# **Optimierung**

Vorlesung 8

Lineare Programmierung III: Simplex Algorithmus

### Resource Allocation Beispiel aus Vorlesung 6

#### **Primales LP:**

#### **Duales LP:**

# **Optimale Lösungen:**

$$x_1 = 2,$$
  $x_2 = 1,$   $x_3 = 3$   
 $y_1 = \frac{4}{3},$   $y_2 = \frac{1}{3},$   $y_3 = \frac{4}{3}$ 

#### **Kanonische Form:**

#### **Standardform:**

Transformiere alle Ungleichungen in Gleichungen

•  $w_1, w_2, w_3$  heissen Schlupfvariablen (slack variables)

Als «Dictionary» (nach Schlupfvariablen aufgelöst):

$$\max 3x_1 + 4x_2 + 2x_3$$

$$w_1 = 4 - 2x_1$$

$$w_2 = 8 - x_1 - 2x_3$$

$$w_3 = 6 - 3x_2 - x_3$$

$$x_1 \ge 0 \quad x_2 \ge 0 \quad x_3 \ge 0 \quad w_1 \ge 0 \quad w_2 \ge 0 \quad w_3 \ge 0$$

- Basis: Variablen auf der linken Seite
- Basislösung:

$$x_1 = x_2 = x_3 = 0$$
,  $w_1 = 4$   $w_2 = 8$   $w_3 = 6$ 

- Beim gegebenen LP ist die Basislösung zulässig
  - Wir werden sehen, dass dies immer möglich ist (wenn das LP zulässig ist)
- Zielfunktionswert: 0
- Verbessern der gegebenen Lösung: erhöhe  $x_1$ ,  $x_2$  oder  $x_3$

$$\max 3x_1 + 4x_2 + 2x_3$$

$$w_1 = 4 - 2x_1$$

$$w_2 = 8 - x_1 - 2x_3$$

$$w_3 = 6 - 3x_2 - x_3$$

$$x_1 \ge 0 \quad x_2 \ge 0 \quad x_3 \ge 0 \quad w_1 \ge 0 \quad w_2 \ge 0 \quad w_3 \ge 0$$

**Basislösung:**  $x_1 = x_2 = x_3 = 0$ ,  $w_1 = 4$ ,  $w_2 = 8$ ,  $w_3 = 6$ 

# Erhöhe $x_1 \implies x_1 = 2$ :

- Führt zu  $w_1 = 0$
- Idee: Wenn wir die Rolle von  $x_1$  und  $w_1$  vertauschen, haben wir wieder eine Basislösung ( $w_1 = x_2 = x_3 = 0$ )
- Löse erste Gleichung nach  $x_1$  auf...

$$\max 3x_1 + 4x_2 + 2x_3$$

$$w_1 = 4 - 2x_1$$

$$w_2 = 8 - x_1 - 2x_3$$

$$w_3 = 6 - 3x_2 - x_3$$

$$x_1 \ge 0 \quad x_2 \ge 0 \quad x_3 \ge 0 \quad w_1 \ge 0 \quad w_2 \ge 0 \quad w_3 \ge 0$$

**Basiswechsel:** Vertausche Rollen von  $x_1$  und  $w_1$ :  $x_1 = 8 - 2x_3 - w_2$ 

$$\max 6 - \frac{3}{2}w_1 + 4x_2 + 2x_3$$

$$x_1 = 2 - \frac{1}{2}w_1$$

$$w_2 = 6 + \frac{1}{2}w_1 - 2x_3$$

$$w_3 = 6 - 3x_2 - x_3$$

$$x_1 \ge 0 \quad x_2 \ge 0 \quad x_3 \ge 0 \quad w_1 \ge 0 \quad w_2 \ge 0 \quad w_3 \ge 0$$

**Pivot:** Erhöhe  $x_2$  ( $x_2$  wird zu Basisvar.),  $w_3$  verlässt Basis

$$\max 14 - \frac{3}{2}w_1 - \frac{4}{3}w_3 + \frac{2}{3}x_3$$

$$x_1 = 2 - \frac{1}{2}w_1$$

$$w_2 = 6 + \frac{1}{2}w_1 - 2x_3$$

$$x_2 = 6 - \frac{1}{3}w_3 - \frac{1}{3}x_3$$

$$x_1 \ge 0 \quad x_2 \ge 0 \quad x_3 \ge 0 \quad w_1 \ge 0 \quad w_2 \ge 0 \quad w_3 \ge 0$$

**Pivot:** Erhöhe  $x_3$  ( $x_3$  wird zu Basisvar.),  $w_2$  verlässt Basis

$$\max 16 - \frac{4}{3}w_1 - \frac{4}{3}w_3 - \frac{1}{3}w_2$$

$$x_1 = 2 - \frac{1}{2}w_1$$

$$x_3 = 3 + \frac{1}{4}w_1 - \frac{1}{2}w_2$$

$$x_2 = 1 - \frac{1}{12}w_1 - \frac{1}{3}w_3 + \frac{1}{6}w_2$$

$$x_1 \ge 0 \quad x_2 \ge 0 \quad x_3 \ge 0 \quad w_1 \ge 0 \quad w_2 \ge 0 \quad w_3 \ge 0$$

**Optimale Lösung:**  $x_1 = 2$ ,  $x_2 = 1$ ,  $x_3 = 3$ 

Zielfunktionswert: 16

### Zur Erinnerung:

• Optimale Lösung des dualen LP:  $y_1 = \frac{4}{3}$ ,  $y_2 = \frac{1}{3}$ ,  $y_3 = \frac{4}{3}$ 

# LP in "Dictionary"-Form:

$$\max c_0 + c^{\top} x_N$$

$$x_B = b - A x_N$$

$$x_B \ge 0 \quad x_N \ge 0$$

Falls  $b \geq 0$ , dann ist  $x_N = 0$ ,  $x_B = b$  eine zulässige Basislösung

• Zielfunktionswert:  $c_0$ 

#### **Pivot-Schritt:**

- Wähle eine Variable  $x_i$  aus  $x_N$  mit Koeffizienten  $c_i > 0$
- Erhöhe  $x_i$  bis erstes  $x_i \in x_B$  Null wird
- Vertausche Rolle von  $x_i$  und  $x_j$  ( $x_i$  neu in der Basis,  $x_j = 0$  aus Basis raus)
- Pivot-Schritt kann  $c_0$  nicht verkleinern und erhält  $b \geq 0$

**Lösung:** Falls  $c \leq 0$ , dann ist Basislösung  $x_N = 0$ ,  $x_B = b$  optimal.

$$\max 4x_1 + 5x_2 + 4x_3 + 7x_4 + x_5$$

$$x_6 = 1 - x_1 - x_3 - x_4$$

$$x_7 = 1 - x_1 - x_2 - x_4$$

$$x_8 = 1 - x_2 - x_3$$

$$x_9 = 1 - x_4 - x_5$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \ge 0$$

- Dictionary ist zulässig:
  - Zul. Basislösung:  $x_1 = x_2 = x_3 = x_4 = x_5 = 0$ ,  $x_6 = x_7 = x_8 = x_9 = 1$
- Vergrössere  $x_4$  (grösster Koeffizient)  $\implies x_4 = 1$  (z.B.  $x_6$  verlässt Basis)

$$\max 7 - 3x_1 + 5x_2 - 3x_3 + x_5 - 7x_6$$

$$x_4 = 1 - x_1 - x_3 - x_6$$

$$x_7 = 0 - x_2 + x_3 + x_6$$

$$x_8 = 1 - x_2 - x_3$$

$$x_9 = 0 + x_1 + x_3 - x_5 + x_6$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \ge 0$$

- Variablen aus Nichtbasis, welche erhöht werden können:  $x_2, x_5$
- Man kann beide nicht erhöhen (ohne, dass  $x_7$  oder  $x_9 < 0$  werden)
- Falls wir  $x_2$  nehmen, wird  $x_7$  "zuerst" Null

$$\max 7 - 3x_1 + 2x_3 + x_5 - 2x_6 - 5x_7$$

$$x_4 = 1 - x_1 - x_3 - x_6$$

$$x_2 = 0 + x_3 + x_6 - x_7$$

$$x_8 = 1 - 2x_3 - x_6 + x_7$$

$$x_9 = 0 + x_1 + x_3 - x_5 + x_6$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \ge 0$$

- Zielfunktionswert hat sich nicht verändert (Wert: 7)
  - → degeneriertes Pivot
- Mehrere degenerierte Pivots können allenfalls zum gleichen Dictonary zurückführen ( > Algorithmus terminiert nicht)
- Kann verhindert werden, indem das Pivot geschickt gewählt wird

### Simplex Algorithm, Beispiel 2

### **«Dictionary»:**

$$\max 7 - 3x_1 + 2x_3 + x_5 - 2x_6 - 5x_7$$

$$x_4 = 1 - x_1 - x_3 - x_6$$

$$x_2 = 0 + x_3 + x_6 - x_7$$

$$x_8 = 1 - 2x_3 - x_6 + x_7$$

$$x_9 = 0 + x_1 + x_3 - x_5 + x_6$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \ge 0$$

• Wähle  $x_3$  als nächste Variable ( $x_8$  ist erste Var., welche Null wird)

$$\max 8 - 3x_1 + x_5 - 3x_6 - 4x_7 - x_8$$

$$x_4 = 0.5 - x_1 - 0.5x_6 - 0.5x_7 + 0.5x_8$$

$$x_2 = 0.5 + 0.5x_6 - 0.5x_7 - 0.5x_8$$

$$x_3 = 0.5 - 0.5x_6 + 0.5x_7 - 0.5x_8$$

$$x_9 = 0.5 + x_1 - x_5 + 0.5x_6 + 0.5x_7 - 0.5x_8$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \ge 0$$

• Wähle  $x_5$  als nächste Variable ( $x_9$  ist erste Var., welche Null wird)

### Simplex Algorithmus

### Bemerkungen:

- Jede Variable  $x_i$ , welche in der Zielfunktion einen positiven Koeffizienten hat, kann gewählt werden, um in die Basis zu wechseln
- Vertausche  $x_i$  mit einer, der Basisvariablen  $x_i$ , welche zuerst Null wird
- Pivot-Auswahlregel: Auswahl des Pivots, falls es mehrere Möglichkeiten gibt
- Solange kein degeneriertes Pivot auftritt, nimmt der Zielfunktionswert zu
  - Anzahl verschiedener Basen ist endlich
  - Algorithmus konvergiert (oder man findet ein Zertifikat f. Unbeschränktheit)
- Anzahl Iterationen:
  - In der Praxis meistens klein, kann i.A. exponentiell sein
  - Man kennt keine Pivot-Regel, für welche die Anzahl Iter. polynomiell ist (wichtiges offenes Problem!)

### Zyklen verhindern

Um Terminierung zu garantieren, benötigen wir Pivot-Auswahlregel, welche degenerierte Pivots vermeidet

### Bland'sche Auswahlregel:

• Bei mehreren Möglichkeiten, wähle immer Variable mit kleinstem Index

# Lexikographische Auswahlregel:

- Idee: Falls die Koeffizienten ein bisschen perturbiert werden, sollte sich nichts an der optimalen Lösung ändern, aber die Pivots sollten nicht mehr degeneriert sein
- Kann systematisch gemacht werden
- Ersetze **b** durch  $b + \epsilon$ , wobei

$$\epsilon = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_m \end{pmatrix}$$
, so dass  $0 < \epsilon_1 \ll \epsilon_2 \ll \cdots \ll \epsilon_m \ll 1$ 

# Lexikographische Auswahlregel

### **Degeneriertes Pivot:**

$$\max 7 - 3x_1 + 5x_2 - 3x_3 + x_5 - 7x_6$$

$$x_4 = 1 + \epsilon_1 - x_1 - x_3 - x_6$$

$$x_7 = \epsilon_2 - x_2 + x_3 + x_6$$

$$x_8 = 1 + \epsilon_3 - x_2 - x_3$$

$$x_9 = \epsilon_4 + x_1 + x_3 - x_5 + x_6$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \ge 0$$

•  $x_2$  kann jetzt auf  $\epsilon_2$  erhöht werden:

### Lexikographische Auswahlregel

### "Degenerierter Schritt" inkl. $\epsilon$ :

$$\max 7 + 5\epsilon_2 - 3x_1 + 2x_3 + x_5 - 2x_6 - 5x_7$$

$$x_4 = 1 + \epsilon_1 - x_1 - x_3 - x_6$$

$$x_2 = \epsilon_2 + x_3 + x_6 - x_7$$

$$x_8 = 1 - \epsilon_2 + \epsilon_3 - 2x_3 - x_6 + x_7$$

$$x_9 = \epsilon_4 + x_1 + x_3 - x_5 + x_6$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \ge 0$$

- Zielfunktionswert hat sich um  $5\epsilon_5$  erhöht
- $0<\epsilon_1\ll\epsilon_2\ll\cdots\ll\epsilon_m$  garantiert, dass die konstanten Terme nie Null werden können
  - Pivot's können nicht degeneriert sein
- $\epsilon_i$  sind abstrakte, beliebig kleine Grössen, welche am Schluss einfach ignoriert werden... (durch 0 ersetzen)

#### Unbeschränktheit

• Stellt man fest, wenn es eine Variable gibt, welche beliebig erhöht werden kann.

### **Beispiel:**



$$\max 3 + 5x_2 - 3x_3$$

$$x_1 = 1 + x_2 - x_3$$

$$x_4 = 2 - x_3$$

$$x_1, x_2, x_3, x_4 \ge 0$$

•  $x_2$  kann beliebig erhöht werden  $\rightarrow$  LP ist unbeschränkt

Bis jetzt: Erste Basislösung ist zulässig

Was tun, falls nicht?

Kann auch als LP formuliert werden:

$$\max 2x_1 + 4x_2 + x_3$$

$$x_4 = 20 - x_1 - x_2 - x_3$$

$$x_5 = -5 + 2x_1 + x_2 - x_3$$

$$x_6 = -10 - x_2 + x_3$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

• Ersetze Zielfunktion durch  $-x_0$  und addiere  $x_0$  zu jeder Gleichung:

# Zulässige Lösung finden:

### Zulässige Lösung finden:

- Basislösung ist zulässig
- Optimaler Zielfunktionswert ist genau dann 0, wenn das ursprüngliche LP zulässig ist
- Falls die optimale Lösung Wert 0 hat, dann ist  $x_0 = 0$
- Deshalb ist  $x_0$  nicht in der Basis
  - oder kann mit Pivot-Schritt aus der Basis genommen werden
- Wenn  $x_0$  ignoriert wird, bekommt man damit eine Basislösung des ursprünglichen LPs
- Wird üblicherweise als Phase 1 des Simplex-Alg. bezeichnet

# Simplex und Dualität

Wie sieht der duale «Dictionary» aus?

### Simplex und Dualität: Beispiel

#### **Primales LP**

$$\max 3x_1 + 2x_2$$

$$x_3 = 16 - 4x_1 - 2x_2$$

$$x_4 = 8 - x_1 - 2x_2$$

$$x_5 = 5 - x_1 - x_2$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

Pivot:  $x_1$  and  $x_3$ 

#### **Duales LP**

$$\max 3x_1 + 2x_2 x_3 = 16 - 4x_1 - 2x_2 x_4 = 8 - x_1 - 2x_2 x_5 = 5 - x_1 - x_2$$
 
$$\max -16y_3 - 8y_4 - 5y_5 y_1 = -3 + 4y_3 + y_4 + y_5 y_2 = -2 + 2y_3 + 2y_4 + y_5 x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Führe gleichen Pivot-Schritt aus  $(y_3, y_1)$ 

### Simplex und Dualität: Beispiel

#### **Primales LP**

$$\max 12 + 0.5x_2 - 0.75x_3$$

$$x_1 = 4 - 0.5x_2 - 0.25x_3$$

$$x_4 = 4 - 1.5x_2 + 0.25x_3$$

$$x_5 = 1 - 0.5x_2 + 0.25x_3$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

#### Pivot: $x_2$ and $x_5$

$$\max 13 - 0.5x_3 - x_5$$

$$x_1 = 3 - 0.5x_3 + x_5$$

$$x_2 = 2 + 0.5x_3 - 2x_5$$

$$x_4 = 1 - 0.5x_3 + 3x_5$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

#### **Duales LP**

### Führe gleichen Pivot-Schritt aus $(y_5, y_2)$

$$\max 13 - 0.5x_3 - x_5 x_1 = 3 - 0.5x_3 + x_5 x_2 = 2 + 0.5x_3 - 2x_5 x_4 = 1 - 0.5x_3 + 3x_5$$

$$\max -13 - 3y_1 - 2y_2 - 1y_4 y_3 = 0.5 + 0.5y_1 - 0.5y_2 + 0.5y_4 y_5 = 1 - y_1 + 2y_2 - 3y_4 y_1, y_2, y_3, y_4, y_5 \ge 0$$

- Simplex-Algorithmus löst gleichzeitig das duale LP
- Primale Basislösung immer feasible, duale Basislösung nur am Schluss
- Weitere Wahlmöglichkeit: Simplex mit primalem oder dualem LP

## Verfahren zur linearen Programmierung

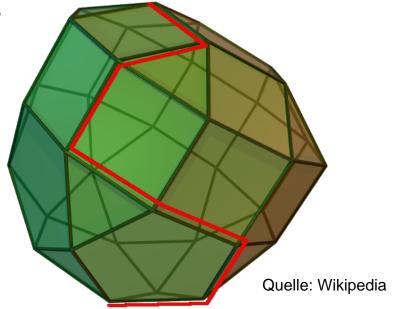
# **Simplex**

- Löst LP exakt, ist in der Praxis oft sehr effizient
- Im worst case exponentiell
  - Polynomielles Pivot-Verfahren wäre ein sehr grosser Durchbruch

# Geometrische Interpretation:

 Lösung ist immer eine Ecke des Polyeders und wird verbessert, indem mal entlang der Kanten des Polyeders "wandert"

– Ein Pivot-Schritt = 1 Kante



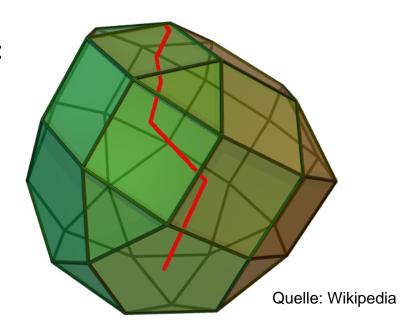
## Verfahren zur linearen Programmierung

#### Innere Punkte Verfahren

- Löst LP näherungsweise (beliebig gut)
  - Falls die Lösung exakt genug ist, kann man am Schluss auch eine exakte,
     optimale Basislösung finden
- Laufzeit ist polynomiell!
  - In den benötigten Anzahl Bits, um alle Koeffizienten des LPs darzustellen
  - Algorithmus, welcher polynomiell in der Anz. Variablen und Gleichungen ist, ist ein grosses offenes Problem

### Geometrische Interpretation:

 Wanderung im Inneren des Polyeders



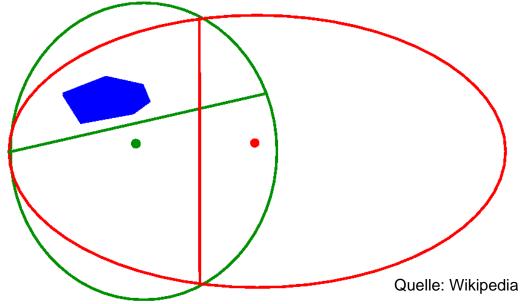
# Verfahren zur linearen Programmierung

## Ellipsoid-Methode

- Löst LP näherungsweise und hat polynomielle Laufzeit
  - Polynomiell in Anzahl Bits der Problem-Beschreibung (wie innere Pkte.)
- In der Theorie (und in der Praxis) den "Inneren Punkte"-Methoden klar unterlegen (in der Praxis auch dem Simplex-Algorithmus)
- Interessant aus theoretischer Sicht:
  - Kann z.T. LPs mit exponentiell vielen Nebenbed. in Polynomialzeit lösen
  - Lässt sich auf weitere Klassen konvexer Optimierungsprobleme anwenden

# Geometrische Interpretation:

- Problem wird auf Finden einer zulässigen Lösg. reduziert
- Suchbereich wird durch exp. kleiner werdende Ellipsoide eingeschränkt



## Zusammenfassung Lineare Programmierung

### **Lineares Programm**

- Lineare Optimierungsaufgabe (lin. Zielfkt. und Nebenbed.)
- Spezialfall der konvexen Optimierung

#### **Dualität**

- Jedes LP hat ein duales LP mit gleichem opt. Zielfunktionswert
- Gibt elegante Art, Optimalität einer Lösung zu beweisen (und mehr...)

### **Algorithmen**

- Simplex: elegant und effizient in der Praxis
- Innere Punkte / Ellipsoid: polynomielle Laufzeit!
- In der Praxis:
  - Matlab default: Innere Punkte Methode
  - Octave default: Simplex