Chapter 7

Dominating Set

In this chapter we present another randomized algorithm that demonstrates the
power of randomization to break symmetries. We study the problem of finding
a small dominating set of the network graph. As it is the case for MIS, an
efficient dominating set algorithm can be used as a basic building block to solve
a number of problems in distributed computing. For example, whenever we need
to partition the network into a small number of local clusters, the computation
of a small dominating set usually occurs in some way. A particularly important
application of dominating sets is for the construction of an efficient backbone
for routing.

Definition 7.1 (Dominating Set). Given an undirected graph G = (V,E), a
dominating set is a subset S C V' of its nodes such that for all nodes v € V,
either v € S or a neighbor u of v is in S.

Remarks:

e It is well-known that computing a dominating set of minimal size is NP-
hard. We therefore look for approximation algorithms, that is, algorithms
which produce solutions which are optimal up to a certain factor.

e Note that every MIS (cf. Chapter 6) is a dominating set. In general,
the size of every MIS can however be larger than the size of an optimal
minimum dominating set by a factor of Q(n). As an example, connect the
centers of two stars by an edge. Every MIS contains all the leaves of at
least one of the two stars whereas there is a dominating set of size 2.

All the dominating set algorithms that we study throughout this chapter
operate in the following way. We start with S = () and add nodes to S until
S is a dominating set. To simplify presentation, we color nodes according to
their state during the execution of an algorithm. We call nodes in S black, nodes
which are covered (neighbors of nodes in S) gray, and all uncovered nodes white.
By W (v), we denote the set of white nodes among the direct neighbors of v,
including v itself. We call w(v) = |W (v)| the span of v.

63

64 CHAPTER 7. DOMINATING SET

7.1 Sequential Greedy Algorithm

Intuitively, to end up with a small dominating set S, nodes in S need to cover
as many neighbors as possible. It is therefore natural to add nodes v with a
large span w(v) to S. This idea leads to a simple greedy algorithm:

Algorithm 33 Greedy Algorithm
1. §:= @;
2: while 3 white nodes do
3 choose v € {z | w(z) = max,ev {w(u)}};
4
5

S:=SU{v};

: end while

Theorem 7.2. The Greedy Algorithm computes a (In A + 2)-approzimation,
that is, for the computed dominating set S and an optimal dominating set S*,

we have 5]
< InA+2.
|5

Proof. Each time, we choose a new node of the dominating set (each greedy
step), we have cost 1. Instead of letting this node pay the whole cost, we
distribute the cost equally among all newly covered nodes. Assume that node
v, chosen in line 3 of the algorithm, is white itself and that its white neighbors
are vy, v9, vz, and vy. In this case each of the 5 nodes v and wy,...,v4 get
charged 1/5. If v is chosen as a gray node, only the nodes vy, ..., v4 get charged
(they all get 1/4).

Now, assume that we know an optimal dominating set S*. By the definition
of dominating sets, to each node which is not in S*, we can assign a neighbor
from S*. By assigning each node to exactly one neighboring node of S*, the
graph is decomposed into stars, each having a dominator (node in S*) as center
and non-dominators as leaves. Clearly, the cost of an optimal dominating set
is 1 for each such star. In the following, we show that the amortized cost
(distributed costs) of the greedy algorithm is at most In A + 2 for each star.
This suffices to prove the theorem.

Consider a single star with center v* € S* before choosing a new node u
in the greedy algorithm. The number of nodes that become dominated when
adding u to the dominating set is w(w). Thus, if some white node v in the star
of v* becomes gray or black, it gets charged 1/w(u). By the greedy condition,
u is a node with maximal span and therefore w(u) > w(v*). Thus, v is charged
at most 1/w(v*). After becoming gray, nodes do not get charged any more.
Therefore the first node that is covered in the star of v* gets charged at most
1/(d(v*) +1). Because w(v*) > d(v*) when the second node is covered, the
second node gets charged at most 1/d(v*). In general, the i** node that is
covered in the star of v* gets charged at most 1/(d(v*) 4+ — 2). Thus, the total
amortized cost in the star of v* is at most

W+d(i*)+"'+%+%:H(d(”*)+1)SH(A+1)<ln(A)+2

where A is the maximal degree of G and where H(n) = >_i" | 1/i is the n'
number. O

7.2. DISTRIBUTED GREEDY ALGORITHM 65

Remarks:

e One can show that unless NP C DTIME(nO(log log ")), no polynomial-time
algorithm can approximate the minimum dominating set problem better
than (1 —o(1)) - In A. Thus, unless P ~ NP, the approximation ratio of
the simple greedy algorithm is optimal (up to lower order terms).

7.2 Distributed Greedy Algorithm

For a distributed algorithm, we use the following observation. The span of a
node can only be reduced if any of the nodes at distance at most 2 is included
in the dominating set. Therefore, if the span of node v is greater than the span
of any other node at distance at most 2 from v, the greedy algorithm chooses
v before any of the nodes at distance at most 2. This leads to a very simple
distributed version of the greedy algorithm. Every node v executes the following
algorithm.

Algorithm 34 Distributed Greedy Algorithm (at node v):

1: while v has white neighbors do

2: compute span w(v);

3: send w(v) to nodes at distance at most 2;

4: if w(v) largest within distance 2 (ties are broken by IDs) then
5 join dominating set

6: end if

7: end while

Theorem 7.3. Algorithm 34 computes a dominating set of size at most In A+2
times the size of an optimal dominating set in O(n) rounds.

Proof. The approximation quality follows directly from the above observation
and the analysis of the greedy algorithm. The time complexity is at most linear
because in every iteration of the while loop, at least one node is added to the
dominating set and because one iteration of the while loop can be implemented
in a constant number of rounds. O

The approximation ratio of the above distributed algorithm is best possible
(unless P &~ NP or unless we allow local computations to be exponential). How-
ever, the time complexity is very bad. In fact, there really are graphs on which
in each iteration of the while loop, only one node is added to the dominating
set (even if IDs are chosen randomly). As an example, consider a graph as in
Figure 7.1. An optimal dominating set consists of all nodes on the center axis.
The distributed greedy algorithm computes an optimal dominating set, however,
the nodes are chosen sequentially from left to right. Hence, the running time
of the algorithm on the graph of Figure 7.1 is Q(y/n). Below, we will see that
there are graphs on which Algorithm 34 even needs ©(n) rounds.

The problem of the graph of Figure 7.1 is that there is a long path of de-
scending degrees (spans). Every node has to wait for the neighbor to the left.
Therefore, we want to change the algorithm in such a way that there are no long

66 CHAPTER 7. DOMINATING SET

SHEAAN

Figure 7.1: Distributed greedy algorithm: Bad example

e

Figure 7.2: Distributed greedy algorithm with rounded spans: Bad example

paths of descending spans. Allowing for an additional factor 2 in the approxi-
mation ratio, we can round all spans to the next power of 2 and let the greedy
algorithm take a node with a maximal rounded span. In this case, a path of
strictly descending rounded spans has length at most logn. For the distributed
version, this means that nodes with maximal rounded span within distance 2
are added to the dominating set. Ties are again broken by unique node IDs. If
node IDs are chosen at random, the time complexity for the graph of Figure 7.1
is reduced from Q(y/n) to O(logn).

Unfortunately, there still is a problem remaining. To see this, we consider
Figure 7.2. The graph of Figure 7.2 consists of a clique with n/3 nodes and
two leaves per node of the clique. An optimal dominating set consists of all the
n/3 nodes of the clique. Because they all have distance 1 from each other, the
described distributed algorithm only selects one in each while iteration (the one
with the largest ID). Note that as soon as one of the nodes is in the dominat-
ing set, the span of all remaining nodes of the clique is 2. They do not have
common neighbors and therefore there is no reason not to choose all of them
in parallel. However, the time complexity of the simple algorithm is Q(n). In
order to improve this example, we need an algorithm that can choose many
nodes simultaneously as long as these nodes do not interfere too much, even
if they are neighbors. In Algorithm 35, N(v) denotes the set of neighbors of
v (including v itself) and Na(v) = U, en () IV (u) are the nodes at distance at
most 2 of v. As before, W (v) = {u € N(v) : u is white} and w(v) = |[W (v)|.

It is clear that if Algorithm 35 terminates, it computes a valid dominating set.

We will now show that the computed dominating set is small and that the
algorithm terminates quickly.

7.2. DISTRIBUTED GREEDY ALGORITHM 67

Algorithm 35 Fast Distributed Dominating Set Algorithm (at node v):
I W(0) = N(); w(v) = W)l
2: while W(v) # 0 do

w(v) = 282w ()] // round down to next power of 2

W(v) 1= maxyen, (v) W(w);

if w(v) = w(v) then v.active := true else v.active := false end if;

compute support s(v) := [{u € N(v) : u.active = true}|;

5(v) = maxuew o) (1)

v.candidate := false;

if v.active then

10: v.candidate := true with probability 1/5(v)

11: end if;

12: compute ¢(v) := [{u € N(v) : u.candidate = true}|;

13: if v.candidate and }_, () c(u) < 3w(v) then

14: node v joins dominating set

15: end if

16: W(v) :={u € N(v) : u is white}; w(v) := |W(v)|;

17: end while

Theorem 7.4. Algorithm 35 computes a dominating set of size at most (6 -
InA + 12) - |S*|, where S* is an optimal dominating set.

Proof. The proof is a bit more involved but analogous to the analysis of the
approximation ratio of the greedy algorithm. Every time, we add a new node v
to the dominating set, we distribute the cost among v (if it is still white) and its
white neighbors. Consider an optimal dominating set S*. As in the analysis of
the greedy algorithm, we partition the graph into stars by assigning every node
u not in S* to a neighbor v* in S*. We want to show that the total distributed
cost in the star of every v* € S§* is at most 6H (A + 1).

Consider a node v that is added to the dominating set by Algorithm 35. Let
W (v) be the set of white nodes in N(v) when v becomes a dominator. For a
node u € W(v) let ¢(u) be the number of candidate nodes in N(u). We define
C(v) = > yew(c(u). Observe that C(v) < 3w(v) because otherwise v would
not join the dominating set in line 15. When adding v to the dominating set,
every newly covered node u € W (v) is charged 3/(c(u)w(v)). This compensates
the cost 1 for adding v to the dominating set because

> c(u)fuw) - w(”>'w<v>-zue;v) (@) fu(o) c<v>jw<v> =L
ueW (v)

The first inequality follows because it can be shown that for a; > 0, Z?Zl 1/a; >
k/a where & = Zle a; k.

Now consider a node v* € S* and assume that a white node u € W (v*) turns
gray or black in iteration t of the while loop. We have seen that u is charged
3/(c(u)w(v)) for every node v € N(u) that joins the dominating set in iteration
t. Since a node can only join the dominating set if its span is largest up to a
factor of two within two hops, we have w(v) > w(v*)/2 for every node v € N(u)
that joins the dominating set in iteration ¢. Because there are at most ¢(u) such
nodes, the charge of u is at most 6/w(v*). Analogously to the sequential greedy

68 CHAPTER 7. DOMINATING SET

algorithm, we now get that the total cost in the star of a node v* € S* is at
most

[N ()

> = < 6-H(N@)) < 6-HA+1) = 6-InA+12.

c 1
i=1

(@]

O

To bound the time complexity of the algorithm, we first need to prove the
following lemma.

Lemma 7.5. Consider an iteration of the while loop. Assume that a node u is
white and that 2s(u) > max,e 4y 5(v) where A(u) = {v € N(u) : v.active =
true}. Then, the probability that u becomes dominated (turns gray or black) in
the considered while loop iteration is larger than 1/9.

Proof. Let D(u) be the event that u becomes dominated in the considered while
loop iteration, i.e., D(u) is the event that u changes its color from white to
gray or black. Thus we need to prove that Pr(D(u)) > 1/9. To do so, let
V1,V2, .. ., Us(y) De the active nodes in u’s neighborhood (with u possibly among
them). Define C; as the event that node v; is a candidate and D; that node
v; joins the DS. Furthermore let & be the event that v; becomes a candidate
in the current loop, while nodes v, va,...,v;_1 do not become candidates, i.e.,

E =CnN (ﬂ;;ll C;); finally, let & := Uf(zuf E; be the event that there is at

least one candidate in N(u), i.e., that ¢(u) > 0. Note that U:?&Ué defines a
partition of the probability space €, i.e., the events € and &; for i € {1,...,s(u)}
are disjoint and their union covers all possible events.

For D(u) to happen, at least one of the nodes in N(u) must join the DS and
thus we can rewrite Pr(D(u)) as

y Y ZP w)|&) Pr(&;) + Pr(D(w)|€) Pr(E)
=0
s(u)
Smemm) (7.1)

i=1
(¢ s(u)
>) Pr(D;|C;) Pr(&)).

i=1

Equality (1) is an application of the total probability law. Inequality (2) follows
because D; C D(u). All nodes decide independently whether to become a
candidate. Hence, if we know that some nodes do not become candidates, then
this can only make it more likely for v; to pass the test in line 13 of the algorithm,
and thus Pr(D;|&;) > Pr(D;|C;), justifying (3).

We claim that Pr(D;|C;) > 1/3 for any 4, in which case the inequality above
further reduces to

s(u)
Zm >PM) (7.2)

7.2. DISTRIBUTED GREEDY ALGORITHM 69

We start with lower bounding Pr(£). We have 2s(u) > max,e 4(u) 5(v). There-
fore, in line 10, each of the s(u) active nodes v € N(u) becomes a candidate
node with probability 1/§(v) > 1/(2s(u)). The probability that at least one of
the s(u) active nodes in N(u) becomes a candidate therefore is

s(u)
Pr(€) = Pr(c(u) > 0) > 1 — <1—@> >1—%>%.

We used that for © > 1, (1 —1/2)* < 1/e.

We next prove our claim that Pr(D;|C;) > 1/3 for any i. Consider some
node v; and let C(v;) = Zv,ew(mc(v’). If v; is a candidate, it joins the
dominating set if C'(v;) < 3w(v;). We are thus interested in the probability
Pr(C(v;) < 3w(v;)|C;). Assume that v; is a candidate and let v/ € W(v;)
be a white node in the l-neighborhood of v;. Let ¢/(v") = ¢(v') — 1 be the
number of candidates in N(v') \ {v;}. For a node v € W(v;), ¢/(v") is upper
bounded by a binomial random variable Bin(s(v') —1,1/s(v")) with expectation
(s(v') —1)/s(v"). We therefore have

Ele(v)ICi] = 1+ E[¢(V)|C] = 1+ E[¢'(v)] =1+ =+

By linearity of expectation, we hence obtain

ECw)lC]= > Ele()|C] < 2w(wv,).
v’ €W (v;)

We can now use Markov’s inequality to bound the probability that C(v;) be-
comes too large:

Pr(C(v;) > 3w(v;)|C;) <

Wl

Combining everything, we get

Pr(D;|C;) = Pr(C(v;) < 3w(v;)|C;) > é,

which, together with (7.2) finishes our proof. O

Theorem 7.6. In expectation, Algorithm 35 terminates in O(logQA - logn)
rounds.

Proof. First observe that every iteration of the while loop can be executed in
a constant number of rounds. Consider the state after ¢ iterations of the while
loop. Let Wpax(t) = max,ey w(v) be the maximal span rounded down to the
next power of 2 after ¢ iterations. Further, let spyax(t) be the maximal support
s(v) of any node v for which there is a node u € N(v) with w(u) > Wmax(t)
after ¢ while loop iterations. Observe that all nodes v with w(v) > Wmax(t) are
active in iteration ¢ + 1 and that as long as the maximal rounded span Wyax (t)
does not change, spax(t) can only get smaller with increasing ¢. Consider the
pair (Wmax, Smax) and define a relation < such that (w',s") < (w,s) iff v’ < w
or w=w" and s’ < s/2. From the above observations, it follows that

(Wmax(t); Smax(t)) < (Wmax(t'), Smax(t')) = t >t (7.3)

70 CHAPTER 7. DOMINATING SET

For a given time ¢, let T'(t) be the first time for which
(wmax(T(t))v Smax(T(t))) = (wmax(t)7 Smax(t))-
We first want to show that for all ¢,
E[T(t) —t] = O(logn). (7.4)

Let us look at the state after ¢ while loop iterations Consider a node u that
satisfies the following three conditions:

(1) w is white
(2) 30 € NW) : 0(v) = Ban()
(3) s(u) > Smax(t)/2.

Note that all active neighbors = of u have rounded span w(x) = Wmax. Thus,
for each active neighbor x of u, we have §(x) < spax(t). We can therefore apply
Lemma 7.5 and conclude that w will be dominated after the following while
loop iteration with probability larger than 1/9. Hence, as long as u satisfies all
three conditions, the probability that u becomes dominated is larger than 1/9
in every while loop iteration. Hence, after ¢ + 7 iterations (from the beginning),
u is dominated or does not satisfy (2) or (3) with probability larger than (8/9)".
Choosing 7 = logg /5(2n), this probability becomes 1/(2n). There are at most n
nodes u satisfying Conditions (1) — (3). Therefore, applying a union bound, we
obtain that with probability more than 1/2, there is no white node u satisfying
Conditions (1) — (3) at time ¢ + logg/5(2n). In that case, either the maximal
rounded span is smaller than wnay or the largest span of any node neighboring
a node with rounded span W,y is less than syax(t)/2. Therefore, with proba-
bility more than 1/2, T'(t) <t + logg,s(2n). Analogously, we obtain that with

probability more than 1/2%, T(t) <t + kloggs(2n). We then have
E[T(t)—t] = > Pr(T(t)—t=r1)-7
T=1

< > (27 - W) ~klogg/s(2n) = logy)s(2n)
k=1

and thus Equation (7.4) holds.

Let to = 0 and ¢; = T'(t;—1) for ¢ = 1,..., k. where t;, = ming Wpax(t) = 0.
Because Wyax(t) = 0 implies that w(v) = 0 for all v € V' and that we therefore
have computed a dominating set, by Equations (7.3) and (7.4) (and linearity of
expectation), the expected number of rounds until Algorithm 35 terminates is
O(k - logn). Since Wmax(t) can only have [log A| different values and because
for a fixed value of Wyax(t), the number of times syax(t) can be decreased by a
factor of 2 is at most log A times, we have k < log?A. O

7.2. DISTRIBUTED GREEDY ALGORITHM 71

Remarks:

e It is not hard to show that Algorithm 35 even terminates in O(log?A -
logn) rounds w.h.p. (i.e., with probability 1 — 1/n¢ for an arbitrary con-
stant c).

e Using the median of the supports of the neighbors instead of the maximum
in line 8 results in an algorithm with time complexity O(log A - logn).
With another algorithm, this can even be slightly improved to O(logQA).

e One can show that Q(log A) rounds are necessary to obtain an O(log A)-
approximation.

e It is not known whether there is a fast deterministic approximation al-
gorithm. This is an interesting and important open problem. The best
deterministic algorithm known to achieve an O(log A)-approximation has
time complexity 20(v1esn)

72

CHAPTER 7. DOMINATING SET

