
Albert-Ludwigs-Universität
Institut für Informatik
Prof. Dr. F. Kuhn May 30, 2013

Network Algorithms, Summer Term 2013

Problem Set 4 – Sample Solution

Exercise 1: Concurrent Ivy

1. The three nodes are served in the order v2, v3, v1.

2. Figure 1 depicts the structure of the tree after the requests have been served. Since v1 is served
last, it is the holder of the token at the end.

2

1

3 rv

v

v

Figure 1: Tree after the requests have been served.

Exercise 2: Tight Ivy

In order to show that the bound of logn steps on average is tight, we construct a special tree, called
Binomial Tree, which is defined recursively as follows. The tree T0 consists of a single node. The tree
Ti consists of a root together with i subtrees, which are T0, . . . , Ti−1, rooted at the i children of the
root, see Figure 2.
First, we will show that the number of nodes in the tree Ti is 2i. This obviously holds for T0. The
induction hypothesis is that it holds for all T0, . . . , Ti−1. It follows that the number of nodes of Ti is
n = 1 +

∑i−1
j=0 2j = 2i.

We will show now that the radius of the root of Ti is R(Ti) = i. Again, this is trivially true for T0. It
is easy to see that R(Ti) = 1 +R(Ti−1), because Ti−1 is the child with the largest radius. Inductively,
it follows that R(Ti) = i.
By definition, when cutting of the subtree Ti−1 from Ti, the resulting tree is again Ti−1. Let C : Ti 7→
Ti−1 denote this cutting operation. For all i > 0, we thus have that C(Ti) = Ti−1. We will now start
a request at the single node v with a distance of i from the root in Ti. On its path to the root, the
request passes nodes that are roots of the trees T1, . . . , Ti. All of those nodes become children of the

1



T T T T0 1 2 3

Figure 2: The trees T0, . . . , T3.

new root v according to the Ivy protocol. The new children lose their largest “child” subtree in the
process, thus the children of node v have the structures C(T1), . . . , C(Ti) = T0, . . . , Ti−1. Hence, the
structure of the tree does not change due to the request and all subsequent requests can also cost i
steps. Since n = 2i, each request costs exactly log n.

Exercise 3 from Exercise Sheet 2: License to Match

1. We use a variant of the Echo algorithm (Algorithm 12). A node (i.e. an agent in the hierarchy)
matches up all (except for at most one) of its children. If one participating child remains and
the node itself also participates, it matches itself with that child. If either the node or one of its
children remain, then the node sends a request to “match” upwards in the hierarchy. Otherwise,
it sends a “no match” and that subtree is done. We give an asynchronous, uniform matching
algorithm below.

Algorithm 1 Edge-Disjoint Matching

1: wait until received message from all children
2: while at least 2 requests remain (including myself) do
3: match any two requests
4: end while
5: if exists leftover request then
6: send “match” to parent (= superior)
7: else
8: send “no match” to parent
9: end if

When a node v sends a “match” request to its parent u, then the edge {u, v} will be used only
once since there will be only one request in the subtree rooted at v. Along with the messages
of the algorithm, the required path information is sent; we left this out in the pseudocode to
improve readability.

2. Let T be the tree with n nodes. Assuming each message takes at most 1 time unit, then the
time complexity of Algorithm 1 is in O(depth(T )) since all the requests travel to the root (and
back down if we inform the agents of their assigned partners). On each link, there are at most
2 messages: 1 that informs the parent whether a match is needed and optionally 1 more to be
informed by the parent of the match partner. So there are a total of at most 2(n− 1) messages.

2


