
Distributed Computation in Node-Capacitated Networks
(Regular Paper)

John Augustine

augustine@iitm.ac.in

IIT Madras

India

Mohsen Ghaffari

ghaffari@inf.ethz.ch

ETH Zurich

Switzerland

Robert Gmyr

rgmyr@uh.edu

University of Houston

USA

Kristian Hinnenthal

Christian Scheideler

{krijan,scheidel}@mail.upb.de

Paderborn University

Germany

Fabian Kuhn

kuhn@cs.uni-freiburg.de

University of Freiburg

Germany

Jason Li

jmli@cs.cmu.edu

Carnegie Mellon University

USA

ABSTRACT
In this paper, we study distributed graph algorithms in networks

in which the nodes have a limited communication capacity. Many

distributed systems are built on top of an underlying network-

ing infrastructure, for example by using a virtual communication

topology known as an overlay network. Although this underlying

network might allow each node to directly communicate with a

large number other nodes, the amount of communication that a

node can perform in a fixed amount of time is typically much more

limited.

We introduce the node-capacitated clique model as an abstract

communication model, which allows us to study the effect of nodes

having limited communication capacity on the complexity of dis-

tributed graph computations. In this model, then nodes of a network
are connected as a clique and communicate in synchronous rounds.

In each round, every node can exchange messages of O (logn) bits
with at most O (logn) other nodes. When solving a graph problem,

the input graphG is defined on the same set of n nodes, where each

node initially knows the identifiers of all its neighbors in G.
To initiate research on the node-capacitated clique model, we

present distributed algorithms for the Minimum Spanning Tree
(MST), BFS Tree, Maximal Independent Set, Maximal Matching, and
Vertex Coloring problems. We show that even with only O (logn)
concurrent interactions per node, the MST problem can still be

solved in polylogarithmic time. In all other cases, the runtime of

our algorithms depends linearly on the arboricity of G, which is a

constant for many important graph families such as planar graphs.

CCS CONCEPTS
• Theory of computation→ Distributed algorithms.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPAA ’19, June 22–24, 2019, Phoenix, AZ
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

KEYWORDS
Distributed Algorithms, Node Capacity, Graph Algorithms

ACM Reference Format:
John Augustine, Mohsen Ghaffari, Robert Gmyr, Kristian Hinnenthal, Chris-

tian Scheideler, Fabian Kuhn, and Jason Li. 2018. Distributed Computation

in Node-Capacitated Networks (Regular Paper). In SPAA ’19: 31st ACM Sym-
posium on Parallelism in Algorithms and Architectures, June 22–24, 2019,
Phoenix, AZ. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/

1122445.1122456

1 INTRODUCTION
Nowadays, most of the distributed systems and applications do not

have a dedicated communication infrastructure, but instead share a

common physical network with many others. The logical network

formed on top of this infrastructure is called an overlay network.
For these systems, the amount of information that a node can send

out in a single round does not scale linearly with the number of its

incident edges. Instead, it rather depends on the bandwidth of the

connection of the node to the communication infrastructure as a

whole. For these networks, it is therefore more reasonable to impose

a bound on the amount of information that a node can send and

receive in one round, rather than imposing a bound on the amount

of information that can be sent along each of its incident edges.
Also, the topology of the overlay network may change over time,

and these changes are usually under the control of the distributed

application. To capture these aspects, we propose to study the

so-called node-capacitated clique model1. The model is inspired

in part by the congested clique model introduced first by Lotker,

Patt-Shamir, Pavlov, and Peleg[45], which has received significant

attention recently[8, 10, 11, 13, 19–21, 25, 27–29, 33, 36, 37, 43, 45].

Similarly to the congested clique model, the nodes of the node-

capacitated clique are interconnected by a complete graph. How-

ever, in the node-capacitated clique every node can only send and

receive at most O (logn) messages consisting of O (logn) bits in
each round. This limitation is added precisely to address the issue

explained above. It particularly rules out the possibility that the

model allows one node to be in contact with up to Θ(n) other nodes
at the same time; a property of the congested clique that seems to

1
In earlier discussion and preprints of this paper the model has also been termed

node-congested clique model.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

SPAA ’19, June 22–24, 2019, Phoenix, AZ Augustine et al.

severely limit its practicality. We comment that the capacity bound

of O (logn) messages per node per round is a natural choice: it is

small enough to ensure scalability and any smaller would require

unnecessarily complicated techniques for the protocol to ensure

nodes do not receive more messages than the capacity bound.

Compared to traditional overlay network research, the node-

capacitated clique model has the advantage that it abstracts away

the issue of designing and maintaining a suitable overlay network,

for which many solutions have already been found in recent years.

Nevertheless, it is closely related to overlay networks: every overlay

network algorithm can be simulated in the node-capacitated clique

without any overhead, and the node-capacitated clique can be sim-

ulated with only O (logn) overhead in the CRCW PRAM model,

which in turn can be simulated with only O (logn) overhead by a

network of constant degree [51]. The congested clique model and

its broadcast variant, on the other hand, are far more powerful (and

arguably beyond what is possible in overlay networks): Whereas

in the congested clique a total of Θ̃(n2) bits can be transmitted in

each round, in the node-capacitated clique only Θ̃(n) bits may be

sent. For example, the gossip problem — i.e., delivering one message

from each node to every other node — can be solved in a single

round in the congested clique, whereas the problem requires at

least Ω(n/ logn) rounds in the node-capacitated clique model. Even

the simple broadcast problem — i.e., delivering one message from

one node to all nodes — already takes time Ω(logn/ log logn) in
the node-capacitated clique.

In this paper, we assume some edges of the network are marked

as edges of an input graph G, where each node knows which other

nodes are its neighbors in G , and aim to solve graph problems on G
using the power of the node-capacitated clique. Such edges can, for

instance, be seen as edges of an underlying physical network, or

represent relations between nodes in social networks. Our results

in that direction also turn out to be useful for some other theoretical

models as well: they are relevant for hybrid networks[26] and also

the k-machine model for processing large scale graphs [35].

The concept of hybrid networks has just recently been consid-

ered in theory (e.g., [26]). In a hybrid network, nodes have different

communication modes: We are given a network of cheap links of

arbitrary topology that is not under the control of the nodes and

may potentially be changing over time. In addition to that, the

nodes have the ability to build arbitrary overlay networks of costly

links that are fully under the control of the nodes. Cell phones,

for example, can communicate in an ad-hoc fashion via their WiFi

interfaces, which is for free but only has a limited range, and whose

connections may change as people move. Additionally, they may

use their cellular infrastructure, which comes at a price, but re-

mains fully under their control. Although in the idealized setting

this overlay network may form a clique, to save costs, the nodes

might want to exchange only a small amount of messages of small

size in each communication round. This property is captured by the

node-capacitated clique. The network of cheap links, on the other

hand, can be seen as an input graph in the node-capacitated clique

for which the nodes want to solve a graph problem of interest.

Another interesting application of the node-capacitated clique

is the recently introduced k-machine model [35], which was de-

signed for the study of data center level distributed algorithms for

large scale graph problems. Here, a data center with k servers is

modeled as k machines that are fully interconnected and capable

of executing synchronous message passing algorithms. A standard

approach for the k-machine model is to partition the input graph

in a fair way so that each machine stores a set of nodes of the

input graph with their incident edges. It is quite natural to simulate

algorithms designed for the node-capacitated clique model in the

k-machine model. Precisely, any algorithm that requires T rounds

in the node-capacitated clique model can be simulated to take at

most time Õ (nT /k2). The details of this simulation can be found

in Appendix A. To illustrate the usefulness of this simulation, we

remark that the running time of the fast minimum spanning tree

algorithm provided by Pandurangan et al. [49] can be obtained

simply by converting the algorithm we provide in this work to the

k-machine model.

As we demonstrate in this paper, many graph problems can be

solved efficiently in the node-capacitated clique, which shows that

many interesting problems can be solved efficiently in distributed

systems based on an overlay network over a shared infrastructure

as well as hybrid networks and server systems.

1.1 Model and Problem Statement
In the node-capacitated clique model we consider a set V of n com-

putation entities that we model as nodes of a graph. Each node

has a unique identifier consisting of O (logn) bits and every node

knows the identifiers of all nodes such that, on a logical level, they

form a complete graph. Note that since every node knows the iden-

tifier of every other node, the nodes also know the total number of

nodes n. As node identifiers are common knowledge, without loss

of generality we can assume that the identifiers are from the set

{0, 1, . . . ,n − 1}.
The network operates in a synchronous manner with time mea-

sured in rounds. In every round, each node can perform an arbitrary

amount of local computation and send distinct messages consisting

of O (logn) bits to up to O (logn) other nodes. The messages are re-

ceived at the beginning of the next round. A node can receive up to

O (logn) messages. If more messages are sent to a node, it receives

an arbitrary subset of O (logn) messages. Additional messages are

simply dropped by the network.

Let G be an undirected graph G = (V ,E) with an arbitrary

edge set, but the same node set as the node-capacitated clique. We

aim to solve graph problems on G in the node-capacitated clique

model. At the beginning, each node locally knows which identifiers

correspond to its neighbors in G, but has no further knowledge

about the graph.

1.2 Related Work
The congested clique model has already been studied extensively

in the past years. Problems studied in prior work include routing

and sorting [43], minimum spanning trees [25, 27, 33, 37, 45], sub-

graph detection [7, 10, 13], shortest paths [8, 10], local problems

[11, 28, 29], minimum cuts [24, 32], and problems related to matrix

multiplication [10, 19]. Some of the upper bounds are astonish-

ingly small, such as the constant-time upper bound for routing

and sorting and for the computation of a minimum spanning tree,

demonstrating the power of the congested clique model.

Distributed Computation in Node-Capacitated Networks (Regular Paper) SPAA ’19, June 22–24, 2019, Phoenix, AZ

Problem Runtime Section

Minimum Spanning Tree O (log4 n) 3

BFS Tree O ((a + D + logn) logn) 5.1

Maximal Independent Set O ((a + logn) logn) 5.2

Maximal Matching O ((a + logn) logn) 5.3

O (a)-Coloring O ((a + logn) log3/2 n) 5.4

Table 1: An overview of our results. We use a for arboricity
and D to denote the diameter of the given graph.

While almost no non-trivial lower bounds exist for the congested

clique model (due to their connection to circuit complexity [14]),

various lower bounds have already been shown for themore general

CONGEST model [16, 18, 42, 44, 47, 50, 52]. As pointed out in [38],

the reductions used in these lower bounds usually boil down to

constructing graphs with bottlenecks, that is, graphs where large

amounts of information have to be transmitted over a small cut.

As this is not the case for the node-capacitated clique, the lower

bounds are of limited use here. Therefore, it remains interesting to

determine upper and lower bounds for the node-capacitated clique.

Hybrid networks have only recently been studied in theory.

An example is the hybrid network model proposed in [26], which

allows the design of much faster distributed algorithms for graph

problems than with a classical communication network. Also, the

problem of finding short routing paths with the help of a hybrid

network approach has been considered [31]. A priori, these papers

do not assume that the nodes are completely interconnected, so

extra measures have to be taken to build up appropriate overlays.

Abstracting from that problem, the node-capacitated clique allows

one to focus on how to efficiently exchange information in order

to solve the given problems.

The graph problems considered in this paper have already been

extensively studied in many different models. In the CONGEST

model, for example, a breadth-first search can trivially be performed

in time O (D). There exists an abundance of algorithms to solve the

maximal independent set, the maximal matching, and the coloring

problem in the CONGEST model (see, e.g., [5] for a comprehensive

overview). Computing a minimum spanning tree has also been

well studied in that model, see for example [16, 17, 50]. Whereas

the running times of the above-mentioned algorithms depend on

D and additional polylogarithmic factors, there have also been

proposed algorithm to solve such problems more efficiently in

graphs with small arboricity [2–5, 39, 40]. Notably, Barenboim and

Khazanov [6] show how to solve a variety of graph problems in

the congested clique efficiently given such graphs, e.g., compute

an O (a)-orientation in time O (loga), an MIS in time O (
√
a), and

an O (a)-coloring in time O (aε), where a is the arboricity of the

given graph. The algorithms make use of the Nash-Williams forest-
decomposition technique [48], which is one of the key techniques

used in our work.

1.3 Our Contribution
We present a set of basic communication primitives and then show

how they can be applied to solve certain graph problems (see Table 1

for an overview). Note that for many important graph families such

as planar graphs, our algorithms have polylogarithmic runtime

(except when depending on the diameter D).

Although many of our algorithms rely on existing algorithms

from literature, we point out that most of these algorithms cannot

be executed in the node-capacitated clique in a straight-forward

fashion. The main reason for that is that high-degree nodes cannot

efficiently communicate with all of their neighbors directly in our

model, which imposes significant difficulties to the application of

the algorithms. To overcome these difficulties, we present a set of

basic tools that still allow for efficient communication, and combine

it with variations of well-known algorithms and novel techniques.

Notably, we present an algorithm to compute an orientation of the

input graphG with arboricity a, in which each edge gets assigned a

direction, ensuring that the outdegree of any node is at most O (a).
The algorithm is later used to efficiently construct multicast trees
to be used for communication between nodes. Achieving this is a

highly nontrivial task in our model and requires a combination of

techniques, ranging from aggregation and multicasting to shared

randomness and coding techniques. We believe that many of the

presented ideas might also be helpful for other applications in the

node-capacitated clique.

Although proving lower bounds for the presented problem seems

to be a highly nontrivial task, we believe that many problems re-

quire a running time linear in the arboricity. For the MIS problem,

for example, it seems that we need to communicate at least 1 bit

of information about every edge (typically in order for a node of

the edge to learn when the edge is removed from the graph be-

cause the other endpoint has joined the MIS). However, explicitly

proving such a lower bound in this model seems to require more

than our current techniques in proving multi-party communication

complexity lower bounds.

2 PRELIMINARIES
In this section, we first give some basic definitions and describe a

set of communication primitives needed throughout the paper.

2.1 Basic Definitions and Notation
Let G = (V ,E) be an undirected graph. The neighborhood of a

node u is defined as N (u) = {v ∈ V | {u,v} ∈ E}, and d (u) =
|N (u) | denotes its degree. With ∆ = maxu ∈V (d (u)) we denote the

maximum degree of all nodes in G, and d =
∑
u ∈V d (u)/n is the

average degree of all nodes. The diameter D of G is the maximum

length of all shortest paths in G.
The arboricity a of G is the minimum number of forests into

which its edges can be partitioned. Since the edges of any graph

with maximum degree ∆ can be greedily assigned to ∆ forests,

a ≤ ∆. Furthermore, since the average degree of a forest is at most

2, and the edges of G can be partitioned into a forests, d ≤ 2a.
Graphs of many important graph families have small arboricity

although their maximum degree might be unbounded. For example,

a tree obviously has arboricity 1. Nash-Williams [48] showed that

the arboricity of a graph G is given by maxH ⊆G (mH /(nH − 1)),
where H ⊆ G is a subgraph of G with at least two nodes and nH
andmH denote the number of nodes and edges of H , respectively.

Therefore, any planar graph, which has at most 6n − 3 edges, has
arboricity at most 3. In fact, any graph with genus д, which is the

minimum number of handles that must be added to the plane to

embed the graph without any crossings, has arboricity O (
√
д) [3].

SPAA ’19, June 22–24, 2019, Phoenix, AZ Augustine et al.

Furthermore, it is known that the family of graphs that exclude a
fixed minor [12] and the family of graphs with bounded treewidth
[15] have bounded arboricity.

An orientation of G is an assignment of directions to each edge,

i.e., for every {u,v} ∈ E either u → v (u is directed to v) or v → u
(v is directed to u). If u → v , then u is an in-neighbor of v and v is

an out-neighbor of u. For u ∈ V define Nin (u) = {v ∈ V | v → u}
and Nout (u) = {v ∈ V | u → v}. The indegree of a nodeu is defined

as din (u) = |Nin (u) | and its outdegree is dout (u) = |Nout (u) |. A
k-orientation is an orientation with maximum outdegree k . For a
graph with arboricity a, there always exists an a-orientation: we
root each tree of every forest arbitrarily and direct every edge from

child to parent node.

To allow nodes to efficiently gather information sent to it by

other nodes, our communication primitives make heavy use of

aggregate functions. An aggregate function f maps a multiset S =
{x1, . . . ,xN } of input values to some value f (S). For some functions

f it might be hard to compute f (S) in a distributed fashion, so we

will focus on so-called distributive aggregate functions: An aggregate
function f is called distributive if there is an aggregate function д
such that for anymultiset S and any partition S1, . . . , Sℓ of S , f (S) =
д(f (S1), . . . , f (Sℓ)). Classical examples of distributive aggregate

functions are MAX, MIN, and SUM.

2.2 Communication Primitives
Our algorithms make heavy use of a set of communication primi-

tives, which are presented in this section. Whereas the Aggregate-
and-Broadcast algorithm will be used as a general tool for aggrega-

tion and synchronization purposes, the other primitives are used

to allow nodes to send and receive messages to and from specific

sets of nodes associated with them. Note that a node is not able to

send or receive a large set of messages in few rounds; the center of

a star, for example, would need linear time to deliver messages to

all of its neighbors. If, however, the number of distinct messages a

node has to send is small, or if messages destined at a node can be

combined using an aggregate function, then messages can be effi-

ciently delivered using a randomized routing strategy. Due to space

limitations, we only present the high-level ideas of our algorithms

and state their results. The full description and all proofs can be

found in Appendix C.

Butterfly Simulation. To distribute local communication load

over all nodes of the network, our algorithms rely on an emulation

of a butterfly network. Formally, for d ∈ N, the d-dimensional

butterfly is a graph with node set [d + 1] × [2d] 2 and an edge set

E1 ∪ E2 with

E1 ={{(i,α), (i + 1,α)} | i ∈ [d], α ∈ [2
d
]},

E2 ={{(i,α), (i + 1, β)} | i ∈ [d],α , β ∈ [2
d
],

α and β differ only at the i-th bit}.

The node set {(i, j) | j ∈ [2d]} represents level i of the butterfly, and
node set {(i, j) | i ∈ [d + 1]} represents column j of the butterfly.

In our algorithms, every node u ∈ V with identifier i ≤ 2
d − 1

emulates the complete column i of the d-dimensional butterfly with

d = ⌊logn⌋. Since u knows the identifiers of all other nodes, it

2
We denote [k] = {0, . . . , k − 1}.

knows exactly which nodes emulate its neighbors in the butterfly.

As every node in the node-capacitated clique can send and receive

O (logn) messages in each round, and the butterfly is of constant

degree, a communication round in the butterfly can be simulated

in a single round in our model.

Aggregate-and-Broadcast Problem. We are given a distributive

aggregate function f and a set A ⊆ V , where each member of A
stores exactly one input value. The goal is to let every node learn

f (inputs of A).

Theorem 2.1. There is an Aggregate-and-Broadcast Algorithm

that solves any Aggregation Problem in time O (logn).

In principal, the algorithm first aggregates all values from the

top-most (i.e., level 0) to the bottom-most level (i.e., level d) of the
butterfly, and then broadcasts the result upwards to all nodes in the

butterfly.

Aggregation Problem. We are given a distributive aggregate func-

tion f and a set of aggregation groups A = {A1, . . . ,AN }, Ai ⊆ V ,
i ∈ {1, . . . ,N } with targets t1, . . . , tN ∈ V , where each node holds

exactly one input value su,i for each aggregation groupAi of which
it is a member, i.e., u ∈ Ai .3 Note that a node may be member or

target of multiple aggregation groups. The goal is to aggregate these

input values so that eventually ti knows f (su,i | u ∈ Ai) for all i .

We define L =
∑N
i=1 |Ai | to be the global load of the Aggregation

Problem, and the local load ℓ = ℓ1 + ℓ2, where ℓ1 = maxu ∈V |{i ∈
{1, . . . ,N } | u ∈ Ai }| and ℓ2 = maxu ∈V |{i ∈ {1, . . . ,N } | u = ti }|.
Whereas the global load captures the total number of messages

that need to be processed, ℓ1 and ℓ2 indicate the work required for

inserting messages into the butterfly, or sending aggregates from

butterfly nodes to their targets, respectively. We require that every

node knows the identifier and target of all aggregation groups it is

a member of, and an upper bound
ˆℓ2 on ℓ2.

Theorem 2.2. There is an Aggregation Algorithm that solves any
Aggregation Problem in timeO (L/n+ (ℓ1+ ˆℓ2)/ logn+ logn), w.h.p.4

From a very high level, the algorithm works as follows. First,

packets are sent to random nodes of the top-most level of the

butterfly. Then, packets belonging to the same aggregation group

Ai are routed to an intermediate target h(i) in the bottom-most

level of the butterfly using a (pseudo-)random hash function h and

a variant of the random rank routing protocol [1, 54]. Whenever

two packets belonging to the same aggregation group collide on a

butterfly node, they are combined using the function f . Finally, the
result of aggregation group Ai is sent from its intermediate target

to its actual target ti .
The intermediate steps of the algorithm are synchronized using

a variant of the Aggregate-and-Broadcast algorithm: Every node

delays its participation in an aggregation until having finished the

current step. Once the aggregation finishes, all nodes become in-

formed about a common round to start the next step. Termination

of the routing protocol can easily be determined by passing down

3
We only enumerate the aggregation groups from 1, . . . , N to simplify the presenta-

tion of the algorithm. Actually, we only require each aggregation group to be uniquely

identified, which can easily be achieved for all algorithms in this paper.

4
We say an event holds with high probability (w.h.p.) if it holds with probability at

least 1 − 1/nc for any fixed constant c > 0.

Distributed Computation in Node-Capacitated Networks (Regular Paper) SPAA ’19, June 22–24, 2019, Phoenix, AZ

tokens in the butterfly. We also use the same techniques to achieve

synchronization for all other algorithms in this paper without ex-

plicitly mentioning it.

Note that common hash functions require shared randomness.
Although in the remainder of this paper we assume that all hash

functions behave like perfect random functions, it can be shown that

it suffices to useΘ(logn)-wise independent hash functions (see, e.g.,
[9] and the references therein). By partitioning events in a suitable

way, and using a generalization of theChernoff bound in [53], we can
show that all of our results hold with high probability. To agree on

such hash functions, all nodes have to learn Θ(log2 n) random bits.

This can be done by continuously broadcasting Θ(logn) messages,

each consisting of logn bits, down from the root of a binary tree

(which is implicitly given) in a pipelined fashion, i.e., withoutwaiting
for arrival of a previous broadcast before sending out subsequent

messages.

Multicast Tree Setup Problem. We are given a set of multicast
groups A = {A1, . . . ,AN }, Ai ⊆ V with sources s1, . . . , sN ∈ V
such that each node is source of at most one multicast group

(but possibly member of multiple groups). The goal is to set up

a multicast tree Ti in the butterfly for each i ∈ {1, . . . ,N } with
root h(i), which is a node uniformly and independently chosen

among the butterfly nodes of level d , and a unique and randomly

chosen leaf l (i,u) in level 0 for each u ∈ Ai . Let L =
∑N
i=1 |Ai |,

ℓ = maxu ∈V |{i ∈ {1, . . . ,N } | u ∈ Ai }| and define the congestion of
the multicast trees to be the maximum number of trees that share

the same butterfly node. We require that each node u ∈ V knows

the identifier and source of all multicast groups it is a member of.

Theorem 2.3. There is a Multicast Tree Setup Algorithm that
solves any Multicast Tree Setup Problem in time O (L/n + ℓ/ logn +
logn), w.h.p. The resulting multicast trees have congestion O (L/n +
logn), w.h.p.

The algorithm shares many similarities with the Aggregation

Algorithm; in fact, the multicast trees stem from the paths taken

by the packets during an aggregation. Alongside the aggregation,

every butterfly node u records for every i ∈ {1, . . . ,N } all edges
along which packets from group Ai arrived during the routing

towards h(i), and declares them as edges of Ti .

Multicast Problem. Assume we have constructed multicast trees

for a set of multicast groups A = {A1, . . . ,AN }, Ai ⊆ V with

sources s1, . . . , sN ∈ V such that each node is source of at most one

multicast group. The goal is to let every source si send a message

pi to all nodesu ∈ Ai . LetC be the congestion of the multicast trees

and ℓ = maxu ∈V |{i ∈ {1, . . . ,N } | u ∈ Ai }|. We require that the

nodes know an upper bound
ˆℓ on ℓ.

Theorem 2.4. There is a Multicast Algorithm that solves any
Multicast Problem in time O (C + ˆℓ/ logn + logn), w.h.p.

The algorithm multicasts messages by sending them upwards

the multicast trees, performing our routing strategy in "reverse

order". We remark that similar to the Aggregation Algorithm, the

Multicast Algorithm may easily be extended to allow a node to

be source of multiple multicasts; however, we will only need the

simplified variant in our paper.

Multi-Aggregation Problem. Weare given a set ofmulticast groups

A = {A1, . . . ,AN }, Ai ⊆ V with sources s1, . . . , sN ∈ V such that

every source si stores a multicast packet pi , and every node is

source of at most one multicast group. We assume that multicast

trees for the multicast groups with congestionC have already been

set up. The goal is to let every node u ∈ V receive f ({pi | u ∈ Ai })
for a given distributive aggregate function f .

Theorem 2.5. There is aMulti-Aggregation Algorithm that solves
any Multi-Aggregation Problem in time O (C + logn), w.h.p.

The Multi-Aggregation algorithm combines all of the previous

algorithms to allow a node to first multicast a message to a set of

nodes associated with it, and then aggregate all messages destined

at it. More precisely, each source si first multicasts its packet pi to
all leaves in its multicast tree. Every node l (i,u) then maps pi to a

packet (id(u),pi) for all i and u ∈ Ai . The resulting packets are ran-
domly distributed among the butterfly nodes of level 0. Finally, all

packets associated with identifier id(u) for some u are aggregated

towards an intermediate target h(id(u)) on level d using the aggre-

gate function f as in the Aggregation Algorithm. From there, the

result is finally delivered to u. For applications beyond our paper,

the algorithm may also be extended to allow nodes to be source of

multiple multicast groups, and to receive aggregates corresponding

to distinct aggregations.

3 MINIMUM SPANNING TREE
As a first example of graph algorithms for the node-capacitated

clique, we describe an algorithm that computes aminimum spanning
tree (MST) in time O (log4 n). More specifically, for every edge in

the input graph G, one of its endpoints eventually knows whether

the edge is in the MST or not. We assume that each edge of G
has an integral weight in {1, 2, . . . ,W } for some positive integer

W = poly(n).

High-Level Description. From a high level, our algorithm mimics

Boruvka’s algorithm with Heads/Tails clustering, which works as

follows. Start with every node as its own component. For O (logn)
iterations, every component C (1) finds its lightest, i.e., minimum-

weight, edge out of the component that connects to the other com-

ponents, (2) flips a Heads/Tails coin, and (3) learns the coin flip

of the component C ′ on the other side of the lightest edge. If C
flips Tails and C ′ flips Heads, then the edge connecting C to C ′ is
added to the MST, and thus effectively component C merges with

component C ′ (and whatever other components that are merging

with C ′ simultaneously). It is well known that, w.h.p., all nodes

get merged into one component within O (logn) iterations and the

added edges form an MST (see, e.g., [22, 23]).

Details of the Algorithm. Over the course of the algorithm, each

componentC ⊆ V maintains a leader node l (C) ∈ C whose identifier

is known to every node in the component. Furthermore, we main-

tain a multicast tree for each component C with source l (C) and
corresponding multicast groupC \ {l (C)}. We ensure that the set of

multicast trees has congestionO (logn). In each round of Boruvka’s

algorithm with the partition of V into components {C1, . . . ,CN },
every leader l (Ci) flips Heads/Tails and multicasts the result to

all nodes in its component by using the Multicast Algorithm of

Theorem 2.4. As the multicast trees have congestion O (logn), and

SPAA ’19, June 22–24, 2019, Phoenix, AZ Augustine et al.

ˆℓ = 1 as every node is in exactly one component, this takes time

O (logn), w.h.p.
For each component C , the leader then learns the lightest edge

to a neighbor inV \C in timeO (log2 n logW). This is a highly non-
trivial task that we address later. Afterwards, the leader multicasts

the lightest edge {u,v} ∈ (C × (V \ C)) ∩ E to every node in its

component, which can again be done in time O (logn). For each
component C that flips Tails, the node u ∈ C incident to the light-

est outgoing edge {u,v} now has to learn whether v’s component

C ′ has flipped Heads, and, if so, the identifier of l (C ′). Therefor,
u joins a multicast group A

id(v) with source v , i.e., declares itself
member of A

id(v) and constructs multicast trees with the help of

Theorem 2.3. As every node is member of at most one multicast

group, setting up the corresponding trees with congestionO (logn)
takes time O (logn), w.h.p. By using the Multicast Algorithm, the

endpoints of all lightest edges learn the result of the coin flip and

the identifier of their adjacent component’s leader in timeO (logn),
w.h.p.

If for the edge {u,v} the component C ′ of v has flipped Heads,

then u sends the identifier of the leader of C ′ to its own leader,

which in turn informs all nodes of C using a multicast. Note that

thereby only u learns that {u,v} is an edge of the MST, but not v .
Finally, the multicast trees of the resulting components are rebuilt

by letting each node join a multicast group corresponding to its

new leader. As the components are disjoint, the resulting trees with

congestion O (logn) are built in time O (logn), w.h.p.

Finding the Lightest Edge. To find the lightest edge of a compo-

nent, we “sketch” its incident edges. Our algorithm follows the pro-

cedure FindMin of [34], with the “broadcast-and-echo” subroutine

inside each component replaced bymulticasts and aggregations (i.e.,

executions of the Multicast and Aggregation Algorithm) from/to

the leader to/from the entire component. As argued above, and

due to Theorem 2.2, both steps can be performed in time O (logn),
w.h.p. We highlight the main steps of FindMin, and refer the reader
to [34] for the details and proof.

Initially, we bidirect each edge into two arcs in opposite direc-

tions, and define the identifier id(u,v) = id(u)◦id(v). We will apply

binary search to the weights of edges so that we can find the lightest

outgoing edge. Every iteration has a current range [L,R] ⊆ [1,W]

such that the lightest edge out has weight in that range. To compute

the next range, the algorithm determines whether there is an edge

out of [L,M], whereM := ⌊(L+R)/2⌋. If so, the new range becomes

[L,M]; otherwise, the new range is [M + 1,R].5 The remaining task

is to solve the following subproblem: given a range [a,b], determine

whether there exists an outgoing edge with weight in [a,b].
To sketch their incident edges, the nodes use a (pseudo-)random

hash function h that maps each edge identifier to {0, 1}. For a node

u, define

h↑(u) :=
∑

v ∈N (u):
w (u,v)∈[a,b]

h(id(u,v)) mod 2,

5
The algorithm FindMin of [34] actually uses a “Θ(logn)-ary” search instead of binary
search, but we replace it with binary search here for simplicity of explanation.

and

h↓(u) :=
∑

v ∈N (u):
w (u,v)∈[a,b]

h(id(v,u)) mod 2,

and for component C ⊆ V , define h↑(C) :=
∑
u ∈C h↑(u) and h↓(C)

similarly. Observe that the unordered sets {id(u,v) : u ∈ C,v ∈
N (u),w (u,v) ∈ [a,b]} and {id(v,u) : u ∈ C,v ∈ N (u),w (u,v) ∈
[a,b]} are the same if and only if component C does not have

an outgoing edge with weight in the range [a,b]. Also, the hash
functionh satisfies the property that, if two sets S1, S2 of integers are
not equal, then the values of

∑
x ∈S1 h(x) mod 2 and

∑
x ∈S2 h(x)

mod 2 are not equal with constant probability. To compute the

values of h↑(C) and h↓(C), each node u ∈ C computes h↑(u) and

h↓(u), and an aggregation towards the leader node is performed on

each component C with addition mod 2 as the aggregate function.

We can repeat this procedure O (logn) times so that w.h.p., there is

no outgoing edge out ofC with weight in [a,b] if and only if h↑(C)

and h↓(C) are equal in every trial.

The running time analysis from [34], modified to count the num-

ber of “broadcast-and-echo” subroutines, can be rewritten as fol-

lows.

Lemma 3.1 ([34], Lemma 2). The leader node of each component
learns the lightest edge out of its component within O (logW logn)
iterations of multicasts and aggregations, w.h.p.

Since each phase can be performed in time O (logn), w.h.p., we
conclude the following theorem.

Theorem 3.2. The algorithm computes an MST in timeO (log4 n),
w.h.p.

4 COMPUTING AN O (a)-ORIENTATION
One of the reasons the MST problem can be solved very efficiently

is because we only require one endpoint of each edge to learn

whether the edge is in the MST or not; otherwise, the problem

seems to become significantly harder, as every node would have

to learn some information about each incident edge. We observe

this difficulty for the other graph problems considered in this paper

as well. To approach this issue, we aim to set up multicast trees

connecting each node with all of its neighbors in G, allowing us

to essentially simulate variants of classical algorithms. As we will

see, such trees can be set up efficiently if G has small arboricity by

first computing anO (a)-orientation ofG , which is described in this

section.

We present the Orientation Algorithm, which computes an O (a)-
orientation in time O ((a + logn) logn), w.h.p. More specifically,

the goal is to let every node learn a direction of all of its incident

edges in G. The algorithm essentially constructs a Nash-Williams
forest-decomposition [48] using the approach of [3]. From a high-

level perspective, the algorithm repeatedly identifies low-degree

nodes and removes them from the graph until the graph is empty.

Whenever a node leaves, all of its incident edges are directed away

from it. More precisely, the algorithm proceeds in phases 1, . . . , t .
Let di (u) be the number of incident edges of a node u that have not

yet been assigned a direction at the beginning of phase i . Define

di to be the average degree of all nodes u with di (u) > 0, i.e.,

di =
∑
u ∈V di (u)/|{u ∈ V | di (u) > 0}|. In phase i , a node u is

Distributed Computation in Node-Capacitated Networks (Regular Paper) SPAA ’19, June 22–24, 2019, Phoenix, AZ

called inactive if di (u) = 0, active if di (u) ≤ 2di , and waiting if

di (u) > 2di . In each phase, an edge {u,v} gets directed from u to

v , if u is active and v is waiting, or if both nodes are active and

id(u) < id(v). Thereby, each node is waiting until it becomes active

in some phase, and remains inactive for all subsequent phases. This

results in a partition of the nodes into levels L1, . . . ,Lt , where level
i is the set Li of active nodes in phase i . The lemma below follows

from the fact that in every phase, at least half of all nodes that are

not yet inactive become inactive, which can easily be shown, and

that di ≤ 2a, since any subgraph of G can be partitioned into a
forests, whose average degree is at most 2.

Lemma 4.1. The Orientation Algorithm takes O (logn) phases to
compute an O (a)-orientation.

4.1 Identification Problem
It remains to show how a single phase can be performed efficiently

in our model. Here, the main difficulty lies in having active nodes

determine which of their neighbors are already inactive in order

to conclude the orientations of incident edges. We approach this

by essentially solving the following Identification Problem: We are

given a set L ⊆ V of learning nodes and a set P ⊆ V of playing
nodes. Every playing node knows a subset of its neighbors that are

potentially learning, i.e., it knows that none of the other neighbors

are learning. The goal is to let every learning node determine which

of its neighbors are playing.

To solve such a problem, we present the Identification Algorithm,

which will later be used as a subroutine. In this subsection, we

represent each edge {u,v} by two directed edges (u,v) and (v,u).
We assume that all nodes know s (pseudo-)random hash functions

h1, . . . ,hs : E → [q] for some parameters s and q. The hash func-

tions are used to map every directed edge to s trials. We say an

edge e participates in trial i if hj (e) = i for some j.
Let u ∈ L. We refer to an edge (u,v) as a red edge of u, if v

is not playing, and a blue edge of u, if v is playing. We identify

each edge (u,v) by the identifiers of its endpoints, i.e., id(u,v) =
id(u)◦id(v). LetX (i) be the XOR of the identifiers of all edges (u,v)
that participate in trial i , and X ′(i) be the XOR of the identifiers of

all blue edges (u,v) that participate in trial i . Furthermore, let x (i)
be the total number of edges adjacent to u that participate in trial i ,
and let x ′(i) be the number of blue edges that participate in trial i .

Our idea is to let u use these values to identify all of its red

edges; then it can conclude which of its neighbors must be playing.

Before describing this, we explain how the values are determined.

Clearly, the values X (i) and x (i) can be computed by u by itself

for all i . The other values are more difficult to obtain as u does not

know which of its edges are blue. To compute these values, we use

the Aggregation Algorithm: Each playing node v is in aggregation

groupA
id(w)◦i for every potentially learning neighborw and every

trial i such that (w,v) participates in trial i . The input of v for the

group A
id(w)◦i is (id(w,v), 1), where the first coordinate is used to

letw compute X ′(i), and the second coordinate is used to compute

x ′(i). Correspondingly, the aggregate function f combines two

inputs corresponding to the same aggregation group by taking the

XOR of the first coordinate and the sum of the second coordinate.

Thereby, u eventually receives both X ′(i) and x ′(i).

We now show how u can identify its red edges using the aggre-

gated information. First, it determines a trial i for which x (i) =
x ′(i) + 1. Since neighbors that are not playing did not participate in
the aggregation, in this case there is exactly one red edge (u,v) such
that id(u,v) is included in X (i) but not in X ′(i). Therefore, id(u,v)
can be retrieved by taking the XOR of both values. Having identified

id(u,v),u determines all trials in which (u,v) participates using the
common hash functions and "removes" id(u,v) from X (i) by again

computing the XOR of both. It then decreases x (i) by 1 and repeats

the above algorithm until no further edge can be identified. If u
always finds a trial i for which x (i) = x ′(i) + 1, then it eventually

has identified all red edges. Clearly, all the remaining neighbors

must be playing.

Lemma 4.2. Let u ∈ L and assume that u is incident to at most p
red edges. Let s be the number of hash functions, and q be the number
of trials.

Pr[u fails to identify at least k red edges] ≤ 2

(
2sk

q

) (s−2)k/2
for q ≥ 4sp and s ≥ 3.

Proof. u fails to identify at least k red edges if at some itera-

tion of the above process there are j ≥ k edges left such that all

edges participate only in trials in which at least two of the j edges
participate. Here, the j edges participate in at most ⌊s · j/2⌋ many

different trials, since otherwise there must be a trial in which only

one edge participates. Therefore, the probability for that event is

Pr ≤

p∑
j=k

(
p

j

) (
q

sj/2

) (
sj/2

q

)s j

≤

p∑
j=k

(
ep

j

) j (
2eq

sj

)s j/2 (
sj

2q

)s j

=

p∑
j=k



(
ep

j
·
sj

2q

) (
2eq

sj
·
sj

2q

)s/2
·

(
sj

2q

)s/2−1
j

=

p∑
j=k



e2ps

2q
·

(
esj

2q

)s/2−1
j

≤

p∑
j=k

(
2sj

q

) (s−2)j/2
≤ 2

(
2sk

q

) (s−2)k/2
,

where the last inequality holds because(
2s (j + 1)

q

) (s−2) (j+1)/2
≤ 1/2

(
2sj

q

) (s−2)j/2
. □

4.2 Details of the Algorithm
Finally, we show how the Identification Algorithm can be used

to efficiently realize a phase of the high-level algorithm in time

O (a+ logn), w.h.p. In our algorithm every node learns the direction

of all its incident edges in the phase in which it is active; however,

its neighbors might learn their direction only in subsequent phases.

Each phase is divided into three stages: In Stage 1, every node

determines whether it is active in this phase. In Stage 2, every active

node learns which of its neighbors are inactive. Finally, in Stage 3

SPAA ’19, June 22–24, 2019, Phoenix, AZ Augustine et al.

every active node learns which of its remaining neighbors, which

must be either active or waiting, are active. From this information,

and since every node knows the identifiers of all of its neighbors,

every active node concludes the direction of each of its incident

edges. In the following we describe the three stages of a phase i in
detail.

Stage 1: Determine Active Nodes. We assume that all nodes start

the stage in the same round. First, every node u that is not inactive

needs to compute di (u) (i.e., the number of inactive neighbors) to

determine whether it remains waiting or becomes active in this

phase. This value can easily be computed using the Aggregation

Algorithm: Every inactive nodev , which already knows the orienta-
tion of each of its incident edges, is a member of every aggregation

group A
id(w) such that v → w . As the input value of each node we

choose 1, and the aggregate function f is the sum. By performing

the Aggregation Algorithm, u determines the number of inactive

neighbors, and, by subtracting the value from d (u), computes di (u).
Afterwards, the nodes use the Aggregate-and-Broadcast Algorithm

to compute di and to achieve synchronization.

Stage 2: Identify Inactive Neighbors. The goal of this stage is to
let every active node learn which of its neighbors are inactive. The

stage is divided into two steps: In the first step, a large fraction of

active nodes succeeds in the identification of inactive neighbors.

The purpose of the second step is to take care of the nodes that were

unsuccessful in the first step, i.e., that only identify some, but not all,

of their incident red edges. In both steps we use the Identification

Algorithm described in the previous section, and carefully choose

the parameters to achieve that each step only takes timeO (a+logn).
At the beginning of the first step, the nodes perform theAggregate-

and-Broadcast Algorithm to compute d∗i = maxu ∈Li (di (u)). Let
d∗ = maxj≤i d

∗
i , which is a value known to all nodes, and note

that d∗ = O (a). Then, the nodes perform the Identification Algo-

rithm, where the active nodes are learning and the inactive nodes

are playing. Hence, the endpoints of the red edges learned by the

active nodes must either be active or waiting. If we chose s = c logn
and q = 4cd∗ logn for some constant c ≥ 4 as parameters, then

by Lemma 4.2 all nodes would learn all of their red edges, w.h.p.,

already in this step; however, this would take timeO (a logn). To re-
duce this toO (a+ logn), we instead choose s = c and q = 4cd∗ logn
for some constant c ≥ 4, and accept that nodes fail to identify some

of their red edges in this step. However, for this choice Lemma 4.2

implies that each node fails to identify at most logn red edges,

w.h.p.

We now describe how these remaining edges are identified in

the second step. Let U = {u ∈ V | u is unsuccessful}. We divide U
into sets of high-degree nodes Uhiдh = {u ∈ U | (d (u) − di (u)) >
n/ logn} and of low-degree nodesUlow = {u ∈ U | (d (u) −di (u)) ≤
n/ logn} and consider the nodes of each set separately. By dealing

with high-degree nodes separately, we ensure that the global load

required to let low-degree nodes identify their red edges reduces by

a logn factor. First, the nodes ofUhiдh (of which there are onlyO (a+
logn), w.h.p.) broadcast their identifiers by using a variant of the

Aggregate-and-Broadcast Algorithm: Using the path system of the

butterfly, every nodeu ∈ Uhiдh sends its identifier to the butterfly’s

root (i.e., node (0, 0)); however, messages are not combined. Instead,

whenever multiple identifiers contend to use the same edge in the

same round, the smallest identifier is sent first. After the root has

received all identifiers, it broadcasts them in a pipelined fashion. For

every node u ∈ A := {u ∈ V | u is active or waiting} define Ru =
Uhiдh ∩ N (u), i.e., (v,u) is a red edge of v for all v ∈ Ru . By using

the Aggregate-and-Broadcast Algorithm, the nodes compute r =
maxu ∈A |Ru |. Let u ∈ A. For each v ∈ Ru , u chooses a round from

{1, . . . ,max{r ,d∗i }} uniformly and independently at random and

sends its own identifier to v in that round. Afterwards, every high-

degree node can identify all of its red edges. As both max{r ,d∗i } =
O (a + logn), this takes time O (a + logn), w.h.p.

To let the low-degree nodes identify their red edges, we again

use the Identification Algorithm. First, in order to narrow down

its set of potentially learning neighbors, every inactive node deter-

mines which of its neighbors are unsuccessful low-degree nodes.

Therefore, we let every inactive node u join multicast group A
id(v)

for all u → v such that v is not inactive (recall that every inactive

node knows the directions of all of its incident edges, and whether

the other endpoint of each edge is inactive or not). Every node

v ∈ Ulow then informs its inactive neighbors by using the Multi-

cast Algorithm. Since every node is member of at most d∗ multicast

groups, which is a value known to all nodes, the nodes know an

upper bound on ℓ as required by the algorithm. Having narrowed

down the set of learning nodes and the sets of potentially learning

neighbors to the unsuccessful ones only, the Identification Algo-

rithm is performed once again. As the parameters of the algorithm

we choose s = c logn and q = 4c log2 n for some constant c > 0.

Stage 3: Identify Active Neighbors. Finally, every active node has

to learn which of the endpoints of its red edges are active. In the

following, let id(e) = id(u) ◦ id(v) be the identifier of an edge given

by its endpointsu andv such that id(u) < id(v). The nodes use two
(pseudo-)random hash-function h, r , where h maps the identifier of

an edge e to a node h(id(e)) ∈ V uniformly and independently at

random, and r maps its identifier to a round r (id(e)) ∈ {1, . . . ,d∗i }
uniformly and independently at random. Every active node u sends

an edge-message containing id(e) to h(id(e)) in round r (id(e)) for
every incident edge e leading to an active or waiting node. Using

this strategy, two adjacent active nodes u, v send an edge-message

containing id({u,v}) to the same node in the same round.Whenever

a node receives two edge-messages with the same edge identifier, it

immediately responds to the corresponding nodes, which thereby

learn that both endpoints are active.

Lemma 4.3. In phase i of the algorithm, every node v ∈ Li learns
the directions of its incident edges. Each phase takes timeO (a+ logn),
w.h.p. In every round, each node sends and receives at most O (logn)
messages, w.h.p.

The proof of the above lemma can be found in Appendix D.

Together with Lemma 4.1, we conclude the following theorem.

Theorem 4.4. The Orientation Algorithm computes an
O (a)-orientation in time O ((a + logn) logn), w.h.p.

5 GRAPH PROBLEMS BEYOND MST
We conclude our initiating study of the node-capacitated clique by

presenting a set of graph problems that can be solved efficiently

in graphs with bounded arboricity. The presented algorithms rely

Distributed Computation in Node-Capacitated Networks (Regular Paper) SPAA ’19, June 22–24, 2019, Phoenix, AZ

on a structure of precomputed multicast trees. More specifically,

for every node u ∈ V we construct a multicast tree T
id(u) for the

multicast group A
id(u) = N (u). Since such trees enable the nodes

to send messages to all of their neighbors, in the following we refer

to them as broadcast trees.
If a naive approach to construct these trees, one could simply

use the Multicast Tree Setup Algorithm, where each node joins the

multicast group of every neighbor. However, as ℓ = ∆, the time to

construct these trees would be O (d + ∆/ logn + logn), which can

be Õ (n) if G is a star, for example. Instead, we first construct an

O (a)-orientation of the edges as shown in the previous section, and

letu only join multicast groupsA
id(v) (which translates to injecting

one packet per group into the butterfly) for every out-neighbor v .
Additionally, for every out-neighbor v it takes care of v joining u’s
multicast group by injecting a packet for v . In case of a star for

example (whose arboricity is one), every node, including the center,

injects at most two packets. In general, we obtain the following

result.

Lemma 5.1. Setting up the broadcast trees takes timeO (a + logn),
w.h.p. The congestion of the broadcast trees is O (a + logn), w.h.p.

The following corollary establishes one of the key techniques

used by the algorithms in this section.

Corollary 1. Let S ⊆ V . Using the broadcast trees, the Multi-
Aggregation Algorithm solves any Multi-Aggregation Problem with
multicast groups Aid(u) = N (u) and sid(u) = u for all u ∈ S in time
O (

∑
u ∈S d (u)/n + logn), w.h.p.

5.1 Breadth-First Search Trees
As a simple example, we show how to compute Breadth-First Search
(BFS) Trees: Let s be a node and let δ (u) be the length of a shortest

(unweighted) path from s to u in G. Furthermore, let π (u) be the
immediate predecessor of u on a shortest path from s to u that has

smallest identifier. The goal is to let each node u ∈ V eventually

store δ (u) and π (u). Using the broadcast trees, the problem can

easily be solved by the following algorithm, which proceeds in

phases. In Phase 1, only s is active, and in Phase i > 1, all nodes

that have received an identifier in Phase i − 1 for the first time are

active. In each phase, every active node sends its identifier to all of

its neighbors using the broadcast trees and the Multi-Aggregation

Algorithm. By choosing f as the minimum function, every node

that has an active neighbor thereby receives the minimum identifier

of all active neighbors. Furthermore, in every Phase i > 1, every

active nodeu sets δ (u) = i−1 and π (u) to the node whose identifier
it has received in the previous phase. Clearly, after at most D + 1
phases all nodes have been reached.

Theorem 5.2. The algorithm computes a BFS Tree in time O ((a +
D + logn) logn), w.h.p.

Proof. By Lemma 5.1, the broadcast trees are constructed in

time O ((a + logn) logn), w.h.p. Let Si be the set of nodes active
in Phase i . By Corollary 1, the Multi-Aggregation Algorithm takes

time O (
∑
u ∈Si d (u)/n + logn), w.h.p. We conclude a total runtime

of

O *.
,
(a + logn) logn +

D+1∑
i=1

*.
,

∑
u ∈Si

d (u)/n + logn+/
-

+/
-

=O *
,
(a + logn) logn +

∑
u ∈V

d (u)/n + (D + 1) logn+
-

=O ((a + D + logn) logn), w.h.p. □

5.2 Maximal Independent Set
In this section we show how to compute a maximal independent set
(MIS): A setU ⊆ V is an MIS if (1) it is an independent set, i.e., no

two nodes of U are adjacent in G, and (2) there is no set U ′ ⊆ U
such that U ⊂ U ′. On a high level, we perform the algorithm of

Métivier et al [46], which works as follows. First, all nodes are

active and no node is in the MIS. The algorithm proceeds in phases,

where in each phase every active node u first chooses a random

number r (u) ∈ [0, 1] and broadcasts the value to all of its neighbors.
u then joins the MIS (and becomes inactive) if r (u) is smaller than

the minimum of all received values. If so, it broadcasts a message

to all of its neighbors, instructing them to become inactive.

We can easily perform a phase of the algorithm in our model

by using two executions of the Multi-Aggregation Algorithm, the

first to let every node aggregate the minimum of all values cho-

sen by its neighbors, and the second to let every node that is not

in the MIS determine whether it is adjacent to a node that is in

the MIS. This information is then used to determine whether the

nodes have reached an MIS using the Aggregate-and-Broadcast

Algorithm. Since by [46] O (logn) phases suffice, and each phase

can be performed in timeO (d+ logn) = O (a+ logn) by Corollary 1,
we conclude the following theorem.

Theorem 5.3. The algorithm computes an MIS in time O ((a +
logn) logn), w.h.p.

5.3 Maximal Matching
Similar to an MIS, a maximal matching M ⊆ E is defined as a

maximal set of independent (i.e., node-disjoint) edges. To compute

a maximal matching, we propose to use the algorithm of Israeli

and Itai [30], which works as follows. Initially, no node is matched.

The algorithm proceeds in phases, where in each phase every un-

matched node u performs the following procedure. First, it chooses

an edge to an unmatched neighbor uniformly at random. If u itself

has been chosen by multiple neighbors, it accepts only one choice

arbitrarily and informs the respective node. The outcome is a col-

lection of paths and cycles. Each node of a path or cycle finally

chooses one of its at most two neighbors. If thereby two adjacent

nodes choose the same edge, the edge joins the matching and the

two nodes become matched. Afterwards, all matched nodes and

their incident edges are removed from the graph.

The algorithm lends itself to a realization using communication

primitives. First, we let every unmatched node randomly pick one

of its unmatched neighbors by performing the Multi-Aggregation

Algorithm with a slight modification. Here, every node u that is

still unmatched multicasts a packet p
id(u) using its broadcast tree.

Recall that after p
id(u) has reached butterfly node l (id(u),v) for all

v ∈ N (u) in the execution of the Multi-Aggregation Algorithm,

SPAA ’19, June 22–24, 2019, Phoenix, AZ Augustine et al.

it is mapped to a new packet (id(v),p
id(u)). Here, we additionally

let l (id(u),v) choose a value r ∈ [0, 1] uniformly at random, and

annotate (id(v),p
id(u)) by r . Whenever thereafter two packets with

the same target are combined, the packet annotated by theminimum

value remains. Thereby, every node that still has an unmatched

neighbor receives the identifier of a node chosen uniformly and

independently at random among its unmatched neighbors.

Afterwards, every node that has been chosen by multiple neigh-

bors has to choose one of them arbitrarily. This can be done by

performing the Aggregation Algorithm, in which we let every node

u aggregate the minimum of the identifiers of all nodes by which

it has been chosen in the previous step. In the resulting collection

of paths and cycles, neighbors can directly send messages to each

other to determine which edges join the matching. Finally, the

nodes have to determine whether the matching is maximal, which

can be done as described in the previous section. Using Corollary

3.5 of [30] and Chernoff bounds, it can be shown that O (logn)
phases suffice. We conclude the following theorem.

Theorem 5.4. The algorithm computes a maximal matching in
time O ((a + logn) logn), w.h.p.

5.4 O (a)-Coloring
The goal of this section is to compute an O (a)-coloring, in which

every node has to choose one of O (a) colors such that no color is

chosen by two adjacent nodes. Following the idea of Barenboim and

Elkin [3], we consider the partition of nodes into levels L1, . . . ,Lt
and color the nodes of each level separately. Recall that after the

algorithm to compute the O (a)-orientation, every node knows the

index of its own level. Furthermore, for all i every node u ∈ Li
knows which of its neighbors are in lower levels L1, . . . ,Li−1, the
same level Li , and higher levels Li+1, . . . ,Lt , since it knows which
of its neighbors were inactive, active, or waiting in phase i . First, the
nodes use the Aggregate-and-Broadcast Algorithm to compute â =
maxu ∈V {max(dL (u),dout (u))} = O (a), where dL (u) is the number

of neighbors of u that are in the same level as u. Furthermore, the

nodes set up multicast trees for multicast groups A
id(u) = Nin (u)

with source s
id(u) = u for all u ∈ V . More precisely, every node

joins the multicast group of each of its out-neighbors, which can

be done in time O (a + logn), w.h.p., by Theorem 2.3.

Afterwards, the algorithm proceeds in phases 1, . . . , t , where
in each phase i the nodes of level Lt−i+1 get colored. Throughout
the algorithm’s execution, every node u maintains a color palette

C (u) initially set to [2(1 + ε)â] for some constant ε > 0. After each

phase, the color palette of every remaining uncolored node has

been narrowed down to all colors that have not yet been chosen

by its neighbors. Since every u ∈ Lt−i+1 has at most â neighbors

in higher levels, C (u) still consists of at least (1 + ε)â colors at the

beginning of phase i .
In phase i of the algorithm, the nodes of level Lt−i+1 essentially

perform the Color-Random Algorithm of Kothapalli et al. [41]. First,

every node u ∈ Lt−i+1 chooses a color cu from its color palette

uniformly at random. Then, it informs its in-neighbors about its

choice by performing the Multicast Algorithm using the precom-

puted multicast trees and â as an upper bound on ℓ. Thereby, u
receives the colors chosen by its out-neighbors of the same level. If

u does not receive its own color cu , it permanently chooses cu . In

that case, it first informs all of its in-neighbors about its permanent

choice by again performing the Multicast Algorithm. Afterwards,

it informs all of its out-neighbors by performing the Aggregation

Algorithm. Here, u is a member of aggregation groups A
id(v)◦cu

for all v ∈ Nout and target of aggregation groups A
id(u)◦i for all

i ∈ [2(1+ ε)â]. Note that every node is a member of at most â and a

target of at most 2(1+ε)â aggregation groups. Afterwards, all nodes
(including nodes of lower levels) remove all colors permanently

chosen by neighbors from their palettes.

The above procedure is repeated until all nodes of level Lt−i+1
have permanently chosen a color, which is determined by perform-

ing the Aggregate-and-Broadcast Algorithm after each repetition.

Then, if i > 1, the nodes start the next phase, and terminate, oth-

erwise. The following theorem can be shown using the following

facts: (1) there areO (logn) phases, (2)O (
√
logn) repetitions during

a phase suffice until all nodes of the corresponding level are colored

(see the discussion in Section 4 of [41]), and (3) each repetition takes

time O (a + logn).

Theorem 5.5. The algorithm computes an O (a)-coloring in time
O ((a + logn) log3/2 n), w.h.p.

6 CONCLUSION
Our work initiates the study on the effect of node-capacities on the

complexity of distributed graph computations. We provide some

ideas to approach the difficulties such limitations impose, which

might be of interest also for other problems. Clearly, there is an

abundance of classical problems that may be newly investigated

under our model and for which our algorithms may be helpful.

In general, it would be interesting to see a classification of graph

algorithms that can or cannot be efficiently performed in the node-

capacitated clique. We are also very interested in proving lower

bounds, which seems to be highly non-trivial in our model. Partic-

ularly, we are not certain whether the arboricity is a natural lower

bound for some of the problems considered in this paper.

Interestingly, the algorithms presented in this paper do not fully

exploit the power of the node-capacitated clique. In fact, all of

our algorithms still achieve the presented runtimes if in addition to

knowing their neighbors in the input graph, they initially only know

Θ(logn) random nodes
6
. It is an interesting question whether there

are algorithms that actually require knowing all node identifiers.

ACKNOWLEDGMENTS
This work is partially supported by the German Research Founda-

tion (DFG) within the Collaborative Research Center “On-The-Fly

Computing” (SFB 901). Furthermore, it is supported in part by an

Extra-Mural Research Grant (file number EMR/2016/003016) funded

by the Science and Engineering Research Board, Department of

Science and Technology, Government of India. Fabian Kuhn is sup-

ported by ERC Grant No. 336495 (ACDC).

6
Most communication in our algorithms is carried out using a butterfly as an overlay,

which can be constructed, e.g., using [?].

Distributed Computation in Node-Capacitated Networks (Regular Paper) SPAA ’19, June 22–24, 2019, Phoenix, AZ

REFERENCES
[1] R. Aleliunas. 1982. Randomized parallel communication. In Proc. of 1st ACM

Symposium on Principles of Distributed Computing (PODC). 60–72.
[] John Augustine and Sumathi Sivasubramaniam. 2018. Spartan: A Framework

For Sparse Robust Addressable Networks. In 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 1060–1069. https://ieeexplore.

ieee.org/document/8425259/

[2] Leonid Barenboim and Michael Elkin. 2009. Distributed (δ+1)-Coloring in Linear

(in δ) Time. In Proc. of the 41st annual ACM symposium on Theory of computing
(STOC). 111–120.

[3] Leonid Barenboim and Michael Elkin. 2010. Sublogarithmic distributed MIS

algorithm for sparse graphs using Nash-Williams decomposition. Distributed
Computing 22, 5-6 (2010), 363–379.

[4] Leonid Barenboim and Michael Elkin. 2011. Deterministic Distributed Vertex

Coloring in Polylogarithmic Time. J. ACM 58, 5 (2011), 1–25.

[5] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. 2016. The

Locality of Distributed Symmetry Breaking. J. ACM 63, 3 (2016), 20:1–20:45.

[6] Leonid Barenboim and Victor Khazanov. 2018. Distributed Symmetry-Breaking

Algorithms for Congested Cliques. arXiv preprint arXiv:1802.07209 (2018).
[7] Florent Becker, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. 2018. The

Impact of Locality on the Detection of Cycles in the Broadcast Congested Clique

Model. In LATIN 2018: Theoretical Informatics. 134–145.
[8] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen.

2017. Near-optimal approximate shortest paths and transshipment in distributed

and streaming models. In Proc. of 31st International Symposium on Distributed
Computing (DISC). 7:1–7:16.

[9] L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. 2013. Balls into Bins:

Smaller Hash Families and Faster Evaluation. SIAM J. Comput. 42, 3 (2013),

1030–1050.

[10] Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami

Paz, and Jukka Suomela. 2015. Algebraic methods in the congested clique. In

Proc. of 34th ACM Symposium on Principles of Distributed Computing (PODC).
143–152.

[11] Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. 2017. Derandom-

izing local distributed algorithms under bandwidth restrictions. In Proc. of 31st
International Symposium on Distributed Computing (DISC). 11:1–11:16.

[12] Narsingh Deo and Bruce Litow. 1998. A Structural Approach to Graph Compres-

sion. In Proc. of the MFCS Workshop on Communications. 91–100.
[13] Danny Dolev, Christoph Lenzen, and Shir Peled. 2012. "Tri, tri again": Finding

triangles and small subgraphs in a distributed setting. In Proc. of 26th International
Symposium on Distributed Computing (DISC). 195–209.

[14] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. 2014. On the power of

the congested clique model. In Proc. of 33rd ACM Symposium on Principles of
Distributed Computing (PODC). 367–376.

[15] Vida Dujmovic and David R. Wood. 2007. Graph Treewidth and Geometric

Thickness Parameters. Discrete & Computational Geometry 37, 4 (2007), 641–670.

[16] Michael Elkin. 2004. Unconditional lower bounds on the time-approximation

tradeoffs for the distributed minimum spanning tree problem. In Proc. of the 36th
ACM Symposium on Theory of Computing (STOC). 331–340.

[17] Michael Elkin. 2006. A faster distributed protocol for constructing a minimum

spanning tree. J. Comput. System Sci. 72, 8 (2006), 1282–1308.
[18] Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. 2012. Networks

cannot compute their diameter in sublinear time. In Proc. of 23rd Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA). 1150–1162.

[19] Francois Le Gall. 2016. Further algebraic algorithms in the congested clique

model and applications to graph-theoretic problems. In Proc. of 30th International
Symposium on Distributed Computing (DISC). 57–70.

[20] Mohsen Ghaffari. 2017. Distributed MIS via All-to-All Communication. In Proc.
of the ACM Symposium on Principles of Distributed Computing (PODC). ACM,

141–149.

[21] Mohsen Ghaffari, Themis Gouleakis, Slobodan Mitrovic, and Ronitt Rubinfeld.

2018. Improved Massively Parallel Computation Algorithms for MIS, Matching,

and Vertex Cover. arXiv preprint arXiv:1802.08237 (2018).

[22] Mohsen Ghaffari and Bernhard Haeupler. 2016. Distributed Algorithms for Planar

Networks II: Low-congestion Shortcuts, MST, and Min-Cut. In Proc. of the 27th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 202–219.

[23] Mohsen Ghaffari, Fabian Kuhn, and Hsin-Hao Su. 2017. Distributed MST and

Routing in Almost Mixing Time. In Proc. of the ACM Symposium on Principles of
Distributed Computing (PODC). 131–140.

[24] Mohsen Ghaffari and Krzysztof Nowicki. 2018. Congested Clique Algorithms for

the Minimum Cut Problem. In Proc. of the 2018 ACM Symposium on Principles of
Distributed Computing (PODC). 357–366.

[25] Mohsen Ghaffari and Merav Parter. 2016. MST in log-star rounds of congested

clique. In Proc. of 35th ACM Symposium on Principles of Distributed Computing
(PODC).

[26] Robert Gmyr, Kristian Hinnenthal, Christian Scheideler, and Christian Sohler.

2017. Distributed Monitoring of Network Properties: The Power of Hybrid

Networks. In Proc. of 44th International Colloqium on Algorithms, Languages, and
Programming (ICALP). 137:1–137:15.

[27] James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardesh-

mukh, and Michele Scquizzato. 2015. Toward optimal bounds in the congested

clique: Graph connectivity andMST. In Proc. of 34th ACM Symposium on Principles
of Distributed Computing (PODC). 91–100.

[28] James W. Hegeman and Sriram V. Pemmaraju. 2014. Lessons from the congested

clique applied to MapReduce. In Proc. of 21st Colloquium on Structural Information
and Communication Complexity (SIROCCO 2014). 149–164.

[29] James W. Hegeman, Sriram V. Pemmaraju, and Vivek B. Sardeshmukh. 2014.

Near-constant-time distributed algorithms on a congested clique. In Proc. of 28th
International Symposium on Distributed Computing (DISC). 514–530.

[30] Amos Israeli and A. Itai. 1986. A fast and simple randomized parallel algorithm

for maximal matching. Inform. Process. Lett. 22, 2 (1986), 77–80.
[31] Daniel Jung, Christina Kolb, Christian Scheideler, and Jannik Sundermeier. 2018.

Competitive Routing in Hybrid Communication Networks. In Proceedings of
the 14th International Symposium on Algorithms and Experiments for Wireless
Networks (ALGOSENSORS 2018).

[32] Tomasz Jurdziński and Krzysztof Nowicki. 2018. Connectivity and Minimum Cut

Approximation in the Broadcast Congested Clique. In Structural Information and
Communication Complexity (SIROCCO 2018). 331–344.

[33] Tomasz Jurdziński and Krzysztof Nowicki. 2018. MST inO (1) rounds of congested
clique. In Proc. of 29th ACM-SIAM Symposium on Discrete Algorithms (SODA).
2620–2632.

[34] Valerie King, Shay Kutten, and Mikkel Thorup. 2015. Construction and im-

promptu repair of an MST in a distributed network with o (m) communication. In

Proc. of the 2015 ACM Symposium on Principles of Distributed Computing (PODC).
71–80.

[35] Hartmut Klauck, Danupon Nanongkai, Gopal Pandurangan, and Peter Robinson.

2015. Distributed Computation of Large-scale Graph Problems. In Proc. of the
26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 391–410.

[36] Christian Konrad. 2018. MIS in the Congested Clique Model in log log∆ Rounds.

arXiv preprint arXiv:1802.07647 (2018).

[37] Janne H. Korhonen. 2016. Brief announcement: Deterministic MST sparsification

in the congested clique. In Proc. of 30th International Symposium on Distributed
Computing (DISC 2016).

[38] Janne H. Korhonen and Jukka Suomela. 2017. Brief Announcement: Towards

a Complexity Theory for the Congested Clique. In Proc. of 31st International
Symposium on Distributed Computing (DISC). 55:1–55:3.

[39] Kishore Kothapalli and Sriram Pemmaraju. 2011. Distributed graph coloring

in a few rounds. In Proc. of the 30th annual ACM Symposium on Principles of
Distributed Computing (PODC). 31–40.

[40] Kishore Kothapalli and Sriram Pemmaraju. 2012. Super-Fast 3-Ruling Sets. In

IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), Vol. 18. 136–147.

[41] Kishore Kothapalli, Christian Scheideler, Melih Onus, and Christian Schindel-

hauer. 2006. Distributed coloring in O/spl tilde/(/spl radic/(log n)) bit rounds. In

Proc. 20th IEEE International Parallel & Distributed Processing Symposium (IPDPS).
[42] Shay Kutten and David Peleg. 1998. Fast distributed construction of small k -

dominating sets and applications. Journal of Algorithms 28, 1 (1998), 40–66.
[] F. T. Leighton, B. M. Maggs, A. G. Ranade, and S. B. Rao. 1994. Randomized

routing and sorting in fixed-connection networks. Journal of Algorithms 17
(1994), 157–205.

[43] Christoph Lenzen. 2013. Optimal deterministic routing and sorting on the con-

gested clique. In Proc. of 32nd ACM Symposium on Principles of Distributed Com-
puting (PODC). 42–50.

[44] Christoph Lenzen and David Peleg. 2013. Efficient distributed source detection

with limited bandwidth. In Proc. 32nd ACM Symposium on Principles of Distributed
Computing (PODC). 375–382.

[45] Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. 2005. Minimum-

weight spanning tree construction inO (log logn) communication rounds. SIAM
J. Comput. 35, 1 (2005), 120–131.

[46] Y. Métivier, J. M. Robson, N. Saheb-Djahromi, and A. Zemmari. 2011. An optimal

bit complexity randomized distributed MIS algorithm. Distributed Computing 23,

5-6 (2011), 331–340.

[47] Danupon Nanongkai. 2014. Distributed approximation algorithms for weighted

shortest paths. In Proc. of 46th ACM Symposium on Theory of Computing (STOC).
565–573.

[48] C. St. J. A. Nash-Williams. 1964. Decomposition of Finite Graphs Into Forests.

Journal of the London Mathematical Society 39, 1 (1964), 12–12.

[49] Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. 2016. Fast Dis-

tributed Algorithms for Connectivity and MST in Large Graphs. In Proc. of the
28th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
429–438.

[50] David Peleg and Vitaly Rubinovich. 2000. Near-tight lower bound on the time

complexity of distributed MST construction. SIAM J. Comput. 30, 5 (2000), 1427–
1442.

https://ieeexplore.ieee.org/document/8425259/
https://ieeexplore.ieee.org/document/8425259/

SPAA ’19, June 22–24, 2019, Phoenix, AZ Augustine et al.

[51] Abhiram G. Ranade. 1991. How to Emulate Shared Memory. J. Comput. System
Sci. 42, 3 (1991), 307–326.

[52] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,

Gopal Pandurangan, David Peleg, and Roger Wattenhofer. 2011. Distributed

verification and hardness of distributed approximation. In Proc. of 43th ACM
Symposium on Theory of Computing (STOC). 363–372.

[] Christian Scheideler. 1998. Universal Routing Strategies for Interconnection Net-
works. Springer Verlag, Heidelberg.

[53] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. 1995. Chernoff-

Hoeffding Bounds for Applications with Limited Independence. SIAM Journal on
Discrete Mathematics 8, 2 (1995), 223–250.

[54] Eli Upfal. 1982. Efficient schemes for parallel communication. In Proc. of 1st ACM
Symposium on Principles of Distributed Computing (PODC). 241–250.

Distributed Computation in Node-Capacitated Networks (Regular Paper) SPAA ’19, June 22–24, 2019, Phoenix, AZ

A SIMULATIONS IN THE k-MACHINE MODEL
In this section we consider the simulation of an algorithm for the

Node-Capacitated Clique in the k-machine model. For the Con-

gested Clique model, Klauck et al. [35] provide a conversion theo-

rem that states the following.

Theorem A.1 (Theorem 4.1 in [35]). Any algorithm AC in the
Congested Clique model that executes in TC rounds and passes at
mostMC messages over the course of the algorithm’s execution can
be simulated in the k-machine model so that it requires at most
Õ (MC/k2 +TC∆′/k) rounds. Here, ∆′ is the communication degree
complexity and refers to the maximum number of messages sent by
any node at any round.

The simulation alluded to in Theorem A.1 is quite straightfor-

ward. Each node from the Congested Clique model is placed ran-

domly on one of the k machines in the k-machine model. Under this

random vertex partitioning scheme, each machine will get at most

Õ (n/k) nodes from the Congested Clique model. So it is natural for

the messages sent by each node u in the Congested Clique model

to be simulated by the machine that holds u.
The following conversion result suited for the Node-Capacitated

Clique model follows as a corollary when we notice that the number

of messages per round is at most Õ (n) and, furthermore, ∆′ under
the Node-Capacitated Clique model is at most O (logn).

Corollary 2. Any algorithm ANCC in the Node-Capacitated
Clique model that executes in TNCC rounds can be simulated in the
k-machine model so that it requires at most Õ (nTNCC/k2) rounds.

B CHERNOFF BOUND
To bound the probability of certain events, we use a generalization

of the Chernoff bound in [53]:

Lemma B.1. Let X1, . . . ,Xn be k-wise independent random vari-
ables with Xi ∈ [0,b] and let X =

∑n
i=1 Xi . Then it holds for all

δ ≥ 1, µ ≥ E[X], and k ≥ ⌈δµ⌉

Pr[X ≥ (1 + δ)µ] ≤ e−min[δ 2,δ]·µ/(3b) .

C COMMUNICATION PRIMITIVES
In this section, we provide full descriptions of our communication

primitives, and provide the missing proofs. For simplicity, we refer

to butterfly nodes as BF-nodes.

C.1 Aggregate-and-Broadcast Algorithm
We first describe the Aggregate-and-Broadcast Algorithm of Theo-

rem 2.1 in detail. First, every node that stores an input value, but

does not emulate a node of the butterfly (in which case the most

significant bit of its identifier must be 1), sends it to the BF-node j
of level 0 such that j equals the remaining bits of its identifier. After-

wards, every BF-node of level 0 stores at most two input values, i.e.,

its own value and at most one value of a node that does not emulate

a node of the butterfly. Note, that for every BF-node of level 0 there

is a unique path of length d from that node to any BF-node of level

d in the butterfly. In the aggregation phase, we send all input values
to BF-node 0 of level d , which in the following we refer to as the

root of the butterfly, along that path system. Whenever two values

x ,y reach the same BF-node u, u only forwards д({x ,y}). Thereby,
the root eventually computes the aggregate of all values. This value

is finally broadcast to all BF-nodes of level 0 in the broadcast phase:
Every BF-node of level i that receives the value forwards it to all

of its neighbors in level i − 1. Finally, every node that does not

emulate a BF-node gets informed by the BF-node of level 0 whose

identifier differs only in the most significant digit. The correctness

of Theorem 2.1 can easily be seen.

In pointed out in the paper, we also use the above algorithm

to achieve synchronization: Assume that the nodes execute some

distributed algorithm that finishes in different rounds at the nodes.

In order to start a follow-up algorithm at the same round, the nodes

can make use of the following slight modification of the Aggregate-

and-Broadcast algorithm: Every node delays its participation in the

aggregation phase until it has finished the current algorithm. Once

it has finished, it sends a token to its corresponding BF-node at

level 0. Once a BF-node at level 0 has received a token from each

node of the Node-Capacitated Clique associated with it, it sends

a token in the direction of the butterfly’s root. Similarly, once a

BF-node at level i > 0 has received tokens from both incoming

edges, it sends a token in the direction of the root. Thus, once the

root has received tokens from both incoming edges, it knows that

all nodes have finished the current algorithm. The broadcast phase

will then allow all nodes to start the follow-up algorithm at the

same round. It is easy to see that the synchronization just produces

an overhead of O (logn) rounds.

C.2 Aggregation Algorithm
Next, we describe the Aggregation Algorithm of Theorem 2.2. We

divide the execution of the algorithm into three phases, the Prepro-
cessing Phase, the Combining Phase, and the Postprocessing Phase.
First, in the Preprocessing Phase, all input values are sent in batches

of size ⌈logn⌉ to BF-nodes of level 0 chosen uniformly at random.

More specifically, every nodeu ∈ V transforms each input value su,i
for allAi of whichu is a member of into a packet of the form (i, su,i),
and enumerates all of its packets arbitrarily from 1 to k ≤ ℓ1 as
p1, . . . ,pk . Then, for each j ∈ {1, . . . , ⌈k/ logn⌉}, u sends out pack-

ets p(j−1) ⌈logn ⌉+1, . . . ,pmin{j ⌈logn ⌉,k } in communication round j
to BF-nodes chosen uniformly and independently at random among

all BF-nodes of level 0. To achieve synchronization after this phase,

the nodes perform the Aggregate-and-Broadcast algorithm.

In the Combining Phase, the input values of each aggregation

group Ai are aggregated to a node h(i) (the intermediate target)
chosen uniformly and independently at random from the BF-nodes

of leveld using a (pseudo-)random hash-functionh. This is achieved
by using a variant of the random rank protocol [1, 54]: Each packet

p = (i, su,i) stored at some BF-node of level 0 gets assigned a

rank (p) = ρ (i) using some (pseudo-)random hash function ρ :

{1, . . . ,N } → [K] that is known to all nodes. Then, all packets

belonging to aggregation group Ai are routed towards their target

h(i) along the unique paths on the butterfly, and using the following
rules:

(1) Whenever a BF-node stores multiple packets belonging to

the same aggregation group Ai , it combines them into a

single packet of rank ρ (i), combining their values using the

given aggregate function.

SPAA ’19, June 22–24, 2019, Phoenix, AZ Augustine et al.

(2) Whenevermultiple packets from different aggregation groups

contend to use the same edge in the same round, the one

with smallest rank wins (preferring the one with smallest

aggregation group identifier in case of a tie), and all others

get delayed.

Note that a packet can never get delayed by a packet belonging to

the same aggregation group. Clearly, in each round at most one

packet is sent along each edge of the butterfly, and eventually all

(combined) packets have reached their targets.

In order to determine whether the combining phase has finished,

every BF-node of level 0 sends out a token to all neighbors at level 1

once it has sent out all packets. Correspondingly, every BF-node at

level i > 0 that has sent out all packets and has received tokens from

both neighbors at level i − 1 sends a token to both its neighbors at

level i + 1. By performing the Aggregate-and-Broadcast Algorithm

to determine whether all BF-nodes of level d have received two

tokens, the nodes eventually detect that the combining phase has

finished.

Finally, in the Postprocessing Phase the BF-nodes of level d send

their packets to the corresponding targets in rounds that are ran-

domly chosen from {1, . . . , s}, where s = ⌈ ˆℓ2/ logn⌉. More specifi-

cally, for each packet p stored at some node u, which contains the

result f ({su,i | uinAi }) for some aggregation group Ai , u selects a

round r ∈ {1, . . . , s} uniformly and independently at random and

sends p to ti in round r . Again, the end of the phase is determined

by using the Aggregate-and-Broadcast Algorithm.

We now turn to the analysis of the algorithm.

LemmaC.1. The Preprocessing Phase takes timeO (ℓ1/ logn). More-
over, in each round every node sends and receives at most O (logn)
packets, w.h.p.

Proof. The runtime and the bound on the number of packets

sent out in each round are obvious. Hence, it remains to bound the

number of packets that are received in each round.

Fix any BF-node u of level 0 and round t ∈ {1, . . . , ⌈ℓ/ logn⌉}.
Altogether, at most n⌈logn⌉ packets are sent out in round t , which
we denote by p1, . . . ,pn ⌈logn ⌉ . For each pi , let the binary random

variable Xi be 1 if and only if pi is sent to BF-node u in round t .

Furthermore, let X =
∑k
i=1 Xi . Certainly, E[Xi] = Pr[Xi = 1] =

1/2d and therefore, E[X] ≤ (n⌈logn⌉)/2d ≤ 2 logn + 1. Since the
packets choose their destinations uniformly and independently at

random, it follows from Lemma B.1 that X = O (logn), w.h.p. □

In order to bound the runtime of the Combining Phase, we first

analyze our variant of the random rank protocol in a general setting:

A path collection P = {p1, . . . ,pN } in some graphG is a leveled path
collection if every node v can be given a level l (v) ∈ N so that for

every edge (v,w) of a path in that collection, l (w) = l (v)+ 1. Given
a leveled path collection P of size n in which packets belonging

to the same aggregation group have the same destination, let the

congestionC of P be defined as the maximum number of aggregation

groups that have packets that want to cross the same edge, and let

the degree d of P be defined as the maximum number of edges in

E (P) leading to the same node, where E (P) is the set of all edges
used by the paths in P .

Theorem C.2. For any leveled path collection P of size n with
congestion C , depth D, and degree d , the routing strategy used in
the Combining Phase with parameter K ≥ 8C needs at most O (C +
D logd + logn) steps, w.h.p., to finish routing in P .

Proof. We closely follow the analysis of the random rank pro-

tocol in [?] and extend it with ideas from [?] so that the analysis

covers the case that packets can be combined. In order to bound

the runtime, we will use the following delay sequence argument.

Consider the runtime of the routing strategy to be at least T ≥
D + s . We want to show that it is very improbable that s is large.
For this we need to find a structure that witnesses a large s . This
structure should become more and more unlikely to exist the larger

s becomes.

Let p1 be a packet that arrived at its destination v1 in stepT , and
let A1 be the aggregation group of p1. We follow the path of p1 (or
one of its predecessors, if p1 is the result of the combination of two

packets at some point) backwards until we reach a link e1, where
it was delayed the last time. Let us denote the length of the path

from v1 to e1 (inclusive) by l1, and the packet that delayed p1 by p2.
Let A2 be the aggregation group of p2. From e1 we follow the path

of p2 (or one of its predecessors) backwards until we reach a link

e2 where p2 was delayed the last time, by a packet p3 from some

aggregation group A3. Let us denote the length of the path from

e1 (exclusive) to e2 (inclusive) by l2. We repeat this construction

until we arrive at a packet ps+1 from some aggregation group as+1
that prevented the packet ps at edge es from moving forward, and

denote the number of links on the path of pi from ei (inclusive)
to ei−1 (exclusive) as li . Altogether it holds for all i ∈ {1, . . . , s}: a
packet from aggregation group Ai+1 leaves the buffer of ei at time

step T −
∑i
j=1 (lj + 1) + 1, and prevents at that time step a packet

from aggregation group Ai from moving forward.

The path from es to v1 recorded by this process in reverse order

is called delay path. It consists of s contiguous parts of routing paths
of length l1, . . . , ls ≥ 0 with

∑s
i=1 li ≤ D. Because of the contention

resolution rule it holds ρ (i) ≥ ρ (i + 1) for all i ∈ {1, . . . , s}. A
structure that contains all these features is defined as follows.

Definition C.3 (s-delay sequence). An s-delay sequence consists
of

• s not necessarily different delay links e1, . . . , es ;
• s + 1 delay groups a1, . . . ,as+1 such that the path of a packet

fromai traverses ei and ei−1 in that order for all i ∈ {2, . . . , s},
the path of p1 contains e1, and the path of ps+1 contains es ;
• s integers l1, . . . , ls ≥ 0 such that l1 is the number of links

on the path of p1 from e1 (inclusive) to its destination, and
for all i ∈ {2, . . . , s}, li is the number of links on the path of

pi from ei (inclusive) to ei−1 (exclusive), and
∑s
i=1 li ≤ D;

and

• s + 1 integers r1, . . . , rs+1 with 0 ≤ rs+1 ≤ . . . ≤ r1 < K .

A delay sequence is called active if for all i ∈ {1, . . . , s + 1} we have
ρ (ai) = ri .

Our observations above yield the following lemma.

Lemma C.4. Any choice of the ranks that yields a routing time of
T ≥ D + s steps implies an active s-delay sequence.

Distributed Computation in Node-Capacitated Networks (Regular Paper) SPAA ’19, June 22–24, 2019, Phoenix, AZ

Lemma C.5. The number of different s-delay sequences is at most

n · dD ·Cs ·

(
D + s

s

)
·

(
s + K

s + 1

)
.

Proof. There are at most

(D+s
s

)
possibilities to choose the li ’s

such that

∑s
i=1 li ≤ D. Furthermore, there are at most n choices for

v1, which will also fixed a1. Oncev1 and l1 is fixed, there are at most

dl1 choices for e1. Once e1 is fixed, there are at most dl2 choices for
e3, and so on. So altogether, there are at most dD possibilities for

e1, . . . , es . Since the congestion at every edge is at mostC , there are
at most C possibilities for each ei to pick ai+1, so altogether, there

are at most Cs possibilities to select a2, . . . ,as+1. Finally, there are

at most

(s+K
s+1

)
ways to select the ri such that 0 ≤ rs+1 ≤ . . . ≤ r1 <

K . □

Note that we assumed that there is a unique, total ordering on

the ranks of the aggregation groups once ρ is fixed. Hence, every

aggregation group can only occur once in an s-delay sequence.

Since ρ is assumed to be a (pseudo-)random hash function, the

probability that an s-delay sequence is active is 1/Ks+1
. Thus,

Pr[The protocol needs at least D + s steps]

Lemma C.4

≤ Pr[There exists an active s-delay sequence]

Lemma C.5

≤ n · dD ·Cs ·

(
D + s

s

)
·

(
s + K

s + 1

)
·

1

Ks+1

≤ n · 2D logd ·Cs · 2D+s · 2s+K ·
1

Ks+1

≤ n · 22s+D (logd+1)+K ·
(C
K

)s
.

If we set K ≥ 8C and s = K + D (logd + 1) + (α + 1) logn, where
α > 0 is an arbitrary constant, then

Pr[The algorithm needs at least D + s steps]

≤n · 22s+D (logd+1)+K · 2−3s

=n · 2−s+D (logd+1)+K =
1

nα

which concludes the proof of Theorem C.2. □

Using Theorem C.2, we are now able to bound the runtime of the

Combining Phase by determining the parameters of the underlying

routing problem.

LemmaC.6. The Combining Phase takes timeO (L/n+logn), w.h.p.

Proof. The depth of the butterfly is O (logn) and its degree is

4. Furthermore, the size of the routing problem is L. Therefore, it
only remains to show that the congestion of the routing problem is

O (L/n + logn), w.h.p.
Consider some fixed edge e from level i to i + 1 in the butterfly.

For any A ∈ A let the binary random variable XA be 1 if and only

if there is at least one packet from A crossing e . Clearly, there are

2
i · 2d−i−1 = 2

d/2 source-destination pairs, where the source is

in level 0 while the destination is in level d , whose unique short-
est path passes through e . If the source of every packet is chosen

uniformly and independently at random among all BF-nodes of

level 0 and the destinations of the aggregation groups are chosen

uniformly and independently at random from all BF-nodes of level

d , then the probability for an individual packet to pass through e is

(2d/2)/(2d)2 = 1/(2d+1). Hence, E[XA] = Pr[XA = 1] ≤ |A|/2d+1.
Let X =

∑
A∈A XA. Then

E[X] =
∑
A∈A

E[XA] ≤

∑
A∈A |A|

2
d+1

=
L

2
d+1
≤

L

n
.

Since theXA’s are independent, it follows from the Chernoff bounds

(Lemma B.1) that X = O (L/n + logn), w.h.p. □

Using Chernoff bounds and the fact that every node at level d of

the butterfly is target of at most O (ˆℓ2 + logn) aggregation groups,

w.h.p., the following result can be shown similarly to Lemma C.1.

Lemma C.7. The Postprocessing Phase takes time O (ˆℓ2/ logn),
w.h.p. Moreover, in each round every node sends and receives at most
O (logn) packets, w.h.p.

We conclude the following theorem.

Theorem C.8. The Aggregation Algorithm takes time O (L/n +

(ℓ1 + ˆℓ2)/ logn + logn), w.h.p.

C.3 Multicast Tree Setup Algorithm
First, every node u injects an (empty) packet (i,u) for each i such
that u ∈ Ai into a BF-node l (i,u) of level 0 chosen uniformly

and independently at random. As in the Aggregation Algorithm,

packets are sent in batches of size ⌈logn⌉. Then, for all i , all packets
of Ai are aggregated at h(i) using the same routing strategy as in

the Aggregation Algorithm and an arbitrary aggregate function.

Alongside the algorithm’s execution, every BF-node u records for

every i ∈ {1, . . . ,N } all edges along which packets from group

Ai arrived during the routing towards h(i), and declares them as

edges of Ti . Again, the intermediate steps are synchronized using

the Aggregate-and-Broadcast Algorithm, and the final termination

is determined using a token passing strategy.

The following theorem follows from the analysis of the Aggre-

gation Algorithm.

Theorem C.9. The Multicast Tree Setup Algorithm computes mul-
ticast trees in time O (L/n + ℓ/ logn + logn), w.h.p. The resulting
multicast trees have congestion O (L/n + logn), w.h.p.

C.4 Multicast Algorithm
The Multicast Algorithm shares many similarities to the Aggrega-

tion Algorithm. First, every source si directly sends pi to h(i). Then,
in the Spreading Phase, h(i) sends pi to all l (i,u) for all i and u ∈ Ai .
This is done by using the multicast trees and our variant of the

random rank routing protocol of the Combining Phase in "reverse

order": First, each packet pi is assigned a rank (pi) = ρ (i). When-

ever a multicast packetpi of some aggregation groupAi is stored by
an inner node of Ti , i.e., by some BF-node u of level j ∈ {1, . . . ,d },
then a copy of pi is sent over each outgoing edge of u in Ti , i.e.,
towards one or both of u’s neighbors in level j − 1. If two packets

from different multicast groups contend to use the same edge at

the same time, the one with largest rank is sent (preferring the

one with largest multicast group identifier in case of a tie), and the

others get delayed. Once there are no packets in transit anymore,

which is determined by using the token passing strategy of the

Aggregation Algorithm from level 0 in the direction of level d , all

SPAA ’19, June 22–24, 2019, Phoenix, AZ Augustine et al.

leaves of the multicast trees have received their multicast packet.

Finally, every leaf node l (i,u) sends pi to u in a round randomly

chosen from {1, . . . , ⌈ ˆℓ/ logn⌉}.
The following theorem follows from discussion of the previous

sections.

TheoremC.10. TheMulticast Algorithm takes timeO (C+ ˆℓ/ logn+
logn), w.h.p.

C.5 Multi-Aggregation Algorithm
The Multi-Aggregation Algorithm essentially first performs a mul-

ticast, then maps each multicast packet to a new aggregation group

corresponding to its target, and finally aggregates the packets to

their targets. More precisely, first every node si send its multicast

packet to h(i). Then, by using the same strategy as in the Multicast

Algorithm, we let each l (i,u) receive pi for all i and u ∈ Ai . Every
node l (i,u) then maps pi to a packet (id(u),pi) for all i and u ∈ Ai .
We randomly distribute the resulting packets by letting each BF-

node send out its packets, one after the other, to BF-nodes of level 0

chosen uniformly and independently at random. By using the same

strategy as in the Aggregation Algorithm, we then aggregate all

packets (id(u),pi) for all i to h(id(u)), and finally send the result

f ({pi | u ∈ Ai }) from h(id(u)) to u.
The following theorem follows from discussion of the previous

sections and from the fact that the mapping takes time O (C).

TheoremC.11. TheMulti-Aggregation Algorithm takes timeO (C+
logn), w.h.p.

D PROOF OF LEMMA 4.3
We present the proof in three parts: first, we show the correctness

of the algorithm, then analyze its runtime, and finally show that

every node receives at most O (logn) messages in each round.

Lemma D.1. In the first step, every active node fails to identify at
most logn red edges, w.h.p.

Proof. Note that every active node can only be adjacent to at

most p ≤ d∗ active or waiting nodes, i.e., it is incident to at most p
red edges. Therefore, by Lemma 4.2, the probability that an active

node u fails to identify at least logn red edges is

2

(
2c logn

4cd∗ logn

) (c−2) logn/2
≤

1

2
(c/2−1) logn−1

=
1

nc/2−2
.

Taking the union bound over all nodes implies the lemma. □

Lemma D.2. After the second step, every active node has identified
all of its red edges, w.h.p.

Proof. If u ∈ Uhiдh , then after having received the identifiers

of all neighbors that are active or waiting, u immediately knows

its red edges. Now let u ∈ Ulow . Since by Lemma D.1 u has at most

p ≤ logn remaining red edges, by Lemma 4.2 we have that the

probability that u fails to identify at most one of its remaining red

edges is at most

2

(
2c logn

4c log2 n

)c logn/2−2
≤

1

2
c logn/2−1

=
1

nc/2−1
.

Taking the union bound over all nodes implies the lemma. □

To bound the runtime of the complete algorithm, we now prove

that each stage takes time O (a + logn), w.h.p.

Lemma D.3. Stage 1 takes time O (a + logn), w.h.p.

Proof. In the execution of the Aggregation Algorithm, every

inactive node is member of at most O (a) aggregation groups and

every active node is target of at most one aggregation, i.e., L =
O (na) and ℓ = O (a). Note that the nodes do not need to explicitly

know an upper bound on ℓ, as every node is target of at most one

aggregation group and its result can be sent to it immediately. The

lemma follows from Theorem 2.2. □

For the runtime of Stage 2 we need the following two lemmas.

Lemma D.4. |Uhiдh | = O (a + logn), w.h.p.

Proof. Let A = {u ∈ Li | (d (u) − di (u)) > n/ logn}. Note

that since d ≤ 2a, we have that
∑
u ∈V d (u) ≤ 2an, and therefore

|A| ≤ 2a logn. For u ∈ A let Xu be the binary random variable

that is 1, if u is unsuccessful in the first step, and 0, otherwise. By

Lemma 4.2 and since c ≥ 4, we have

Pr[Xu = 1] ≤
2

(2d∗ logn)c/2−1
≤

1

logn
.

Let X =
∑
u ∈A Xu . The expected value of X is therefore E[X] ≤

2a logn/ logn = 2a =: µ. Let δ = max{α logn/µ, 1} for a constant
α , then by using the Chernoff bounds we have that

Pr[X ≥ (1 + δ)µ] ≤ e−α logn/3 ≤
1

n4α
,

and thus X = O (a + logn). □

Lemma D.5.

∑
u ∈Ulow (d (u) − di (u)) = O (an/ logn + n), w.h.p.

Proof. Let A = {u ∈ Li | (d (u) − di (u)) > n/ logn}. For a node
u ∈ A, let Xu be the random variable that is du , if u is unsuccessful

in the first step, and 0, otherwise. By Lemma 4.2 and since c ≥ 4,

we have

Pr[Xu = 1] ≤
2

(2d∗ logn)c/2−1
≤

1

logn
.

for some constant α = c/2 − 1. Let A be the set of active nodes.

ThenX =
∑
u ∈A Xu is a sum of independent random variables with

expected value E[X] ≤
∑
u ∈A d (u)/ logn ≤ an/ logn =: µ. Note

that d (u) ≤ n/ logn for all u ∈ A. Therefore, we can use the general

Chernoff bound with δ = max{αn/µ, 1} for some constant α , and
get

Pr[X ≥ (1 + δ)µ] ≤ e−αn logn/(n3) ≤
1

n4α
.

Therefore, we have that X = O (an/ logn + n), w.h.p. □

We are now ready to bound the runtime of Stage 2.

Lemma D.6. Stage 2 takes time O (a + logn), w.h.p.

Proof. The computation of d∗ at the beginning of the first step

takes timeO (logn). In the first execution of the Identification Algo-

rithm, every active node u is target of aggregation group A
id(u)◦i

for every trial i , and every inactive neighbor v of u is member of

all aggregation groups A
id(u)◦i such that (u,v) participates in trial

i . Therefore, every active node is target of at most 4cd∗ logn and

every inactive node is a member of at most cd∗ aggregation groups.

Distributed Computation in Node-Capacitated Networks (Regular Paper) SPAA ’19, June 22–24, 2019, Phoenix, AZ

Since both values are known to every node, the nodes know an

upper bound
ˆℓ2 = 4cd∗ logn on ℓ. Since every inactive node is

a member of at most cd∗ aggregation groups, the global load L
is bounded by ncd∗. By Theorem 2.2, the Aggregation Algorithm

takes time

O

(
ncd∗

n
+
4cd∗ logn

logn
+ logn

)
= O (a + logn),

w.h.p., to solve the problem.

Now consider the second step. By Lemma D.4, |Uhiдh | = O (a +
logn), w.h.p., and therefore all identifiers of high-degree nodes

can be broadcasted in time O (a + logn). Informing each node in

Uhiдh about its red edges takes an additional O (a + logn) rounds,
as r = O (a + logn) and d∗i = O (a).

The multicast trees to handle low-degree nodes are constructed

in timeO (a+logn), as every inactive node joins at mostd∗ multicast

groups, and have congestion O (a + logn), w.h.p. Correspondingly,
the multicast can be performed in time O (a + logn), w.h.p.

We now bound the runtime of the final execution of the Iden-

tification Algorithm. Every inactive node is a member of at most

O (a logn) aggregation groups, w.h.p., and every node is a target of

atmost 4c log2 n aggregation groups. By LemmaD.5

∑
u ∈Ulow (d (u)−

di (u)) = O (an/ logn+n), w.h.p. As this is also a bound on the num-

ber of edges that participate in any trial, and each edge participates

in c logn trials, the global load L is bounded by O (an + n logn).
Therefore, by Theorem 2.2, the Aggregation Algorithm takes time

O (a + logn), w.h.p. □

The lemma below immediately follows from the fact that d∗i =
O (a).

Lemma D.7. Stage 3 takes time O (a + logn), w.h.p.

Finally, it remains to show that no node receives too many mes-

sages.

Lemma D.8. In each round of the algorithm, every node sends and
receives at most O (logn) messages, w.h.p.

Proof. By the discussion of Section 2.2, the executions of the

Aggregation, Multicast Tree Setup, and Multicast Algorithm ensure

that every node receives only O (logn) messages in each round. It

remains to show the claim for the second step of Stage 2, where

high-degree nodes broadcast their identifiers and receive their red

edges, and for Stage 3, where active nodes learn which of their red

edges lead to other active nodes.

For the first part, note that after all high-degree nodes have

broadcasted their identifiers, every active or waiting node sends out

O (logn) messages containing its identifier in every round, w.h.p.,

which can easily be shown using Chernoff bounds. Second, as every

high-degree node receives at mostd∗i identifiers, it also follows from
the Chernoff bound that every such node receives at most O (logn)
messages.

Now consider Stage 3 of the algorithm. Again, by using the

Chernoff bound, it can easily be shown that no node sends out

more than O (logn) edge-messages in any round. Therefore, every

node only receives O (logn) response messages in every round. It

remains to show that every node receives at most O (logn) edge-
messages in every round, from which it follows that it only sends

out O (logn) response messages in every round. Let A = {{u,v} |

u or v is active} and note that |A| ≤ nd∗i . Fix a node u ∈ V and and

a round i ∈ {1, . . . ,d∗i } and let Xe be the binary random variable

that is 1 if and only if h(id(e)) = u and r (id(e)) = i for e ∈ A. Then
Pr[Xe = 1] = 1/(nd∗i). X =

∑
e ∈A Xe has expected value E[X] ≤ 1.

Using the Chernoff bound we get that X = O (logn), w.h.p., which
implies that u receives at most O (logn) edge-messages in round i .
The claim follows by taking the union bound over all nodes and

rounds. □

	Abstract
	1 Introduction
	1.1 Model and Problem Statement
	1.2 Related Work
	1.3 Our Contribution

	2 Preliminaries
	2.1 Basic Definitions and Notation
	2.2 Communication Primitives

	3 Minimum Spanning Tree
	4 Computing an O(a)-Orientation
	4.1 Identification Problem
	4.2 Details of the Algorithm

	5 Graph Problems Beyond MST
	5.1 Breadth-First Search Trees
	5.2 Maximal Independent Set
	5.3 Maximal Matching
	5.4 O(a)-Coloring

	6 Conclusion
	Acknowledgments
	References
	A Simulations in the k-Machine Model
	B Chernoff Bound
	C Communication Primitives
	C.1 Aggregate-and-Broadcast Algorithm
	C.2 Aggregation Algorithm
	C.3 Multicast Tree Setup Algorithm
	C.4 Multicast Algorithm
	C.5 Multi-Aggregation Algorithm

	D Proof of Lemma ??

