
Chapter 10

Wireless Protocols

Wireless communication was one of the major success stories of the last decades.
Today, different wireless standards such as wireless local area networks (WLAN)
are omnipresent. In some sense, from a distributed computing viewpoint wireless
networks are quite simple, as they cannot form arbitrary network topologies.
Simplistic models of wireless networks include geometric graph models such as
the so-called unit disk graph. Modern models are more robust: The network
graph is restricted, e.g., the total number of neighbors of a node which are not
adjacent is likely to be small. This observation is hard to capture with purely
geometric models, and motivates more advanced network connectivity models
such as bounded growth or bounded independence.

However, on the other hand, wireless communication is also more difficult
than standard message passing, as for instance nodes are not able to transmit a
different message to each neighbor at the same time. And if two neighbors are
transmitting at the same time, they interfere, and a node may not be able to
decipher anything.

In this chapter we deal with the distributed computing principles of wireless
communication: We make the simplifying assumption that all n nodes are in the
communication range of each other, i.e., the network graph is a clique. Nodes
share a synchronous time, in each time slot a node can decide to either transmit
or receive (or sleep). However, two or more nodes transmitting in a time slot will
cause interference. Transmitting nodes are never aware if there is interference
because they cannot simultaneously transmit and receive.

10.1 Basics

The basic communication protocol in wireless networks is the medium access
control (MAC) protocol. Unfortunately it is difficult to claim that one MAC
protocol is better than another, because it all depends on the parameters, such as
the network topology, the channel characteristics, or the traffic pattern. When
it comes to the principles of wireless protocols, we usually want to achieve
much simpler goals. One basic and important question is the following: How
long does it take until one node can transmit successfully, without interference?
This question is often called the wireless leader election problem (Chapter 2),
with the node transmitting alone being the leader.

89



90 CHAPTER 10. WIRELESS PROTOCOLS

Clearly, we can use node IDs to solve leader election, e.g., a node with ID i
transmits in time slot i. However, this may be incredibly slow. There are better
deterministic solutions, but by and large the best and simplest algorithms are
randomized.

Throughout this chapter, we use a random variable X to denote the number
of nodes transmitting in a given slot.

Algorithm 38 Slotted Aloha
1: Every node v executes the following code:
2: repeat

3: transmit with probability 1/n
4: until one node has transmitted alone

Theorem 10.1. Using Algorithm 38 allows one node to transmit alone (become
a leader) after expected time e.

Proof. The probability for success, i.e., only one node transmitting is

Pr[X = 1] = n ·
1

n
·

�
1−

1

n

�n−1

≈
1

e
,

where the last approximation is a result from Theorem 10.23 for sufficiently
large n. Hence, if we repeat this process e times, we can expect one success.

Remarks:

• The origin of the name is the ALOHAnet which was developed at the
University of Hawaii.

• How does the leader know that it is the leader? One simple solution is
a “distributed acknowledgment”. The nodes just continue Algorithm 38,
including the ID of the the leader in their transmission. So the leader
learns that is the leader.

• One more problem?! Indeed, node v which managed to transmit the ac-
knowledgment (alone) is the only remaining node which does not know
that the leader knows that it is the leader. We can fix this by having the
leader acknowledge v’s successful acknowledgment.

• One can also imagine an unslotted time model. In this model two mes-
sages which overlap partially will interfere and no message is received. As
everything in this chapter, Algorithm 38 also works in an unslotted time
model, with a factor 2 penalty, i.e., the probability for a successful trans-
mission will drop from 1

e to 1
2e . Essentially, each slot is divided into t small

time slots with t → ∞ and the nodes start a new t-slot long transmission
with probability 1

2nt .

10.2 Initialization

Sometimes we want the n nodes to have the IDs {1, 2, . . . , n}. This process is
called initialization. Initialization can for instance be used to allow the nodes
to transmit one by one without any interference.



10.2. INITIALIZATION 91

10.2.1 Non-Uniform Initialization

Theorem 10.2. If the nodes know n, we can initialize them in O(n) time slots.

Proof. We repeatedly elect a leader using e.g., Algorithm 38. The leader gets
the next free number and afterwards leaves the process. We know that this
works with probability 1/e. The expected time to finish is hence e · n.

Remarks:

• But this algorithm requires that the nodes know n in order to give them
IDs from 1, . . . , n! For a more realistic scenario we need a uniform algo-
rithm, i.e, the nodes do not know n.

10.2.2 Uniform Initialization with CD

Definition 10.3 (Collision Detection, CD). Two or more nodes transmitting
concurrently is called interference. In a system with collision detection, a re-
ceiver can distinguish interference from nobody transmitting. In a system with-
out collision detection, a receiver cannot distinguish the two cases.

Let us first present a high-level idea. The set of nodes is recursively par-
titioned into two non-empty sets, similarly to a binary tree. This is repeated
recursively until a set contains only one node which gets the next free ID. Af-
terwards, the algorithm continues with the next set.

Algorithm 39 RandomizedSplit(b)

1: Every node v executes the following code:
2: repeat

3: if bv = b then

4: choose r uniformly at random from {0, 1}
5: in the next two time slots:
6: transmit in slot r, and listen in other slot
7: end if

8: until there was at least 1 transmission in both slots
9: if bv = b then

10: bv := bv + r {append bit r to bitstring bv}
11: end if

12: for r ∈ {0, 1} do

13: if some node u transmitted alone in slot r then

14: node u gets ID m {and becomes passive}
15: m := m+ 1
16: else

17: RandomizedSplit(b+ r)
18: end if

19: end for



92 CHAPTER 10. WIRELESS PROTOCOLS

Remarks:

• In line 8 the transmitting nodes need to know if they were the only one
transmitting. Since we have enough time, we can do a leader election first
and use a similar trick as before to ensure this. Or we can add a round
in which nodes transmit a message after they hear a node transmitting
alone.

Algorithm 40 Initialization with Collision Detection
1: Every node v executes the following code:
2: global variable m := 0 {number of already identified nodes}
3: local variable bv := ‘’ {current bitstring of node v, initially empty}
4: RandomizedSplit(‘’)

Theorem 10.4. Algorithm 40 correctly initializes the set of nodes in O(n).

Proof. A successful split is defined as a split in which both subsets are non-
empty. We know that there are exactly n− 1 successful splits because we have
a binary tree with n leaves and n − 1 inner nodes. Let us now calculate the
probability for creating two non-empty sets from a set of size k ≥ 2 as

Pr[1 ≤ X ≤ k − 1] = 1− Pr[X = 0]− Pr[X = k] = 1−
1

2k
−

1

2k
≥

1

2
.

Thus, in expectation we need O(n) splits.

Remarks:

• What if we do not have collision detection?

10.2.3 Uniform Initialization without CD

Let us assume that we have a special node � (leader) and let S denote the set
of nodes which want to transmit. We now split every time slot from before into
two time slots and use the leader to help us distinguish between silence and
noise. In the first slot every node from the set S transmits, in the second slot
the nodes in S ∪ {�} transmit. This gives the nodes sufficient information to
distinguish the different cases (see Table 10.1).

nodes in S transmit nodes in S ∪ {�} transmit
|S| = 0 X �
|S| = 1, S = {�} � �
|S| = 1, S �= {�} � X
|S| ≥ 2 X X

Table 10.1: Using a leader to distinguish between noise and silence: X represents
noise/silence, � represents a successful transmission.



10.3. LEADER ELECTION 93

Remarks:

• As such, Algorithm 40 works also without CD, with only a factor 2 over-
head.

• More generally, a leader immediately brings CD to any protocol.

• This protocol has an important real life application, for instance when
checking out a shopping cart with items which have RFID tags.

• But how do we determine such a leader? And how long does it take until
we are “sure” that we have one? Let us repeat the notion of with high
probability.

10.3 Leader Election

10.3.1 With High Probability

Definition 10.5 (With High Probability). Some probabilistic event is said to
occur with high probability (w.h.p.), if it happens with a probability p ≥ 1 −

1/nc, where c is a constant. The constant c may be chosen arbitrarily, but it is
considered constant with respect to Big-O notation.

Theorem 10.6. Algorithm 38 elects a leader w.h.p. in O(log n) time slots.

Proof. The probability for not electing a leader after c · log n time slots, i.e.,
c log n slots without a successful transmission is

�
1−

1

e

�c lnn

=

�
1−

1

e

�e·c� lnn

≤
1

elnn·c� =
1

nc�
.

Remarks:

• What about uniform algorithms, i.e. the number of nodes n is not known?

10.3.2 Uniform Leader Election

Algorithm 41 Uniform leader election
1: Every node v executes the following code:
2: for k = 1, 2, 3, . . . do
3: for i = 1 to ck do

4: transmit with probability p := 1/2k

5: if node v was the only node which transmitted then

6: v becomes the leader
7: break

8: end if

9: end for

10: end for

Theorem 10.7. By using Algorithm 41 it is possible to elect a leader w.h.p. in
O(log2 n) time slots if n is not known.



94 CHAPTER 10. WIRELESS PROTOCOLS

Proof. Let us briefly describe the algorithm. The nodes transmit with prob-
ability p = 2−k for ck time slots for k = 1, 2, . . .. At first p will be too high
and hence there will be a lot of interference. But after log n phases, we have
k ≈ log n and thus the nodes transmit with probability ≈

1
n . For simplicity’s

sake, let us assume that n is a power of 2. Using the approach outlined above,
we know that after log n iterations, we have p = 1

n . Theorem 10.6 yields that we
can elect a leader w.h.p. in O(log n) slots. Since we have to try log n estimates
until k ≈ n, the total runtime is O(log2 n).

Remarks:

• Note that our proposed algorithm has not used collision detection. Can we
solve leader election faster in a uniform setting with collision detection?

10.3.3 Fast Leader Election with CD

Algorithm 42 Uniform leader election with CD
1: Every node v executes the following code:
2: repeat

3: transmit with probability 1
2

4: if at least one node transmitted then

5: all nodes that did not transmit quit the protocol
6: end if

7: until one node transmits alone

Theorem 10.8. With collision detection we can elect a leader using Algorithm
42 w.h.p. in O(log n) time slots.

Proof. The number of active nodes k is monotonically decreasing and always
greater than 1 which yields the correctness. A slot is called successful if at most
half the active nodes transmit. We can assume that k ≥ 2 since otherwise we
would have already elected a leader. We can calculate the probability that a
time slot is successful as

Pr[1 ≤ X ≤ �
k

2
�] ≥

1

2
− Pr[X = 0] =

1

2
−

1

2k
≥

1

4
.

Since the number of active nodes at least halves in every successful time slot,
log n successful time slots are sufficient to elect a leader. Now let Y be a random
variable which counts the number of successful time slots after 8 · c · log n time
slots. The expected value is E[Y ] ≥ 8 · c · log n ·

1
4 ≥ 2 · log n. Since all those

time slots are independent from each other, we can apply a Chernoff bound (see
Theorem 10.22) with δ = 1

2 which states

Pr[Y < (1− δ)E[Y ]] ≤ e−
δ2

2 E[Y ] = e−
1
8 ·2c logn

≤ n−α

for any constant α.

Remarks:

• Can we be even faster?



10.3. LEADER ELECTION 95

10.3.4 Even Faster Leader Election with CD

Let us first briefly describe an algorithm for this. In the first phase the nodes
transmit with probability 1/22

0
, 1/22

1
, 1/22

2
, . . . until no node transmits. This

yields a first approximation on the number of nodes. Afterwards, a binary search
is performed to determine an even better approximation of n. Finally, the third
phase finds a constant approximation of n using a biased random walk. The
algorithm stops in any case as soon as only one node is transmitting which will
become the leader.

Algorithm 43 Fast uniform leader election
1: i := 1
2: repeat

3: i := 2 · i
4: transmit with probability 1/2i

5: until no node transmitted
{End of Phase 1}

6: l := 2i−2

7: u := 2i

8: while l + 1 < u do

9: j := �
l+u
2 �

10: transmit with probability 1/2j

11: if no node transmitted then

12: u := j
13: else

14: l := j
15: end if

16: end while

{End of Phase 2}
17: k := u
18: repeat

19: transmit with probability 1/2k

20: if no node transmitted then

21: k := k − 1
22: else

23: k := k + 1
24: end if

25: until exactly one node transmitted

Lemma 10.9. If j > log n+ log log n, then Pr[X > 1] ≤ 1
logn .

Proof. The nodes transmit with probability 1/2j < 1/2logn+log logn = 1
n logn .

The expected number of nodes transmitting is E[X] = n
n logn . Using Markov’s

inequality (see Theorem 10.21) yields Pr[X > 1] ≤ Pr[X > E[X] · log n] ≤
1

logn .

Lemma 10.10. If j < log n− log log n, then P [X = 0] ≤ 1
n .

Proof. The nodes transmit with probability 1/2j < 1/2logn−log logn = logn
n .

Hence, the probability for a silent time slot is (1− logn
n )n = e− logn = 1

n .



96 CHAPTER 10. WIRELESS PROTOCOLS

Corollary 10.11. If i > 2 log n, then Pr[X > 1] ≤ 1
logn .

Proof. This follows from Lemma 10.9 since the deviation in this corollary is
even larger.

Corollary 10.12. If i < 1
2 log n, then P [X = 0] ≤ 1

n .

Proof. This follows from Lemma 10.10 since the deviation in this corollary is
even larger.

Lemma 10.13. Let v be such that 2v−1 < n ≤ 2v, i.e., v ≈ log n. If k > v+2,
then Pr[X > 1] ≤ 1

4 .

Proof. Markov’s inequality yields

Pr[X > 1] = Pr

�
X >

2k

n
E[X]

�
< Pr[X >

2k

2v
E[X]] < Pr[X > 4E[X]] <

1

4
.

Lemma 10.14. If k < v − 2, then P [X = 0] ≤ 1
4 .

Proof. A similar analysis is possible to upper bound the probability that a
transmission fails if our estimate is too small. We know that k ≤ v−2 and thus

Pr[X = 0] =

�
1−

1

2k

�n

< e−
n
2k < e−

2v−1

2k < e−2 <
1

4
.

Lemma 10.15. If v− 2 ≤ k ≤ v+2, then the probability that exactly one node
transmits is constant.

Proof. The transmission probability is p = 1
2v±Θ(1) = Θ(1/n), and the lemma

follows with a slightly adapted version of Theorem 10.1.

Lemma 10.16. With probability 1− 1
logn we find a leader in phase 3 in O(log log n)

time.

Proof. For any k, because of Lemmas 10.13 and 10.14, the random walk of the
third phase is biased towards the good area. One can show that in O(log log n)
steps one gets Ω(log log n) good transmissions. Let Y denote the number of
times exactly one node transmitted. With Lemma 10.15 we obtain E[Y ] =
Ω(log log n). Now a direct application of a Chernoff bound (see Theorem 10.22)
yields that these transmissions elect a leader with probability 1− 1

logn .

Theorem 10.17. The Algorithm 43 elects a leader with probability of at least
1− log logn

logn in time O(log log n).



10.3. LEADER ELECTION 97

Proof. ¿From Corollary 10.11 we know that after O(log log n) time slots, the
first phase terminates. Since we perform a binary search on an interval of size
O(log n), the second phase also takes at most O(log log n) time slots. For the
third phase we know that O(log log n) slots are sufficient to elect a leader with
probability 1− 1

logn by Lemma 10.16. Thus, the total runtime is O(log log n).
Now we can combine the results. We know that the error probability for

every time slot in the first two phases is at most 1
logn . Using a union bound (see

Theorem 10.20), we can upper bound the probability that no error occurred by
log logn
logn . Thus, we know that after phase 2 our estimate is at most log log n away

from log n with probability of at least 1− log logn
logn . Hence, we can apply Lemma

10.16 and thus successfully elect a leader with probability of at least 1− log logn
logn

(again using a union bound) in time O(log log n).

Remarks:

• Tightening this analysis a bit more, one can elect a leader with probability
1− 1

logn in time log log n+ o(log log n).

• Can we be even faster?

10.3.5 Lower Bound

Theorem 10.18. Any uniform protocol that elects a leader with probability of
at least 1− 1

logn must run for at least log log n time slots.

Proof. The probability that exactly one node transmits is

Pr[X = 1] = n · p · (1− p)n−1.

Consider now a system with only 2 nodes. The probability that exactly one
transmits is at most

Pr[X = 1] = p · (1− p) ≤
1

2
.

Thus, after log log n time slots the probability that a leader was elected is at

most 1− 1
2

log logn
= 1− 1

logn .

10.3.6 Uniform Asynchronous Wakeup without CD

Until now we have assumed that all nodes start the algorithm in the same time
slot. But what happens if this is not the case? How long does it take to elect a
leader if we want an uniform and anonymous (nodes do not have an identifier
and thus cannot base their decision on it) algorithm?

Theorem 10.19. If nodes wake up in an arbitrary (worst-case) way, any al-
gorithm may take Ω(n/ log n) time slots until a single node can successfully
transmit.



98 CHAPTER 10. WIRELESS PROTOCOLS

Proof. Nodes must transmit at some point, or they will surely never successfully
transmit. With a uniform protocol, every node executes the same code. We
focus on the first slot where nodes may transmit. No matter what the protocol
is, this happens with probability p. Since the protocol is uniform, p must be a
constant, independent of n.

The adversary wakes up w = c
p lnn nodes in each time slot with some con-

stant c. All nodes woken up in the first time slot will transmit with probability
p. We study the event E1 that exactly one of them transmits in that first time
slot. Using the inequality (1 + t/n)n ≤ et from Lemma 10.23 we get

Pr[E1] = w · p · (1− p)w−1

= c lnn (1− p)
1
p (c lnn−p)

≤ c lnn · e−c ln+p

= c lnn · n−cep

= n−c
· O (log n)

<
1

nc−1
=

1

nc�
.

In other words, w.h.p. that time slot will not be successful. Since the nodes
cannot distinguish noise from silence, the same argument applies to every set of
nodes which wakes up. Let Eα be the event that all n/w time slots will not be
successful. Using the inequality 1− p ≤ (1− p/k)k from Lemma 10.24 we get

Pr[Eα] = (1− Pr(E1))
n/w >

�
1−

1

nc�

�Θ(n/ logn)

> 1−
1

nc��
.

In other words, w.h.p. it takes more than n/w time slots until some node can
transmit alone.

10.4 Useful Formulas

In this chapter we have used several inequalities in our proofs. For simplicity’s
sake we list all of them in this section.

Theorem 10.20. Boole’s inequality or union bound: For a countable set of
events E1, E2, E3, . . ., we have

Pr[
�

i

Ei] ≤
�

i

Pr[Ei].

Theorem 10.21. Markov’s inequality: If X is any random variable and a > 0,
then

Pr[|X| ≥ a] ≤
E[X]

a
.

Theorem 10.22. Chernoff bound: Let Y1, . . . , Yn be a independent Bernoulli
random variables let Y :=

�
i Yi. For any 0 ≤ δ ≤ 1 it holds

Pr[Y < (1− δ)E[Y ]] ≤ e−
δ2

2 E[Y ]



10.4. USEFUL FORMULAS 99

and for δ > 0

Pr[Y ≥ (1 + δ) · E[Y ]] ≤ e−
min{δ,δ2}

3 ·E[Y ]

Theorem 10.23. We have

et
�
1−

t2

n

�
≤

�
1 +

t

n

�n

≤ et

for all n ∈ N, |t| ≤ n. Note that

lim
n→∞

�
1 +

t

n

�n

= et.

Theorem 10.24. For all p, k such that 0 < p < 1 and k ≥ 1 we have

1− p ≤ (1− p/k)k.



100 CHAPTER 10. WIRELESS PROTOCOLS


