network can be balanced (with param-

6We remark that although some of our algorithms resemble

the hopset approach (see, e.g., [13]), we never explicitly construct
hopsets in the classical sense. Notably, our constructions are not

specifically tailored to achieve an overall small hopbound.

eter x), leading to interesting exact and approximate
results for APSP. Specifically, in Theorem 2.2, we show
that APSP can be solved exactly with running time
Õ(n2/3). Furthermore, we obtain 3-approximate dis-
tances in time Õ

(√
n
)

for general graphs (Theorem 2.3)
and (1+ε)-approximate distances in time Õ

(√
n/ε
)

for
unweighted graphs (Theorem 2.4). Note that this is sig-
nificantly better than the Ω̃(n) bound if only either the
local or the global network could be used. These bounds
immediately follow from the facts that the diameter of
the local network might be Ω(n) and that every node
can only receive O(log n) messages over global edges.

Finally, we complement our upper bounds for APSP
in the hybrid model with a lower bound by proving
that even for computing an α-approximate solution for
some α = Õ

(√
n
)
, at least Ω̃

(√
n
)

rounds are required
(Theorem 2.5), showing that our approximate APSP
algorithms are tight up to logarithmic factors.

Single-Source Shortest Paths (SSSP). For the
SSSP problem, we present three algorithms that require
different techniques. In Theorem 2.6, we prove that the
SSSP problem can be solved exactly in time Õ

(√
SPD

)
,

where the shortest-path diameter SPD is the smallest
value h such that there exists a shortest path with h
many hops between ever pair of nodes in G. Note that
SPD < n, since edge weights are non-negative. The
algorithm combines the local and global network in the
following way. Using the local network, every node
learns the graph up to a distance of 2

√
SPD hops, thus

learning the
√
SPD neighborhood of any node within√

SPD hops. This knowledge is used to distribute
distance information from the source s in an iterative
fashion over the global network, where in iteration i,
all nodes that have a shortest path to s with O

(
i2
)

hops learn their distance to s. An iteration takes only
Õ(1) rounds, leveraging a divide-and-conquer approach
to distribute the information in a node’s neighborhood,
and the aggregation protocol of [4]. Note that using only
either local or global edges, the best known algorithms
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require Ω(SPD) rounds (which is tight for local edges as
D = SPD on unweighted graphs).

We then shift our attention to approximate so-
lutions of the SSSP problem. We give a simple al-
gorithm that simulates the broadcast congested clique
model (BCC)7 on a set of sampled skeleton nodes (in-
cluding the source) using token dissemination. We em-
ploy the SSSP algorithm by Becker et al. [7] for said
model as a black box to solve SSSP on the skeleton,
which allows us to compute a

(
1+o(1)

)
approximation

of SSSP in time Õ(n1/3) (Theorem 2.7).
The third, technically most challenging SSSP al-

gorithm is based on recursively building a hierarchy
of O(logα n) (for some α > 1) skeleton spanners (i.e.,
spanners of skeleton graphs). Roughly speaking, given
some skeleton spanner H, we obtain the next coarser
skeleton spanner H ′ by sampling each node of H with
probability 1/α and computing a spanner with a good
stretch on the sampled nodes. As a technical result,
we show that given a low arboricity8 graph H, we can
efficiently compute a low arboricity spanner H ′ of H
using only global edges. We show in Theorem 2.8 that
by choosing α = nε for some ε > 0, we can compute
(1/ε)O(1/ε)-approximate paths to the source node in
time Õ(nε). For any constant ε > 0, we get a con-
stant SSSP approximation (albeit with a potentially
large constant). Choosing ε to balance time and ap-
proximation factor, the algorithm computes a (subpoly-

nomial) 2O(
√
logn log logn)-approximate SSSP solution in

the same time.

1.3 Related Work In the theory area, only very few
results are known so far on hybrid networks. In order
to provide the reader with a good perspective over the
field, we widen our focus to models that overlap with
our generic hybrid model.

Hybrid Communication Networks. In the sys-
tems area, research on hybrid networks has mostly fo-
cused on wireless mesh networks (see, e.g., [3] for a re-
cent survey), with a plethora of competing schemes for
routing packets in such a network, though many of them
do not exploit the hybrid communication capabilities of
such networks. Hybrid communication has also been
studied in the context of data centers demonstrating
that it can significantly improve their cost-effectiveness
and performance (e.g., [14, 20]).

On the theoretical side, Jung et al. [24] studied the
problem of finding near-shortest routing paths in ad-
hoc networks satisfying certain properties by combining

7In the BCC, in each round every node can broadcast one

O(logn)-bit message per round to all other nodes.
8The arboricity of a graph is the minimum number of forests

required to cover all edges.

communication via ad-hoc connections with communi-
cation via the cellular infrastructure. Furthermore, Fo-
erster et al. [15] investigated the computational com-
plexity of exploiting a hybrid infrastructure in data cen-
ters.

Global Communication Networks. More re-
cently, distributed models that are closely related to
our global communication mode have been considered.
For example, the work of Gmyr et al. [19] implies that
making use of global edges with the same constraints
as in our model significantly improves the ability to
monitor properties of the network formed by the local
edges. Furthermore, [4] introduces the node-capacitated
clique model, which is identical to our global commu-
nication mode (but without local edges). They present
distributed algorithms for various fundamental graph
problems, including computation of MSTs, BFS trees,
maximal independent sets, maximal matchings, or ver-
tex colorings of the given input graph. Their BFS tree
construction can be used to solve the SSSP problem for
unweighted graphs of bounded arboricity in Õ(D) time.

For the congested clique model,9 research has been
very active over the last few years (see, e.g., [12, 25,
27, 31] for a small subset of the work). In the context
of shortest path problems, Lenzen et al. [7] presented a
(1+ε)-approximation algorithm for the SSSP problem
that runs in time polylog n and Nanongkai [32] gave
a
(
2 + o(1)

)
-approximation algorithm for the APSP

problem with runtime Õ(
√
n). The algorithms of [7] and

[32] even work for the broadcast variant of the congested
clique where in each round, every node has to send the
same O(log n)-bit message to all other nodes.10 Shortest
path problems can also be approached by performing
matrix multiplications efficiently [11]. Then, APSP can
be solved exactly in time Õ(n1/3), and a

(
1 + o(1)

)
-

approximation can be found in time O(n0.158). A recent
result shows that a

(
2+o(1)

)
-approximation can even

be computed in time polylog n [10].
Local Communication Networks. Shortest

path problems have been intensely studied in standard
distributed communication models, most importantly
in the CONGEST model. Some of our algorithms for
the hybrid network model employ ideas that have been
developed in this context. For the SSSP problem,
Das Sarma et al. [35] showed that any distributed

9Note that the hybrid model contains the congested clique

model as special case (see Section 1.1). Our global network can

simulate the congested clique for γ = O(n) (though this is an even
more powerful model). However, for the specific case γ = O(logn)

considered in this paper the results for the congested clique are
not helpful, since it is too costly to emulate these algorithms.

10We will exploit this fact for one of our results (Section 5.2),

by showing that we can simulate the broadcast congested clique

model on a small subset of nodes in the hybrid model.
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approximation algorithm has a runtime of Ω̃(
√
n+D)

for any constant approximation ratio. Following the
publication of this lower bound, there has been a
series of papers that attempt to obtain algorithms that
get close to the lower bound (see, e.g., [28, 32, 21]),
culminating in the work of Becker et al. [7], which
gives an algorithm that computes a (1+ε)-approximate
SSSP solution in time Õ(

√
n + D). For the exact

SSSP problem, no better upper bound than O(n) was
known until two years ago when Elkin [13] presented
an algorithm with a runtime of Õ(n2/3D1/3 + n5/6).
This was further improved by Ghaffari and Li [18]
and by Forster and Nanongkai [16], who presented
two protocols for polynomially bounded edge weights,
one with runtime Õ(

√
n ·D) and one with runtime

Õ(
√
nD1/4 + n3/5 +D).
For the APSP problem, a deterministic

(
1+o(1)

)
-

approximation algorithm with runtime Õ(n) is known,
as well as a nearly matching lower bound of Ω̃(n)
that holds for randomized poly(n)-approximation algo-
rithms, even when D = O(1) [28, 29, 32]. The complex-
ity of the exact unweighted version was shown to be
Θ̃(n) [30, 22, 17, 33, 1]. For the exact weighted version,
the first improvement over the naive O(m)-time algo-
rithm was due to Huang et al. [23], who presented a ran-
domized Õ(n5/4)-time algorithm that bears similarity to
our approaches based on skeleton nodes (which they call
“centers”). Subsequently, Bernstein and Nanongkai [8]
came up with a randomized Õ(n)-time algorithm, there-
fore also this case is now settled up to polylog(n) fac-
tors. The best deterministic algorithm for the weighted
APSP problem is due to Agarwal et al. [2] and has a
runtime of Õ(n3/2) using a technique based on “blocker
sets” quite similar to ours based on skeleton nodes.

2 Overview

In this section we provide the reader with an intuitive
explanation of our core concepts without the in-depth
technical details of the subsequent sections. Addition-
ally, we will state our main theorems and sketch some
proof ideas. Let us start by introducing some basic def-
initions.

2.1 Preliminaries and Problem Definitions.
The distance between any two nodes u, v ∈ V of a graph
G = (V,E) is defined as

dG(u, v) := min
u-v-path P

w(P ),

where w(P ) =
∑
e∈P w(e) denotes the length of a path

P ⊆ E. A path between two nodes with smallest length
is called a shortest path. The hop-distance between two

nodes u and v is defined as

hopG(u, v) := min
u-v-path P

|P |,

where |P | denotes the number of edges (or hops) of a
path P . Similarily, let the shortest path hop-distance be

sphG(u, v) := min
shortest u-v-path P

|P |.

The diameter of G is defined as

D(G) := max
u,v∈V

hopG(u, v)

Let the h-limited distance from u to v

dh,G(u, v) := min
u-v-path P
|P |≤h

w(P ).

If there is no u-v path P with |P | ≤ h let dh,G(u, v) :=
∞. The shortest-path diameter SPD(G) is the minimum
number such that dSPD(G),G(u, v) = dG(u, v) for all
u, v ∈ V . Whenever the graph G is clear from the
context, we drop the subscript G in the above notations.
In this paper, we consider the following shortest-paths
problems in G.

All-Pairs Shortest Paths Problem (APSP).
Every node u ∈ V has to learn d(u, v) for all v ∈ V .
In the α-approximate APSP problem for some α > 1,
every node u ∈ V has to learn values d̃(u, v) such that
d(u, v) ≤ d̃(u, v) ≤ α · d(u, v) for all v ∈ V .

Single-Source Shortest Paths Problem
(SSSP). There is a source s ∈ V and every node
u ∈ V has to learn d(u, s). In the α-approximate SSSP
problem for some α > 1, every node u ∈ V has to learn
d̃(u, s) such that d(u, s) ≤ d̃(u, s) ≤ α · d(u, s).

In order to solve shortest paths problems efficiently,
we also show how to solve the (k, `)-token dissemination
problem ((k, `)-TD). Here we are given a set of k tokens
each of size O(log n)-bits that need to be learned by all
nodes v ∈ V . Initially, each token is known by one node
and no node initially possesses more than ` tokens. As a
byproduct of our exact SSSP algorithm, we solve the h-
limited k-source shortest paths problem ((h, k)-SSP), in
which there is a set S ⊆ V of k sources and a parameter
h ≥ 1 and every node u ∈ V with sph(s, v) ≤ h has to
learn d(u, s) for every s ∈ S.

2.2 Token Dissemination. The first tool that we
are introducing solves the token dissemination problem
(k, `)-TD. The algorithm consists of four steps. First,
we balance the number of tokens per node. Each node
redistributes its tokens randomly via global edges for
O(`) rounds such that afterwards, w.h.p., each node has
at most Õ(k/n) tokens to take care of. This first step
eliminates the dependency on ` in the subsequent steps.
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Second, if k � n, we copy each token to Õ(n/k)
nodes, which allows to speed up the subsequent third
step. We increase the number of copies of each token
in the network in an exponential fashion in log(n/k)
phases. In each phase, every node sends two copies of
the tokens it received in the previous phase to random
nodes via global edges. Note that this works because the
total number of copies remains in Õ(n) and therefore the
contention on the global network is not too high.

Third, each node sends the tokens it knows so far via
global edges to a random subset of V , so that afterwards
each node possesses a given token with probability at
least 1/x. This takes only O(k/x) rounds, relying on
the fact that for k � n we have Õ(n/k) nodes per
token helping to disseminate it from the previous step.
Afterwards, the Ω̃(x)-neighborhood (w.r.t. local edges)
of any node contains all tokens, w.h.p.

Fourth, the local edges are used to learn the tokens
of Ω̃(x) nodes in the neighborhood of any given node,
which takes Õ(x) rounds. The parameter x signifies
the trade-off between the running time of the third and
fourth step and is optimized accordingly (x∈Õ

(√
k
)
).

In Section 3 we give the details of the algorithm (Algo-
rithm 1) and we provide a full proof of Theorem 2.1.

Theorem 2.1. There is an algorithm that solves (k, `)-
TD on connected graphs in Õ

(√
k+`

)
rounds, w.h.p.

2.3 Upper Bounds for Exact APSP. The first
step to solve APSP is to construct an overlay graph
S = (M,ES) on G that we call a skeleton [37] and
whose nodes M ⊆ V are obtained by marking nodes
of V uniformly at random (with probability 1/x, for
some optimization parameter x). Two nodes in M have
an edge if their hop-distance is at most h. The weight
of such an edge is the h-limited distance between its
endpoints. To compute ES , we explore a (small) h-hop-
neighborhood around every node in the local network.
Since we choose h = Θ̃(x), this takes Õ(x) rounds.
Afterwards, each node knows the h-limited distance
between it and all other nodes.

After the local exploration, we do not have to worry
about pairs of nodes for which a shortest path of at
most h hops exists, since for those pairs the h-limited
distances equal the true distance. For pairs u, v ∈ V ,
for which all shortest u-v-paths have more than h hops,
we show that on one such a path there is a skeleton
node within every h hops w.h.p. (Lemma 4.1). This is
particularly helpful since these pairs can now compute
their distance if they have knowledge of the distance
information of the (sparse) set of skeleton nodes.

The expected size of M is |M | ∈ Õ(n/x), and we
show that the weights of all edges ES can be broadcast
to the whole network in Õ(n/x) with the methods of

Section 3 (token dissemination). Equipped with that
information about ES , each node can locally compute
the distance matrix DS of the skeleton S, and we show
that distances among nodes in S equal those in G.
Finally, we disseminate the h-limited distances between
pairs M ×V \M , which can be done in Õ

(
n/
√
x
)
. With

this information, all nodes know the distance matrix
D′ containing said h-limited distances between pairs
M × V \M . Then any node in V can locally compute
the complete distance matrix DG of G as follows (we
set D′uv = 0 if u, v ∈M):

DG
uv = min

(
dh(u, v), min

u′,v′∈M

(
D′uu′ +DS

u′v′ +D′vv′
))
.

For x ∈ [1..n] the running time for the exploration via
local edges is Õ(x) and Õ

(
n/
√
x
)

for the dissemination
of the distance matrices DS and D′. This is optimized
for x ∈ Θ

(
n2/3

)
. In Section 4.1 we present Algorithm 6

and its subroutines and give the full proof of Theo-
rem 2.2.

Theorem 2.2. There is an algorithm that solves APSP
in Õ(n2/3) rounds w.h.p.

2.4 Upper Bounds for Approximate APSP.
The bottleneck of the exact algorithm is the dissem-
ination of h-hop limited distances between all pairs
of nodes in V \M ×M , which takes Õ

(
n/
√
x
)

rounds.
Our approximative approach (Algorithm 10) mitigates
this bottleneck by disseminating only one distance to-
ken duv per v ∈ V \M , representing the distance be-
tween v and its closest marked node u ∈ M , which
can be done Õ

(√
n
)

rounds. We show that for suitable
choices of x, Algorithm 10 can be used to obtain a 3-
approximation of APSP for general (connected) graphs
in Õ

(√
n
)

and a (1+ε)-approximation for unweighted
graphs in Õ

(√
n/ε

)
.

Besides slightly adapted procedures, Algorithm 10
uses the same subroutines as in the exact case. After
all subroutines are performed, each node in V knows
(w.h.p.): (i) its m-limited distances dm(·, v) to any
other node v ∈ V (ii) the skeleton S and the distance
matrix DS among its nodes (c.f., Lemma 4.2) and (iii)
the distance dvv′ between any node v ∈ V \M and
its respective closest marked node v′ ∈ M . With
this knowledge, each node computes an approximative
distance Matrix D̃G of G as follows:

D̃G
uv = min

(
dm(u, v), min

u′∈M

(
dh(u, u′) +DS

u′v′
)

+ dvv′
)
,

where v′ ∈ M is v’s closest marked node and m =
max

(
h, nh

)
. In Section 4.2 and [5] we show the following:

Theorem 2.3. There is an algorithm to compute a 3-
approximation of APSP in Õ

(√
n
)

rounds w.h.p.
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Theorem 2.4. For any ε > 0, there is an algorithm
that computes a (1+ε)-approximation of the APSP prob-
lem on unweighted graphs in Õ

(√
n/ε

)
rounds w.h.p.

2.5 Lower Bounds for APSP. In order to ob-
tain rigorous lower bounds we introduce the technical
Lemma 4.4 in Section 4.3. It shows that for a class of
graphs and a dedicated node b, we can create a bottle-
neck for the information that can be transmitted from
parts of the graph to b. More specifically, we show that
if the state of some random variable X is given to the
nodes of some subgraph G′ and if b is at the end of
some path of length L, then every randomized algo-
rithm in which b needs to learn the state of X requires
Ω̃
(
min(L,H(X)/L)

)
rounds, where H(X) denotes the

Shannon entropy of X (c.f., Figure 1).

a
b

G′
H(X)

L

Figure 1: Construction of Lemma 4.4.

We use Lemma 4.4 to show a lower bound of Ω̃
(√
n
)

for APSP that is robust even if we allow approximation
factors up to some α = Õ

(√
n
)

(naturally, we restrict
ourselves to unweighted graphs, c.f., Theorem 2.5, full
proof in Section 4.3). The idea is to construct an
unweighted graph consisting of a path of length Ω(n)
and two node sets S1, S2 of size Ω(n) each. Let b be
on one end of the path. Then we attach two nodes sets
S1 and S2 of size Ω(n) each to the path at distance
L = Ω̃(

√
n) and Ω(n) from b (c.f., Figure 2).

bΩ̃(
√
n)Ω(n)

Ω(n) bits

S2 S1

v2 v1

Figure 2: Construction of Theorem 2.5.

Now assume an adversary “shuffles” the nodes in
S1, S2 uniformly at random, where the state of S1 will
be our random variable X. If b does not know for a node
u whether u∈S1 or u∈S2, then b must assume u ∈ S2

(recall that approximations must be lower bounded by
the true distance). However, if u ∈ S1 would be true,
then this results in a larger approximation ratio than we

allow. We show that in order to learn S1, node b needs
to receive H(X) = Ω(n) bits. Choosing L = Θ̃

(√
n
)

yields the claimed lower bound.

Theorem 2.5. An α-approximative APSP algorithm
in the hybrid network model on unweighted graphs takes
Ω
(√
n/ log n

)
rounds, for any α ≤

√
nc · log n/2, where

c log n (for constant c > 0) is the number of messages a
node can receive per round over global edges.

2.6 Upper Bounds For Exact SSSP. We give a
sketch of the exact SSSP algorithm, whereas the formal
algorithm and proofs can be found in Section 5.1.
Throughout the algorithm, every node v maintains a
distance estimate d̂(v), which is initialized to d̂(v) =∞,
for v ∈ V \ {s}, and d̂(s) = 0. Eventually, we will
have that d̂(v) = d(s, v) for every node v ∈ V . The
algorithm proceeds in phases i = 1, . . . , d2

√
SPD e.

At the beginning of each phase i, two invariants are
maintained: (i) every node v ∈ V knows the subgraph
G(v, 2i) of G induced by all nodes within hop-distance

2i to v, and (ii) d̂(v) = d(s, v) for every v ∈ V with
sph(s, v) ≤ t(i − 1), where t(i) :=

∑i
j=1 j denotes the

i-th triangular number. Since there exists a shortest
path of at most SPD hops between any two nodes,
and t(d2

√
SPD e) ≥ SPD, after d2

√
SPD e phases every

node knows its exact distance to s. We will later show
that each phase only takes time Õ(1), which implies a
runtime of Õ(

√
SPD).

Maintaining Invariant (i) is simple: every node
sends all information it has learned about the graph
so far to its neighbors for two rounds via local edges at
the beginning of each phase. Maintaining Invariant (ii)
is the main concern of our algorithm. Note that from
Invariant (i) every node v knows dG(u,i)(u, v) for every
u ∈ G(v, i). If sph(s, v) ≤ t(i), and v would also know
the distance estimate of every node u ∈ G(v, i), then,
since there must be a node on a shortest path from s
to v that is within i hops from v and that knows its
correct distance to s already, v could easily determine
d(s, v) with the equation

(2.1) d(s, v) = min
u∈G(v,i)

(
d̂(u) + dG(u,i)(u, v)

)
.

Unfortunately, naively exchanging all distance estimates
among all pairs of nodes within i hops of each other over
the global network in order to compute Equation 2.1
would either take too long or cause too much contention
on the global network, as the neighborhood of a node
could be of size Θ(n). However, we will exploit the
fact that it suffices that node v learns the distance
label duv := d̂(u) + dG(u,i)(u, v) from some node u
that minimizes Equation 2.1 and can safely disregard
distance labels of other nodes in G(v, i).
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We define T (u, i) as the shortest-path tree of G(u, i)
rooted at u, in which the parent of every node v is
chosen as its neighbor w in G(u, i) that minimizes
dG(u,i)(u,w); if there are multiple such neighbors, we
choose the one that minimizes sphG(u,i)(u,w) (breaking
ties by choosing the w with smallest identifier). Due
to Invariant (i), u and any node v ∈ G(u, i) know
T (u, i). The goal of u is to propagate the respective
distance label duv to all nodes v in T (u, i) for which u
minimizes Equation 2.1. To achieve that, every node u
initiates a recursive divide-and-conquer strategy, where
the executions of all nodes are performed in parallel.
First, u starts with the tree T := T (u, i). In each
recursion level, the tree T is split at a splitting node
x whose removal decomposes T into subtrees of size
at most |T |/2. As we show in Lemma 5.1, such a
node always exists and can be computed locally by all
v ∈ G(u, i) (due to Invariant (i)).

Let Tx be the subtree of T rooted at x. The root u
of T will take care of informing every node v ∈ T \ Tx
about duv in the next recursion, whereas the task of
informing the nodes v ∈ Tx about duv is delegated to
the children of x. For that purpose, u informs x about
the distance dux := d̂(u) + dG(u,i)(u, x). Subsequently,
x instructs every child c in T to start another recursion
in their respective subtree Tc by sending it the distance
duc := dux + w(x, c) via the local edge {x, c}.

Note that x might have been chosen as a splitting
by multiple roots; therefore, sending dux to x over the
global network might cause too much contention. We
carefully resolve this by making every root w of some
tree T that intends to send a value dwx to x participate
in an aggregation11 towards x using Theorem 2.2 of [4]
as a black box. Each root w injects a message containing
dwx, sphT (w,i)(w, x) and id(w) into the aggregation
process, whereas we aggregate for dwx and break ties
by the smallest hop value sphT (w,i)(w, x), and then by
the smallest identifier. Note that in the aggregation
process, the message for x injected by the root u might
be blocked by some other message, which disrupts the
recursion intended by u to be continued at x. However,
as shown in Section 5.1, continuing only the most
promising recursions is sufficient for x to obtain the
distance label minimizing Equation 2.1.

In the subsequent recursion level, every node has
to continue all recursions it handles so far, whereas
the corresponding trees at least halve in size. Each
node obtains at most one additional recursion from
being the child of a splitting node in the last recursion

11The aggregation protocol solves the following problem. Given
an aggregation function (e.g. MIN, MAX, SUM) and a set of

source nodes that hold inputs, then some set of target nodes has

to learn the result of the function applied to a subset of inputs.

level. Since the subtree of each recursion consists of a
single node after O(log n) recursion levels, the number
of recursions handled simultaneously by any node is
O(log n). After all recursions have finished, every node v

with sph(s, v) ≤ t(i) has d̂(v) = d(s, v), which maintains
Invariant (ii) for the next iteration i+1. A formal proof
of the following theorem can be found in Section 5.1.

Theorem 2.6. There is an algorithm that solves SSSP
in time Õ

(√
SPD

)
, w.h.p.

2.7 Approximate SSSP in Õ(n1/3) Rounds. At
its core, our

(
1 + o(1)

)
-approximate SSSP algorithm

relies on simulating the algorithm of Becker et al. [7]
that computes a (1 + ε)-approximation of SSSP for
the broadcast congested clique model (BCC) in Õ(1)
rounds. First, we compute a skeleton S = (M,ES)
with |M | = Θ̃(n2/3) with edges between nodes at most
h = Õ(n1/3) hops apart (note that we always include
the source s ∈ M). Using token dissemination (c.f.,
Section 3), we can simulate one round of the BCC model
on S in Õ(n1/3) time. This allows us to simulate the
algorithm of [7] on S to solve (1+ε)-approximate SSSP
on S in Õ(n1/3/ε6) rounds in our model.

By using token dissemination again, we make the
distance approximations that we computed for pairs
M ×{s} publicly known in Õ(n1/3) rounds. In another
h = Õ(n1/3) rounds, all nodes in V can do a local
search to determine the distance to close nodes in M .
After these steps, every node v ∈ V knows approximate
distances d̃su between s and any marked node u ∈ M
and also its own h-limited distance dh(u, v) to any
marked node u ∈ M . Then, every node v ∈ V locally
computes an approximate distance d̃sv to s using the
following equation:

d̃sv := min
(
dh(s, v), min

u∈M

(
d̃su + dh(u, v)

))
Theorem 2.7. There is an algorithm that (1 + ε)-
approximates SSSP in Õ(n1/3/ε6) rounds, w.h.p.

Choosing, for example, ε = 1
logn we obtain a (1+o(1))-

approximate SSSP algorithm with complexity Õ(n1/3).
More details on the algorithm and the proof of Theo-
rem 2.7 are given in Section 5.2.

2.8 Approximate SSSP in Õ(nε) Rounds. Fi-
nally, we present a (logα n)O(logα n)-approximate SSSP
algorithm that takes time Õ(α3), w.h.p., for a parame-
ter α ≥ 5. By setting α = nε for some ε > 0, we ob-
tain a (1/ε)O(1/ε)-approximation in time O(n3ε), which,
for example, allows to compute a constant factor ap-
proximation for any constant ε. Furthermore, for ε =
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√
log log n/ log n, this gives a 2O(

√
logn log logn) approx-

imate solution in subpolynomial time 2O(
√
logn log logn).

We describe the algorithm from a high level and provide
all details in Section 5.3.

The main idea of the algorithm is to recursively
construct a hierarchy of spanners G1, . . . , GT , where
Gi is a spanner of the nodes in Mi ⊆ V [Gi−1]. The
set Mi contains each node of Gi−1 with probability
log(n)/α for i = 2, and with probability 1/α for i ≥ 3.
The first spanner G1, which contains all nodes of G,
is constructed using only the local network by simply
performing the distributed Baswana-Sen algorithm [6]
with parameter k as a black box, which gives a (2k−1)-
spanner in time O(k2).

The construction of subsequent spanners
G2, . . . , GT relies entirely on the global network.
For i ≥ 2, we construct Gi as an h-hop skeleton spanner
of Gi−1.12 Intuitively, a skeleton spanner gives a
good approximation of distances between nodes that
are within hop-distance h. Furthermore, the skeleton
spanner has low arboricity. This allows us to ensure
that every edge of the spanner Gi is learned by one
endpoint of the edge in such a way that no node has
to take care of more than Õ(α) edges. On this graph,
we can efficiently apply the techniques of [4] using the
global network. More specifically, we will prove that
we can construct Gi as O(α)-hop skeleton spanner of
stretch O(logα n) of the graph Gi−1 for all i ≥ 2.

Finally, by taking the union of all the graphs Gi,
we obtain a global spanner H for the whole graph.
Applying the properties of the skeleton spanners Gi,
we show that H has a (logα n)O(logα n)-approximate
path consisting of at most Õ(α) hops for every pair
of nodes u, v ∈ V . Therefore, every node v learns a
good approximation d̃(s, v) of d(s, v) by performing a
distributed Bellman-Ford algorithm with source s in H
for Õ(α) rounds. Again using techniques of [4], one
iteration of this algorithm can be realized in the global
network in time Õ(α). The following theorem results
from a careful analysis of the approximation guarantees
and runtime of our recursive spanner construction.

Theorem 2.8. There is an algorithm to compute
a (logα n)O(logα n)-approximation of SSSP in Õ(α3)
rounds, w.h.p.

3 Token Dissemination

In this section we give the details of Algorithm 1 solving
the (k, `)-TD problem and its subroutines. Finally, we
provide a full proof of Theorem 2.1.

12Note that we do not compute a spanner of Gi−1, but of a
skeleton of Gi−1 (see Definition 1)

Algorithm 1 Token-Dissemination . x ∈ [2..k]

Token-Balancing . redistribute s.t. ` = Õ
(
d kne

)
Token-Multiplication . spread Õ

(
n
k

)
copies

Token-Seeding(x) . seed tokens with prob. 1/x
Local-Dissemination(x) . “collect” seeds

We start with a technical lemma showing that if
every node sends O(log n) messages to random nodes,
then every node receives only O(log n) messages w.h.p.

Lemma 3.1. Presume some algorithm takes at most
p(n) rounds for some polynomial p. Presume that each
round, every node sends at most σ = Θ(log n) messages
via global edges to σ targets in V picked independently
and uniformly at random. Then there is a ρ = Θ(log n)
such that for sufficiently large n, in every round, every
node in V receives at most ρ messages per round w.h.p.

The proof is a simple application of a Chernoff
bound and a union bound. For completeness we provide
it in the full version of this paper [5].

The following algorithm balances the number of
tokens per node to Õ

(
dk/ne

)
.13 The set of tokens

received during the execution of Algorithm 2 forms the
new set of tokens a node has to take care of.14

Algorithm 2 Token-Balancing . σ = Θ(log n)

Tv ← initial set of tokens of this node v
for O

(
`/ log n

)
rounds do . redistribute tokens

Uv← sample σ nodes from V i.i.d. . Uv is multiset

S ← select subset of size min(σ, |Tv|) from Tv
v sends S via global network to Uv (one-to-one)
Tv ← Tv \ S

Lemma 3.2. If each node holds at most ` tokens and
there are k tokens in total, then Algorithm 2 redis-
tributes all tokens in O

(
`/ log n

)
rounds such that af-

terwards each node holds O
(
d kne log n

)
tokens w.h.p.

Again the proof is a straight-forward application of
a Chernoff bound and a union bound. We provide it in
the full version [5] for completeness.

If k is small, the next algorithm boosts the number
of nodes that hold a fixed token by a factor Θ̃

(
n
k

)
.

13The term dk/ne is shorthand for max(1, k/n) meaning that

for k � n we guarantee Õ(1) tokens per node.
14We write i.i.d. (independently, identically distributed) if we

pick elements from some set uniformly at random.
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Algorithm 3 Token-Multiplication

Tv ← initial set of tokens of v . Tv is a multiset
for blog2(nk )c phases do . runs only for k ≤ n/2

for each t ∈ Tv do . |Tv| = O(log n) w.h.p.
pick u1, u2 ∈ V i.i.d.
v sends a copy of t to u1, u2 via global network

Tv ← multiset of token-copies received this phase

Lemma 3.3. Presume that k ≤ n/2 and each node has
at most O(log n) tokens. By invoking Algorithm 3,
each token t is copied to a random subset Vt ⊆ V
with |Vt| ≥ n

kζ lnn w.h.p., for some constant ζ > 0.
Algorithm 3 takes O(log n log n

k ) rounds. Afterwards,
we still have O(log n) tokens per node.

Proof. Note that if node v picks itself as recipient for a
token copy (which we allow), it just keeps one for the
next phase. Since we choose targets randomly, no node
receives more than O(log n) messages per round w.h.p.,
due to Lemma 3.1.

Let ϕ := blog2(nk )c be the number of phases of
Algorithm 3. In each phase the total number of copies
of a token t in the whole network (stored locally in the
variables Tv, v ∈ V ) exactly doubles, even if multiple
copies of t end up at the same node, since Tv is defined as
a multiset. Notice that we only carry the token-copies
received in the current phase over to the next phase.
This means that the number of distinct nodes that hold
a copy of t after ϕ phases is upper bounded by 2ϕ, hence
|Vt| ≤ 2ϕ ≤ n

k .
For the lower bound of Vt we show that in every

phase, the multiset Tv contains at most O(log n) copies
of tokens w.h.p. We emphasize that for the sake of
this proof we distinguish token-copies when counting
them, even if they originate from the same token.
Initially the claim is true due to the presumption. After
that, Algorithm 3 distributes all created token-copies
uniformly at random.

In every phase, given one specific copy of a to-
ken t, a given node receives that copy with probabil-
ity exactly 1

n . Hence, the expected number of copies
of any token t is at most E(|Tv|) ≤ k ·|Vt|· 1n ≤ 1 (recall
|Vt| ≤ n

k ). For an arbitrary constant c > 0 we ob-
tain P

(
|Tv| > 1+3c log n

)
≤ 1

nc with a Chernoff bound
(Lemma A.1), i.e. |Tv| = O(log n). With a union bound
(Lemma A.2), |Tv| = O(log n) holds w.h.p. for all nodes
in all rounds of Algorithm 3. Since |Tv| is also the time
complexity of a single phase (c.f., Algorithm 3), this
proves the running time of Algorithm 3.

Let constant ζ > 0 be such that |Tv| ≤ ζ
2 lnn for

almost all n. This means any node holds at most ζ
2 lnn

token-copies, when we treat copies of the same token
t as different copies (Tv is a multiset). Conversely, the

size of the set Vt represents the overall number of copies
of a token t in the network, in case we count multiple
copies of the same token t at the same node as one.
Therefore, the upper bound of 2ϕ for |Vt| differs from
the lower bound by a factor of at most ζ

2 lnn. We obtain

|Vt| ≥
2ϕ

maxv∈V |Tv|
≥ 2ϕ+1

ζ lnn
≥ 2log2(n/k)

ζ lnn
=

n

kζ lnn
.

We already established the fact that the number of
tokens-copies per node is at most |Tv| = O(log n), thus
the same is obviously true for the number of distinct
tokens per node and we have O(log n) tokens per node
w.h.p., after the execution of Algorithm 3.

The goal of the next algorithm is to seed each token
to roughly n

x random nodes. For k = Ω̃(n) we can afford
to sample targets with probability 1

x for each token
and send them via the global network within our target
runtime (which is O

(
` ·min(k, n)/x

)
). For small k we

decrease the sampling rate to Õ
(
k
nx

)
. The algorithm

still works because now |Vt| = Θ̃(nk ) nodes are helping
to seed token t (c.f., Lemma 3.3).

Algorithm 4 Token-Seeding(x)
. x ∈ [2..k], σ = Θ(log n), ζ > 0 is from Lemma 3.3

Tv ← initial set of tokens of this node v
for t ∈ Tv do

if k ≥ n
2ζ lnn then . full sampling rate

St← sample from V with probability 1
x

else . reduced sampling rate
St ← sample from V with prob. k

nx ·2ζ lnn

while St 6= ∅ do . seeding token t
S ← pick i.i.d. subset of St of size min(σ, |St|)
v sends t via global network to all u ∈ S \ {v}
St ← St \ S

Lemma 3.4. If each node has initially at most ` to-
kens, then w.h.p. after Algorithms 3 and 4, each node
knows any given token with probability at least 1/x. Al-
gorithm 4 takes O

(
` ·min(k, n)/x

)
rounds.

Proof. Each node sends a token to at most σ uniformly
random nodes (uniformly, since a priori, the probability
of being selected as a target by a fixed node in some
fixed round is equal for every node). As before we invoke
Lemma 3.1 to argue that w.h.p., no node v receives more
than O(log n) messages per round.

Next we show that the sampled sets St are not too
large. First consider the case k≥ n

2ζ lnn . In this case we
sample with probability 1/x thus E(|St|) = n

x and with
a standard Chernoff bound we have |St| = O(n log n/x)
w.h.p. Now consider k< n

2ζ lnn . In this case the sample
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probability is reduced to 2kζ lnn
xn . For the expectation

we get E(|St|) = 2kζ lnn
x . For some c > 0 and with a

Chernoff bound we obtain

P
(
|St|>

(
1+

3c

2ζ

)
· 2kζ lnn

x

)
≤ exp

(
− kc lnn

x

) x≤k
≤ 1

nc
,

thus the event |St| = O
(
k log n/x

)
occurs w.h.p. Com-

bining both cases we have |St| = O
(
min(k, n) log n/x

)
w.h.p. In accordance with Lemma A.2 this is true for
every node v ∈ V , every token t ∈ Tv and in every
round of Algorithm 4. Now we are able to compute
the time complexity: Sending every token t ∈ Tv to
each of the sampled nodes in St takes O

(
|Tv|·|St|/σ

)
=

O
(
` ·min(k, n)/x

)
rounds.

It remains to be shown that in case k< n
2ζ lnn we can

still guarantee that each node obtains a given token with
probability at least 1/x even though we sample with
reduced probability 2kζ lnn

xn . In that case, we know from
Lemma 3.3 that during a run of Algorithm 3 each token
t is copied to a random subset Vt ⊆ V of nodes of size
|Vt| ≥ n

kζ lnn . In Algorithm 4 all nodes of Vt take part
in seeding t. Let p := 2kζ lnn

xn and let q := n
kζ lnn . The

probability that a fixed node receives a fixed token is at
least 1−(1−p)q. We will show that 1−(1−p)q ≥ pq

2 = 1
x

for 0 ≤ pq ≤ 1 (the latter holds for x ≥ 2). We have

(1− p)q =
((

1− 1

1/p

)1/p)pq ≤ e−pq ≤ 1− pq
2
.

The last inequality holds since for pq = 0 we have
equality, for pq = 1 we have e−1 < 1

2 and since e−x is
convex it holds for all values in between.

Algorithm 5 Local-Dissemination(x) . x ∈ [2..k]

Tv ← all tokens that v learned during Token-Seeding

for r = O(x log n) rounds do
v sends Tv to all its neighbors in G via local edges
Tv ← tokens v learned for the first time last round

The proof of the following lemma is another
straight-forward application of Chernoff and union
bounds. We provide it in [5].

Lemma 3.5. Let G be a connected graph. If for all
tokens t, any given node knows t with probability at least
1
x , then after Algorithm 5 is performed, all nodes know
all tokens w.h.p. after O(x log n) rounds.

We stitch together the above results to prove Theo-
rem 2.1 (i.e., Algorithm 1 solves (k, `)-TD in Õ

(√
k+`

)
).

Proof. [Proof of Theorem 2.1] Let `init be the initial
maximum number of tokens per node. First we execute

Algorithm 2: Token-Balancing which takes O(`init)
rounds. Afterwards we have ` = O

(
d kne log n

)
tokens

per node w.h.p., in accordance with Lemma 3.2.
In case k ≤ n/2 we run at least one phase of

Algorithm 3: Token-Multiplication. Due to k ≤
n/2 we have ` = O(log n) and therefore Algorithm 3
takes Õ(1) rounds according to Lemma 3.3. We have
shown that the condition ` = O(log n) is preserved by
Algorithm 3.

In accordance with Lemma 3.4, Algorithm 4:
Token-Seeding takes O

(
` ·min(k, n)/x

)
rounds. The

maximum number of tokens is ` = O
(
d kne log n

)
. Since

O
(
min(k, n)d kne

)
= O(k) the time complexity of Algo-

rithm 4 reduces to Õ
(
k
x

)
.

After Token-Seeding has terminated, the premise
of Lemma 3.5 is fulfilled. Thus Algorithm 5:
Local-Dissemination solves the (k, `)-TD Problem in
Õ(x) rounds.

The total number of rounds that Algorithm 1:
Token-Dissemination takes is Õ(x) + Õ

(
k
x

)
+O(`init).

This is optimized for x = Θ
(√
k
)
, which results in the

overall time complexity Õ
(√
k + `init

)
.

The subsequent lemma shows the extent to which
we utilize the local network. The proof is given in the
full version [5] of this paper.

Lemma 3.6. Algorithm 1 works in the same time
Õ
(√
k + `

)
for local capacity λ = Θ

(√
k
)
.

4 All Pairs Shortest Paths

This section focuses on the APSP problem. We first
show how to solve APSP exactly. Second, we show that
a significant improvement in the time complexity is pos-
sible, if we restrict ourselves to approximations. Finally,
we prove that the running times of our approximate al-
gorithms are tight up to polylog n factors.

4.1 Upper Bounds for Exact APSP. In the fol-
lowing we present Algorithm 6 and its subroutines and
show their properties. Subsequently we prove Theo-
rem 2.2.

Algorithm 6 Exact-APSP . x ∈ [1..n]

Construct-Skeleton(x) . construct S = (M,ES)
Transmit-Skeleton . learn dist. of pairs M ×M
Transmit-Distances . learn dist. of pairs V ×M
compute APSP distances locally with Equation (4.2)

(4.2)

DG
uv = min

(
dh(u, v), min

u′,v′∈M

(
D′uu′ +DS

u′v′ +D′vv′
))
.

First we construct the skeleton S by sampling its
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nodes and then determining its edges via exploration of
the local network. As byproduct of the latter, all nodes
learn their h-hop neighborhood in G.

Algorithm 7 Construct-Skeleton(x)
. x∈ [1..n], h :=ξx lnn

v is marked with prob. 1
x . marked nodes form M

for h rounds do . initially v sends incident edges
v sends edges it learned last round to its neighbors

Fact 4.1. The size of M is Õ(n/x) w.h.p. Let h :=
ξx lnn. Algorithm 7 establishes a weighted graph S =
(M,ES) among the set of marked nodes M in O(x log n)
rounds, whereas we define ES := {{u, v} | u, v ∈
M, hop(u, v)≤h}. The weight of {u, v} ∈ ES is defined
as dh(u, v). After the subroutine, all nodes v ∈ V know
all u ∈ V that are within h hops as well as the distances
dh(u, v). Specifically, this means that all marked nodes
know their neighbors in S and the distances of the
incident edges in ES.

The following lemma shows that for nodes at suffi-
cient hop-distance Ω̃(h), there is a marked node every
Õ(h) hops on some shortest path between those nodes.

Lemma 4.1. Let M be a subset of V created by marking
each of the nodes of V with probability at least 1

x . Then
there is a constant ξ>0, such that for any u, v∈V with
hop(u, v)≥ξx lnn, there is at least one shortest path P
from u to v, such that any sub-path Q of P with at least
ξx lnn nodes contains a node in M w.h.p.

Proof. Let u, v ∈ V with hop(u, v) ≥ ξx lnn. Fix
a shortest u-v-path Pu,v and let Q be a sub-path of
Pu,v with at least ξx lnn nodes. Let Xu,v be the
random number of marked nodes on Q. Then we have
E(Xu,v) ≥ |Q|x ≥ ξ lnn. Let c > 0 be arbitrary. We use
a Chernoff bound:

P
(
Xu,v <

ξ lnn

2

)
≤ exp

(
− ξ lnn

8

) ξ≥8c
≤ 1

nc
.

Thus we have Xu,v ≥ 1 w.h.p. for constant
ξ ≥ max(8c, 2/ lnn). Therefore the claim holds w.h.p.
for the pair u, v. We claim that w.h.p. the event
Xu,v ≥ 1 occurs for all pairs u, v ∈ V and for all sub-
paths Q of Pu,v longer than ξx lnn hops, for at least one
shortest path Pu,v from u to v. There are at most n2

many pairs u, v ∈ V . Moreover we can select at most n
sub-paths Q of P that do not fully contain any other se-
lected sub-path. Hence the claim follows with the union
bound given in Lemma A.2.

Next, we make the skeleton publicly known via
token dissemination.

Algorithm 8 Transmit-Skeleton . h = ξx lnn

if v is marked then
for each {u, v}∈ES do . local computation

create token tu,v=〈ID(u), ID(v), dh(u, v)〉
Token-Dissemination . dissem. ES and weights

Lemma 4.2. After Algorithm 8, w.h.p. every node
knows the skeleton S and has sufficient information
to locally compute a distance matrix DS of S, with
DS
uv = DG

uv for all u, v ∈M (where DG denotes the true
distance matrix of G), if h = ξx lnn for appropriately
chosen constant ξ. Algorithm 8 takes Õ

(
n
x

)
rounds.

Proof. First we point out that every marked node v ∈
M knows dh(u, v) for all u ∈ V due to Fact 4.1 (recall
that we set dh(u, v) := ∞ if hop(u, v) > h) and is thus
able to create the tokens described in the algorithm.
Each marked node creates at most ` = |M | tokens
of size O(log n) (recall that weights are polynomially
bounded in n). The total number of created tokens
is at most k = |M |2. By Theorem 2.1, Algorithm 8
takes Õ

(
|M |

)
= Õ(n/x) rounds. After the token

dissemination every node knows every edge {u, v} ∈ ES
as well as its weight, defined as h-limited distance
dh(u, v) (in Fact 4.1).

Let h := ξx lnn (where ξ is the constant from
Lemma 4.1) and let u, v ∈ M . If there is a shortest
u-v-path P with |P | ≤ h, then obviously the weight
dh(u, v) of the skeleton edge {u, v} ∈ ES equals DG

uv

(let us denote this fact with (i)). Otherwise |P | > h for
any shortest u-v path P . Then Lemma 4.1 implies that
w.h.p., within every h hops of P there must be at least
one marked node (we denote this fact with (ii)). This
entails that S is connected if G is connected; and G is
connected by definition (let this fact be (iii)).

From (i),(ii) and (iii) we deduce that every node can
compute DS by locally solving APSP on S.

It remains to transmit the distances between skele-
ton nodes and non-skeleton nodes.

Algorithm 9 Transmit-Distances . h = ξx lnn

if v not marked then
for each u∈M do . local computation

create token tu,v = 〈id(u), id(v), dh(u, v)〉
Token-Dissemination . dissem. dist. of V \M×M

Fact 4.2. Algorithm 9 disseminates dh(u, v) for all u ∈
M and v ∈ V \M to all nodes in the network (recall that
we define dh(u, v) :=∞ if hop(u, v) > h). The h-limited
distances dh(u, v) are known to v due to Fact 4.1. Each
node creates at most ` = |M | tokens (of size O(log n)
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bits), thus there are at most k = n|M | tokens in total.
Due to Theorem 2.1, Algorithm 9 takes Õ

(√
n|M |

)
rounds. Since |M | ∈ Õ

(
n
x

)
w.h.p., this translates into

a running time of Õ
(
n/
√
x
)

rounds.

We put everything together and show that Algo-
rithm 6 solves the APSP problem in Õ

(
n2/3

)
rounds.

Proof. [Proof of Theorem 2.2] After the first two sub-
routines of Algorithm 7, due to Lemma 4.2, every node
knows S and can locally compute the distance Matrix
DS among all nodes in M . Additionally, based on the
h-limited distances disseminated by Algorithm 9 as de-
scribed in Fact 4.2, every node can locally compute the
matrix

D′ :=
(
dh(u, v)

)
u∈V \M,v∈M .

Let u, v ∈ V . If there exists a shortest u-v-path
that has at most h hops, then d(u, v) = dh(u, v) which
both u and v already know due to the local exploration
conducted in Algorithm 7 (c.f. Fact 4.1). Otherwise,
we infer from Lemma 4.1 that w.h.p., there is shortest
u-v-path P with two marked nodes u′, v′ ∈ M with
hop(u, u′), hop(v, v′) ≤ h (possibly u′ = v′). We have

d(u, v) = dh(u, u′) + d(u′, v′) + dh(v′, v)

= D′uu′ +DS
u′v′ +D′vv′ .

Hence every node can locally compute the complete
distance matrix DG of G as follows (we set D′uv = 0
if u, v ∈M):

DG
uv = min

(
dh(u, v), min

u′,v′∈M

(
D′uu′ +DS

u′v′ +D′vv′
))
.

The total running time is Õ(x) + Õ
(
n/
√
x
)

due to Fact
4.1, Lemma 4.2 and Fact 4.2. This is optimized for
x ∈ Θ

(
n2/3

)
.

Finally, we show that local capacity λ = Θ(n)
suffices to solve APSP exactly in the claimed time. We
give a full account of the proof in [5].

Lemma 4.3. Algorithm 6 works in the same time
Õ(n2/3) for local capacity λ = Θ(n).

4.2 Upper Bounds for Approximate APSP. Be-
sides slightly adapted procedures Transmit-Closest

and Construct-Skeleton’, Algorithm 10 uses the same
subroutines as Algorithm 6 to construct and dissemi-
nate the skeleton S and then determine its edges with a
local search via the physical edges. In the following we
briefly explain the (minor) changes of the subroutines
of Algorithm 10.

Algorithm 10 Approximative-APSP . x ∈ [1..n]

Construct-Skeleton’(x) . construct S = (M,ES)
Transmit-Skeleton . learn dist. of pairs M ×M
Transmit-Closest . learn dist. to close nodes in S
approximate APSP distances with Equation (4.3)

(4.3)

D̃G
uv = min

(
dm(u, v), min

u′∈M

(
dh(u, u′) +DS

u′v′
)

+ dvv′
)
.

As a slight adaption over the exact variant, we
conduct a local exploration (Algorithm 11) up to hop-
distance m = max

(
h, nh

)
(instead of h), which allows us

to use the same algorithm to compute approximations
for the weighted case and the unweighted case (with
different parameters x). The complexity of O(m) =
Õ
(
max(n, nx )

)
of Approximative-APSP does not change

the analysis, as both factors Õ(x) and Õ(nx ) appear in
the analysis, regardless.

Algorithm 11 Construct-Skeleton’(x)
. x∈ [1..n], h :=ξx lnn

v is marked with prob. 1
x . marked nodes form M

for m = max
(
h, nh

)
rounds do

v sends edges it learned last round to its neighbors

As to the main change, instead of disseminating dis-
tances of all pairs V ×M as we did in in Algorithm 9,
the dissemination is restricted to distances from each
node to its closest skeleton node in Algorithm 12. With
this modification we can still convey enough distance
information to all nodes, such that they can compute
meaningful approximations, while significantly decreas-
ing the amount of data that has to be disseminated.

Algorithm 12 Transmit-Closest . h=ξx lnn

if v not marked then
v′ ← arg minw∈M dh(v, w) . v′ ∈M closest to v
dvv′← dh(v, v′) . dist. from v to closest v′∈M
create token tv′,v = 〈id(v), id(v′), dvv′〉

Token-Dissemination . disseminate distances dvv′

We prove Theorems 2.3 and 2.4 in the full version
of this paper [5]. The proofs mainly rely on applications
of the triangle inequality to show the claimed approxi-
mation ratios of 3 for the weighted and (1+ε) for the
unweighted case. Proving the properties of the skeleton
and the running times of Õ

(√
n
)

rounds for the weighted
and Õ

(√
n/ε
)

rounds for the unweighted case essentially
follows the script of Section 4.1.
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4.3 Lower Bounds for APSP. We give a technical
lemma that shows that for a class of graphs and a
dedicated node b, the information per round that can
be transmitted from parts of the graph to b is inherently
limited. We prove this lemma in the full paper [5].
Subsequently we show that obtaining solutions (or even
approximations) for the all pair shortest path problem
requires that a certain amount of information (measured
in terms of its entropy) must be transmitted to b, which
demonstrates the lower bounds claimed in this section.

Lemma 4.4. Let G = (V,E) be an n-node graph that
consists of a subgraph G′ = (V ′, E′) and a path of length
L (edges) from some node a ∈ V ′ to b ∈ V \V ′ and that
except for node a is vertex-disjoint from V ′. Assume
further that the nodes in V ′ are collectively given the
state of some random variable X and that node b needs
to learn the state of X. Every randomized algorithm that
solves this problem in the hybrid network model requires
Ω
(

min
(
L, H(X)

L·log2 n

))
rounds, where H(X) denotes the

Shannon entropy of X.

Proof. [Proof of Theorem 2.5] We construct an un-
weighted graph G in which an α-approximative APSP
algorithm has the claimed lower bound (c.f., Theo-
rem 2.5). One part of G is a path with x nodes, where
x := bn/2 + Lc and L :=

⌊ √
n√

c logn

⌋
. Node b is at an end

of the path. Moreover, G has two sets of nodes S1, S2,
of size y :=

⌊
n−x
2

⌋
.

We have x, y ∈ Ω(n). Note that we round x, y such
that G has x+2y ∈ [(n−3)..n] nodes in total. This is
w.l.o.g. since we can always attach add a few additional
nodes to the path. Every node in S1 has an edge to v1
which is the node with hop(v1, b) = L. Every node in S2

has an edge to v2, which is the node with hop(v2, b) = x.
We allow that the nodes that are on the path from

v2 to b are fixed and globally known. However, we
assign the 2y remaining nodes randomly to S1 and S2.
Formally, we fix a set of y nodes u1, . . . , uy and assign
each randomly to S1 or S2 with probability 1/2. The
last y nodes are used to fill up S1 and S2 to size y.

Let A be an algorithm that computes an α-
approximation of APSP for α ≤

√
nc · log n/2. In or-

der to approximate APSP, node b needs to determine
a distance estimation d̃(b, u) for each u ∈ {u1, . . . , uy}
such that d(b, u) ≤ d̃(b, u) ≤ α ·d(b, u). If b does not
know whether ui ∈ S1 or ui ∈ S2 for one node ui with
i ∈ [1..y], then the best, valid estimation b can make
is d̃(b, ui) = x under the assumption that ui ∈ S2. If
however ui ∈ S1 is true, then the approximation ratio
α′ would be

α′ =
d̃(b, ui)

d(b, ui)
=
x

L
=
bn2 + Lc

L
>

n

2L
>

√
nc log n

2
≥ α.

Hence b must learn whether ui ∈ S1 or ui ∈ S2 for all
i ∈ [1..y]. Let X ∈ {1, 2}y be the random assignment
u1, . . . , uy either to S1 or S2. I.e., X represents the
outcome of a y-fold Bernoulli process. Since each
outcome o ∈ {1, 2}y is equally probable, we have p :=
P(X=o) = 1/|X| = 1/2y. Thus the entropy of X is

H(X) =
∑

o∈{1,2}y
p log(1/p) = 2y

1

2y
log(2y) = y ∈ Ω(n)

Now the conditions of Lemma 4.4 apply, hence it takes
at least Ω

(
min(L, n

L·log2 n
)
)

= Ω
(√
n/ log n

)
rounds until

b knows the state of X, which is - as we showed -
a requirement in order that A can compute an α-
approximation for APSP on G.

5 Single-Source Shortest Paths

The final section revolves around computing single-
source shortest path distances. We first present an ex-
act algorithm to solve SSSP in time Õ

(√
SPD

)
. Subse-

quently, we give two algorithms that approximate SSSP
for various running times and approximation factors.

5.1 Exact SSSP. The first part of this section is
devoted to a detailed and formal description of our
exact SSSP algorithm. The pseudocode of the algorithm
can be found in [5]. For a more intuitive description
of the algorithm we refer the reader to Section 2.6.
Subsequently, we prove important properties of the
algorithm, from which we can infer Theorem 2.6.

As described before, the algorithm proceeds in
phases i = 1, . . . , d2

√
SPDe, where, roughly speaking,

the goal of each node v in phase i is to propagate
distance information to s to all nodes within hop-
distance i. Recall that at the beginning of phase i,
Invariant (i) states that v knows the subgraph G(v, 2i)
of G induced by all nodes within hop-distance 2i, and
Invariant (ii) ensures that the distance estimate d̂(v) =
d(u, v) for every node v ∈ V with sph(s, v) ≤ t(i − 1),
where t(i) :=

∑i
j=1 j.

To ensure Invariant (i), at the beginning of phase i,
v first sends all edges (and their weights) it has learned
so far to all of its neighbors, receives (potentially new)
edges, and repeats the introduction once more. As
described from a high level in Section 2.6, we maintain
the second invariant by employing a recursive divide-
and-conquer approach. In the following, we describe
how exactly the recursions are performed from the
perspective of v.

We divide each phase into dlog ne+ 1 steps, each of
which corresponds to one level of recursion. Throughout
the execution of these steps, v maintains a set R
of recursion messages. Initially, R only contains the
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message 〈v, d̂(v), ∅〉, which initiates v’s own recursion
on T (v, i) (recall that T (v, i) is the shortest-path tree
of G(v, i) rooted at v that contains only shortest paths
with a minimum number of hops).

Each recursion message 〈u, duv, L〉 ∈ R corresponds
to a recursion that v currently handles, and is associated
with a node u within hop-distance i to v that originally
initiated the recursion on T (u, i) (u might be v itself).
The reason for v now storing this message is because
in some preceding step, u instructed v to continue
the recursion on a subtree T of T (u, i) that is rooted
at v (we call T the corresponding recursion subtree).
Further, the recursion message contains a value duv :=
d̂(u) + dT (u,i)(u, v), which is the length of a path from
s to v that contains u. Finally, L is a subset of nodes
of T (u, i) from which v can infer T . More precisely, T
is the subtree of T (u, i) rooted at v without all subtrees
rooted at any node of L. Note that whereas we cannot
efficiently send T over the global network, T can be
inferred from v’s knowledge of T (u, i) (which is fully
contained in G(v, 2i)), and the set L, which will contain
at most O(log n) nodes.

In each step, all recursion messages are processed
by v simultaneously. First, v updates d̂(v) to the

minimum of d̂(v) and all distance values contained in
R. Consider 〈u, duv, L〉 ∈ R at the beginning of some
step. If |T | ≤ 1 (i.e., T contains at most one node), then
there is no need to continue the recursion. Otherwise,
v selects a splitting node whose removal disconnects T
into components of size |T |/2; these components become
recursion subtrees in the next step. Let Tx be the
subtree of T rooted at x, then the resulting components
are (i) T \Tx, which is rooted at v, and (ii) all subtrees of
T rooted at a child of x in T . To continue the recursion
in all components, v needs to send a recursion message
to the root of each component.

For the component of (i), v simply sends a recursion
message (u, duv, L∪{x}) to itself; this message instructs
v to continue the recursion on T \Tx. For (ii), v needs to
send a recursion message 〈u, duc, ∅〉, where duc := duv +
dT (u,i)(v, c), to every child c of x in Tx. However, x may
have up to Θ(n) children; therefore, instead of sending
recursion messages directly, v instructs x to forward the
respective messages to its children by sending a splitting
message 〈u, dux, sphT (u,i)(u, x)〉 to x (which contains
node u, the length dux := duv + dT (u,i)(v, x) of a path
from s to x that contains u and v, and the number of
hops from u to x in T (u, i)). Since x can infer T (u, i) due
to Invariant (i), x can reconstruct all recursion messages
it is supposed to forward to its children in Tx and send
them directly using local edges.

As already pointed out in Section 2.6, v cannot
send its splitting message to x directly, as x may

be the recipient of many splitting messages in this
step. However, it suffices for every node to only
receive the splitting message that contains the smallest
distance value among all splitting messages destined at
it in this step. If there are several splitting messages
with the same distance value, we prefer the one with
smaller hop value, breaking ties by choosing the message
that contains the node with smallest identifier. In
Lemma 5.2, we will argue that for every node v with
sph(s, v) ≤ t(i) there must be a node u such that

d̂(u)+dT (u,i)(u, v) = d(s, v) and every recursion message
corresponding to u that is destined at a node of the
branch from u to v in T (u, i) is successfully delivered;
therefore, v will learn d(s, v) anyway.

Thus, the nodes send all splitting messages of this
step using Theorem 2.2 of [4], which we can use as
a black box in the global network since it is designed
for the node-capacitated clique model. Specifically, all
splitting messages destined at the same node v trans-
late into an aggregation group, for which the algorithm
combines all messages into only the message with small-
est associated distance value. After O(log n) rounds,
w.h.p., the message is delivered to its recipient. When
v receives a splitting message 〈u, duv, sphT (u,i)(u, v)〉 in

this way, it updates d̂(v) to min{d̂(v), d} and sends
the corresponding recursion messages to its children in
T (u, i). If v is adjacent to multiple nodes that have re-
ceived splitting messages, it may also receive multiple
recursion messages; again, it suffices for v to only store
the recursion message that contains the smallest dis-
tance value. We again break ties by preferring the recur-
sion message associated with the node u that minimizes
sphT (u,i)(u, v) (which u can infer from the knowledge of
T (u, i)) or, in case of a tie, has smallest identifier.

Note that the set of recursion messages R′ stored
by v at the beginning of the next phase contains at
most one recursion message for each message in R (i.e.,
if the corresponding recursion needs to be continued at
v), and at most one additional recursion message that
v received from one of its neighbors. However, as the
size of the subtree of each recursion halves in each step,
there are no recursion messages after dlog ne + 1 steps
anymore, and v continues with the next phase.

As we do not require the nodes to know SPD, we
have to let the nodes detect when to terminate. We
simply stop the algorithm when for the first time no
distance estimate changes at any node. This can be
detected by simply performing a convergecast in the
global network (see, e.g., [4]) at the end of every phase in
time O(log n). When for the first time no value changed
anymore, all nodes terminate.

We begin our analysis by showing that each recur-
sion subtree halves in size every step, which implies that
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after dlog ne + 1 steps no node stores a recursion mes-
sage anymore. The proof of the following lemma can be
found in the full version [5].

Lemma 5.1. Let T be a recursion subtree with |T | ≥ 2.
Node v can compute a splitting node x whose removal
disconnects T into trees each of size at most |T |/2.

The next three lemmas prove Invariant (ii), which
implies that eventually every node v knows d(s, v),
the correctness of termination, and the runtime of
the algorithm. The proofs can be found in the full
version [5].

Lemma 5.2. Let v ∈ V such that sph(s, v) ≤ t(i − 1).

d̂(v) = d(s, v) at the beginning of phase i.

Lemma 5.3. No distance estimate changes in phase i if
and only if d̂(v) = d(s, v) for every node v ∈ V .

Lemma 5.4. The algorithm terminates after 2
√
SPD+1

phases. Every phase takes time O(log2 n), w.h.p.

From the above, we conclude Theorem 2.6. The
algorithm can easily be modified to solve (h, k)-SSP for
given h and k. The following theorem is proven in the
full version of the paper [5].

Theorem 5.1. The modified algorithm solves (h, k)-
SSP in time Õ

(√
kh
)
, w.h.p.

Note that the above algorithm requires local capac-
ity λ = Θ(n2) as we might transfer the whole graph over
a local edge in one round in the worst case.

5.2 Approximate SSSP in Õ(n1/3) Rounds. In
the following, we give Algorithm 13 to compute a
(1+ε)-approximation of SSSP in the claimed number
of rounds.

Algorithm 13 Approximate-SSSP(ε)
. h = Õ(x), 1+ε is the approximation factor

if v is the source then mark v . ensure s ∈M
else mark v with probability 1

x

for h rounds do . initially v sends incident edges
v sends edges it learned last round to its neighbors

if v is marked then
participate in BCC simulation
run algorithm of [7] on simulated BCC
create token 〈id(v), d̃sv〉 . d̃sv approx. of d(s, v)

Token-Dissemination . disseminate approx. dist.
approximate SSSP locally with Equation 5.4

(5.4) d̃sv := min
(
dh(s, v), min

u∈M

(
d̃su + dh(u, v)

))

The base concept is to compute a skeleton graph
S = (M,ES) (as in Section 4, whereas the source s is
always included) and then use token dissemination to
simulate the broadcast congested clique (BCC) model
on M . In the BCC-model we have a synchronous
message passing, where in every round each node can
send one message of size O(log n), which is known by
all nodes in the subsequent round. The simulation of
the BCC-model on M allows the usage of the algorithm
given in [7] for said model, to (1+ε)-approximate SSSP
on S. Then we broadcast the distance estimations
of all pairs M × {s} with token dissemination, which
we can use to approximate SSSP-distances on the
whole graph. A comprehensive discussion about the
underlying concept and the properties of the algorithm,
as well as the proof of Theorem 2.7 can be found in the
full version [5].

5.3 Approximate SSSP in Õ(nε) Rounds. In
this section we present a fast algorithm that runs in
O(α3) for some parameter α ≥ 5, albeit with a coarser
approximation ratio of (logα n)O(logα n). Nevertheless,
notice that we get a constant approximation ratio when
we set α = nε for fixed ε > 0. The key ingredient for our
algorithm is to compute a sparse spanner of the skeleton
graph that we call a skeleton spanner, and which we
formally define shortly. In the first part of this section,
we present an algorithm to compute a skeleton spanner.
Subsequently, we describe how this algorithm can be
used to compute (logα n)O(logα n)-approximate SSSP by
constructing a hierarchy of skeleton spanners.

Constructing a Skeleton Spanner. We first
define skeleton spanners fromally in Definition 1 and
subsequently describe the algorithm to compute such
a spanner from a high level. As the algorithm is
solely based on computing limited-depth Bellman-Ford
computations, we can efficiently execute it in the global
network by using the methods of [4], which we describe
afterwards.

Definition 1. (Skeleton Spanner) Let G =
(V,E,w) be a weighted graph, let M ⊆ V be a set
of marked nodes of G, and let h ∈ Z≥1. An h-hop
skeleton spanner H = (M,EH) with stretch s ≥ 1 is a
weighted graph with the following properties:

1. Every edge {u, v} ∈ EH corresponds to a path P in
G between u and v such that w(u, v) = w(P ).

2. For every two nodes u, v ∈M , we have dh,G(u, v) ≤
dH(u, v) ≤ s · dh,G(u, v).

We now present our algorithm to construct a skele-
ton spanner from a high level. Assume that we are given
a graph G = (V,E,w), a set of marked nodes M ⊆ V ,
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Algorithm 14 Skeleton-Spanner . η > 1, k ≥ 2
. Stage i dealing with h-lim. distances ∈ [Li/η, Li]

V0 := V . Vj is set of nodes active in phase j
for j := 0 to k − 1 do

Gj := G[Vj ] . subgraph of G induced by Vj
for each r ∈ Vj ∩M do

randomly sample r with probability |M |
j+1
k −1

for each sampled r ∈M do
for each v ∈ BGj (r, k − j, Li) ∩M do

add {v, r} of weight dh(k−j),Gj (v, r) to EH

Vj+1 := Vj \BGj (r, k − j − 1, Li) . r sampled

and a hop-distance parameter h ≥ 1. Let us further
assume that for all e ∈ E, we have 1 ≤ w(e) ≤ W/h
for some given W ≥ h, so that the length of any path
consisting of at most h hops is between 1 and W . The
algorithm further has two parameters k ≥ 2 and η > 1
that control the stretch and the number of edges of the
resulting spanner.

The algorithm consists of dlogηW e stages. In the
following, we focus on a specific stage i ≥ 1. For
convenience, we define Li := ηi. The objective of stage
i is to construct a subset of the edges of H = (M,EH)
that provides a good approximation for any two nodes
u, v ∈M for which the h-limited distance in G is in the
range [Li/η, Li]. The final spanner is then obtained by
taking the union of the edges computed in the individual
stages.

Each stage consists of k phases, which we enumerate
by j = 0, 1, . . . , k−1. Initially, all nodes in M are active.
We will show that nodes in M become inactive as soon
as it is guaranteed that all their h-limited distances in
the target range are approximated well enough. In the
following, for a node r ∈ G, an integer parameter x ≥ 1,
and a distance L ≥ 1, we define the ball of r as

BG(r, x, L) := {v ∈ V : dh·x,G(r, v) ≤ x · L} .

The details of the algorithm for stage i are given in
Algorithm 14. We refer to the k iterations of the
outermost for-loop as the k phases j = 0, . . . , k − 1.

The following sequence of lemmas proves that the
algorithm constructs an h-hop skeleton spanner. All
missing proofs of this section can be found in the full
version [5].

Lemma 5.5. When a node u ∈ M gets deactivated in
stage i, for every v ∈ M for which dh,G(u, v) ≤ Li, the
algorithm has added a path of length at most 2kLi to the
spanner edge set EH . Furthermore, this path consists of
at most 2 edges.

The next lemma shows that in each phase, every

node is only within the ball of few random centers. On
the one hand, this implies that the spanner algorithm
does not add too many edges; on the other hand, it also
allows to execute the algorithm efficiently by using only
global edges. The lemma follows because the radius of
the balls decreases from phase to phase, and the radius
in which nodes are deactivated in phase j is the same
as the radius of the ball of nodes to which edges are
established in phase j+1. Therefore, roughly speaking,
if a node v expects to “see” many centers in phase j+ 1
(to which it would establish an edge), the node should
have been deactivated in phase j. A similar argument
has previously been used by Blelloch et al. in [9].

Lemma 5.6. In every phase j of Algorithm 14, ev-
ery node v ∈ Vj is in BGj (r, k − j, Li) for at most

O(|M |1/k log n) sampled nodes r ∈M , w.h.p.

We now have everything we need in order to prove
the main property of the described spanner algorithm.
More specifically, the lemma can be shown by combining
the following observations: (1) for any two nodes u, v ∈
M with dh,G(u, v) ≤ Li, a (≤ 2)-hop path of length
2ηk · dh,G(u, v) is created in stage i by Lemma 5.5, and
(2) in each phase of each stage, every node in M adds
at most O(|M |1/k log n) edges to EH by Lemma 5.6.

Lemma 5.7. Given a weighted graph G = (V,E,w), a
set of marked nodes M ⊆ V , as well as parameters h ≥
1, k ≥ 2, and η > 1, the described spanner algorithm
computes an h-hop skeleton spanner H = (M,EH) with
stretch 2ηk. |EH | = O(k · |M |1+1/k log n · logηW ),
w.h.p. Further, for any two nodes u, v ∈ M such that
hopG(u, v) ≤ h we have that d2,H(u, v) ≤ 2ηk ·dh,G(u, v)
(i.e., there exists a path P with at most 2 hops and
length at most 2ηk · dh,G(u, v)).

It remains to show how the algorithm can be
efficiently implemented in our model. As we will
perform the algorithm only in the global network, we
can again use techniques from [4]. We assume the
graph G on which we aim to construct an h-hop skeleton
spanner H is given in δ-oriented form. We say a graph is
in δ-oriented form if every edge {u, v} is only known by
one of its endpoints (we say that endpoint is responsible
for the edge), such that every node in G is responsible
for at most δ edges. We also construct H in such a
form; more specifically, when v ∈ BGj (r, k − j, Li) ∩M
in phase j and stage i of the algorithm, the edge {v, r} is
added to EH by v and without the knowledge of r, and
v becomes responsible for the edge. We first describe
the communication primitive we employ to implement
the algorithm efficiently, and then explain how precisely
the primitive is used.
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To efficiently execute Algorithm 14 in the global
network, we follow the idea of [4]: instead of letting
neighbors in Gj (with potentially high degree) send
messages to each other directly, we use a random load
balancing technique that exploits the fact that every
node is responsible for at most δ edges. Specifically,
in our algorithm the nodes exclusively communicate by
performing multi-aggregations (see [4], Theorem 2.5).
In a multi-aggregation, every node v that wants to
communicate a message to its neighbors in Gj injects
the message into a multicast tree Mv,j , which is a
subtree of a butterfly network that, roughly speaking,
connects v with all of its neighbors in Gj . In Mv,j , one
copy of the message is created for each of v’s neighbors
in Gj . All messages that are destined at the same node
u in Gj are combined using an aggregate function, so
that u eventually receives a single message containing
this aggregate. If at the beginning of phase j allMv,j are
setup for all v ∈ Vj in an appropriate way, then Theorem
2.5 of [4] implies that the multi-aggregation can be
carried out in time O(C + log n), w.h.p. Here, C is the
so-called congestion of the trees, which, as we formally
show in the following lemma, is only O(δ+ log n) in our
case.

Lemma 5.8. There is an algorithm that constructs a
multicast tree Mv,j for every source v ∈ Vj, whose
multicast group is the set of its neighbors in Gj, with
congestion O(δ + log n) and in time O(δ + log n) at the
beginning of phase j, w.h.p. Furthermore, the leaf of
Mv,j that corresponds to v’s neighbor u learns w(u, v).

We now describe how multi-aggregations can be
used to execute Algorithm 14. Specifically, we need
to ensure that in phase j every node v ∈ Vj
learns dh(k−j),Gj (v, r) for each sampled r ∈ M if
dh(k−j),Gj (v, r) ≤ (k − j)Li. From a high level, we per-
form a distributed Bellman-Ford algorithm in Gj from
every source r ∈ M that is sampled in phase j. More
precisely, in iteration t of the algorithm, every node
v ∈ Vj learns dt,Gj (r, v) for every node r ∈ Rv,t :=
{u ∈ M | u is sampled and dt,Gj (r, v) ≤ (k − j)Li}.
Therefore, after h(k − j) iterations, v knows whether
it is in BGj (r, k − j, Li), in which case it adds {v, r}
to EH and becomes responsible for it. Further, if
v ∈ BGj (r, k − j − 1, Li), then dh(k−j−1),Gj (r, v) ≤
(k − j − 1)Li ≤ (k − j)Li, and thus v can also infer
whether it becomes inactive in this phase.

In iteration t of the algorithm, every node v per-
forms a (slightly modified) multi-aggregation to inform
each of its neighbors about dt−1,Gj (r, v) for every node
r ∈ Rv,t. Using the fact that the leaf of Mv,j that
corresponds to v’s neighbor u knows w(u, v) for all u
by Lemma 5.8, we can modify the multi-aggregation so

that v only receives

min
u∈Vj

(
dt−1,Gj (r, u) + w(u, v)

)
= dt,Gj (r, v)

for each r ∈ Rv,t. Here, distances that grow too large
will simply be dropped by the respective leaf node, and
the multi-aggregation needs to be slowed down by a
factor linear in the the maximum size of Rv,t for all
v. However, since Rv,t is a subset of all nodes for
which v is in BGj (r, k − j, Li), |Rv,t| = O(|M |1/k log n)
by Lemma 5.6. The details of our modified multi-
aggregation can be found in the proof of the following
lemma.

Lemma 5.9. Suppose G = (V,E,w) is a weighted sub-
graph of the global network given in δ-oriented form
and M ⊆ V . Then, an h-hop spanner as described in
Lemma 5.7 in O(k · |M |1/k log n · logηW )-oriented form

can be constructed in time O((δ + log n)|M |1/k log n ·
hk2 · logηW ), w.h.p.

The Recursive Algorithm. Using the sparse
skeleton spanner algorithm, we now present the algo-
rithm to approximate SSSP. The algorithm is divided
into two stages. The purpose of the first stage is to com-
pute a hierarchical structure of spanners G1, . . . , GT as
follows. Let G0 := G, and choose parameters α ≥ 5,
h := cα for a sufficiently large constant c, k := logα n,
and constant η > 1. We construct the first sparse span-
ner G1, which contains all nodes of G, by performing
the distributed Baswana-Sen algorithm [6] in the lo-
cal network with parameter k, where any time a node
adds an edge to the spanner, it becomes responsible for
that edge. It can be shown that thereby we obtain a
(2 logα n− 1)-spanner in Õ(α)-oriented form, w.h.p., in
time O(log2

α n). Every other spanner Gi (i ≥ 2) is con-
structed as an h-hop skeleton spanner of Gi−1, where
every node in Gi−1 joins the set Mi of marked nodes
with probability log(n)/α for i = 2 and with probabil-
ity 1/α for i ≥ 3. When for the first time a spanner
GT+1 contains no nodes anymore, the first stage of the
algorithm ends.

After the first stage has finished, in the second
stage we simply perform a distributed Bellman-Ford
algorithm for source s in the union of all recursively
constructed spanners H =

⋃
1≤j≤T Gi for O(α logα n)

rounds. Finally, every node v ∈ V chooses the minimum
of all received distance values as its estimate d̃(s, v) of
d(s, v). In the following, we show that H is a good
spanner of the underlying graph G and that, moreover,
between any two nodes of G, there is a path consisting
of at most O(α log n) hops in H, whose length gives a
good distance approximation of the actual length of a
shortest path in G. We first need a technical lemma.
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Lemma 5.10. Assume that P is a shortest path on G1

between two nodes of G1. Further consider i ≥ 2 and
let u, v ∈Mi be two nodes on the path P that are within
q hops for some q ∈ [γ · αi−2, γ · αi−1] for a sufficiently
large constant γ. Then, u and v are connected in Gi−1
by a path P such that P consists of at most O(α) hops
and that has length at most (2ηk)i−1 · dG1

(u, v).

We next prove that in the union spanner graph H,
there is a short (in terms of hops and length) path
between any two nodes.

Lemma 5.11. Let u, v ∈ V be two nodes of G1 and let P
be a shortest path between u and v on G1. Assume that
P consists of q hops and assume that for the constant
γ from Lemma 5.10, ξ is the smallest integer for which
q ≤ γαξ. Then graph H contains a path that consists
of at most O(α logα n) hops and that has length at most
(2ηk)ξ−1dG1

(u, v).

We are now ready to conclude Theorem 2.8. The
runtime follows from summing up the time needed
to construct all skeleton spanners, and the fact that
Bellman-Ford needs only O(α logα n) iterations, where
each iteration can be performed efficiently in H using
techniques from [4] and exploiting the fact that H is in
Õ(α)-oriented form.
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A General Notions from Probability Theory

Lemma A.1. (Chernoff Bound) We use the follow-
ing forms of Chernoff bounds in our proofs:

P
(
X > (1+δ)µH

)
≤ exp

(
− δµH

3

)
,

with X =
∑n
i=1Xi for i.i.d. random variables Xi ∈

{0, 1} and E(X) ≤ µH and δ ≥ 1. Similarly, for
E(X) ≥ µL and 0 ≤ δ ≤ 1 we have

P
(
X < (1−δ)µL

)
≤ exp

(
− δ

2µL
2

)
.

Lemma A.2. (Union Bound) Let E1, . . . , Ek be
events, each taking place w.h.p. If k ≤ p(n) for a

polynomial p then E :=
⋂k
i=1Ei also takes place w.h.p.

Proof. Let d := deg(p)+1. Then there is an n0 ≥ 0 such
that p(n) ≤ nd for all n ≥ n0. Let n1, . . . , nk ∈ N such
that for all i ∈ {1, . . . , k} we have P(Ei) ≤ 1

nc for some
(yet unspecified) c > 0. With Boole’s Inequality (union
bound) we obtain

P
(
E
)

= P
( k⋃
i=1

Ei

)
≤

k∑
i=1

P(Ei) ≤
k∑
i=1

1

nc
≤ p(n)

nc
≤ 1

nc−d

for all n ≥ n′0 := max(n0, . . . , nk). Let c′ > 0 be
arbitrary. We choose c ≥ c′ + d. Then we have
P
(
E
)
≤ 1

nc′
for all n ≥ n′0.

Remark 1. If a finite number of events is involved we
use the above lemma without explicitly mentioning it. It
is possible to use the lemma in a nested fashion as long
as the number of applications is polynomial in n.
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