Informatik II - SS 2014 (Algorithmen & Datenstrukturen)

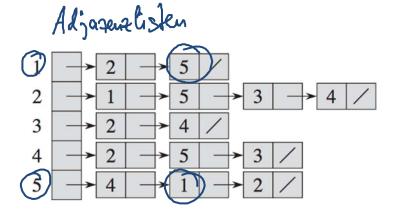
Vorlesung 15 (1.7.2014)

Graphtraversierung & Anwendungen

FRE BURG

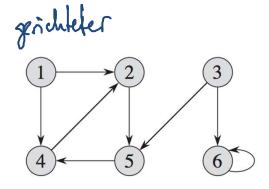
Fabian Kuhn Algorithmen und Komplexität

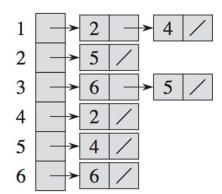
Beispiele aus [CLRS]:



Adjatentmatrix

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0		0	1	0
4	0	1	1	0	1
5	1	1	0	1	0





	1	2	3	4	5	6
1	0	1	0	1 0 0 0 1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Breitensuche von allgemeinen Graphen

BFS-Travositrung

Unterschiede Binärbaum $T \Leftrightarrow \mathsf{allg.}$ Graph G

- Graph G kann Zyklen haben
- In T haben wir eine Wurzel und kennen von jedem Knoten die Richtung zur Wurzel
 - etwas allgemeiner bezeichnen wir solche Bäume auch als gewurzelte Bäume

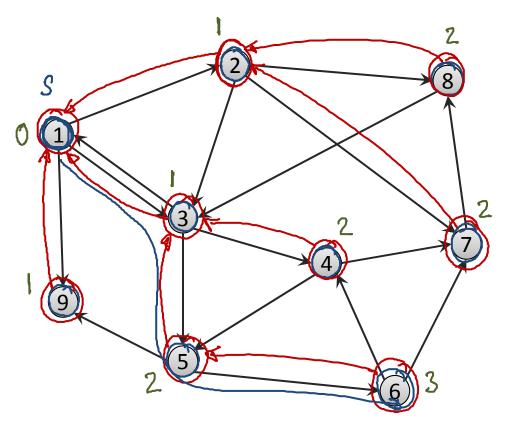
Breitensuche in Graph G (Start bei Knoten $S \in V$)

- Zyklen: markiere Knoten, welche man schon gesehen hat
- Markiere Knoten s, hänge s in die Queue
- Wie bisher, nehme immer den ersten Knoten u aus der Queue:
 - besuche Knoten u
 - Gehe durch die Nachbarn v von uFalls v nicht markiert, markiere v und hänge v in Queue Falls v markiert ist, muss nichts getan werden

Wir merken uns zusätzlich die Distanz zu
 sim Baum

```
BFS-Tree:
    Q = new Queue();
    for all u in V: u.marked = false; u.d=>
  Stoot.marked = true;←
  Sroot.parent = NULL;◀
  significant = 0
    Q.enqueue(*****)
   while not Q.empty() do
        u = Q.dequeue()
        visit(u)✓
        for v in u.neighbors do
            if not v.marked then
                v.marked = true;
                v.parent = u; ←
                v.d = u.d + 1;
                Q.enqueue(v)
```

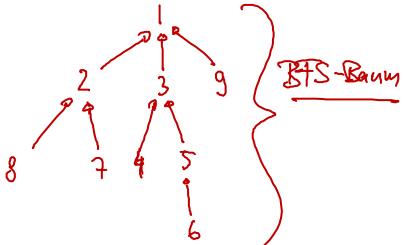
Breitensuche Beispiel



Quene Q1 8, X, X, X, X, X, X, X, X

BFS-Reihanfolge:

1, 2,3,9,7,8,4,5,6



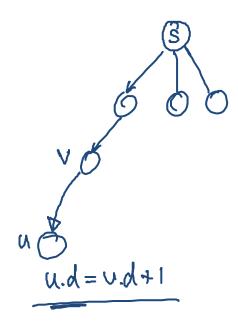
Laufeit: O(m+n) #Kanten #Knoden In der Folge benennen wir die Knoten folgendermaßen

- weiße Knoten: Knoten, welche der Alg. noch nicht gesehen hat
- graue Knoten: markierte Knoten
 - Knoten werden grau, wenn sie in die Warteschlange eingefügt werden
 - Knoten sind grau, solange sie in der Warteschlange sind
- schwarze Knoten: besuchte Knoten
 - Knoten werden schwarz, wenn sie aus der Warteschlange genommen werden

Die Laufzeit der BFS-Traversierung ist O(n+m).

Im <u>BFS-Baum</u> eines ungewichteten Graphen ist die Distanz von jedem Knoten u zur Wurzel s gleich $\underline{d_G(s,u)}$.

- Baumdistanz zur Wurzel: $d_T(s, u) = u.d$
- Wir müssen also zeigen, dass $\underline{u} \cdot \underline{d} = d_G(s, u)$
- Wir zeigen zuerst, dass $u.d \geq d_G(s,u)$



Analyse Breitensuche

Lemma: Annahme: Während BFS-Traversal ist Zustand der Queue

$$Q = \langle v_1, v_2, ..., \underline{v_r} \rangle$$
 (v_1 : head, v_r : tail)

Dann gilt $\underline{v_r}$. $d \leq v_1$. d+1 und v_i . $d \leq v_{i+1}$. d (für $i=1,\ldots,r-1$)

Beweis:

Per Indulation über die Warteschlaugenoperationen

dequeue-Operation:

 $V_1.d \leq V_2.d \leq V_r.d$ $V_r.d \leq V_1.d^{\frac{1}{2}} \leq V_2.d+1$

engueur - Operation:

(u) V1, V2, ---, Vr, V

u.d < V, d $v.d = u.d+1 \le v.d+1$ $v_r.d \le u.d+1$ Alsor.

Insbesonderer, Falls v; vor v; in Q eingefügtwird, dann Vid & Vj.d

Analyse Breitensuche

UNI FREIBURG

shortest path tole

Im BFS-Baum eines ungewichteten Graphen ist die Distanz von jedem Knoten u zur Wurzel s gleich $d_G(s,u)$.

dequeue von u

wir betrachten v

v ist weiss \Rightarrow v.d = u.d+1 (kann nicht sehn)

v ist war kiert: V Schwarz V.d = u.d (" in ") v gran : u sst in Q Lolemna: V.d = u.d+) (11 11 11)

Im BFS-Baum eines ungewichteten Graphen ist die Distanz von jedem Knoten u zur Wurzel s gleich $d_G(s,u)$.

Tiefensuche in allgemeinen Graphen

Grundidee Tiefensuche in G (Start bei Knoten $s \in V$)

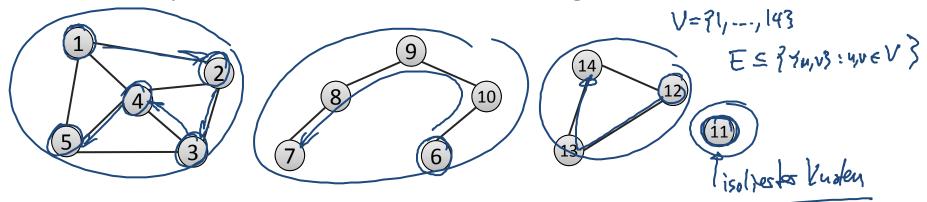
- Markiere Knoten v (am Anfang ist v = s)
- Besuche die Nachbarn von v der Reihe nach rekursiv
- Nachdem alle Nachbarn besucht sind, besuche s
- rekursiv: Beim Besuchen der Nachbarn werden deren Nachbarn besucht, und dabei deren Nachbarn, etc.
- Zyklen in G: Besuche jeweils nur Knoten, welche noch nicht markiert sind
- entspricht der Postorder-Traversierung in Bäumen
- Fall man gleich beim Markieren den Knoten besucht, entspricht es der Preorder-Traversierung

```
DFS-Traversal:
    for all u in V: u.color = white;
    DFS-visit(root, NULL)
DFS-visit(u, p):
    u.color = gray; markieren
    u.parent = p;
    for all v in u.neighbors do
        if v.color = white
            DFS-visit(v, (u)
    visit node u;
    u.color = black;
```

Zusammenhangskomponenten

BURG

• Die Zusammenhangskomponenten (oder einfach Komponenten) eines Graphen sind seine zusammenhängenden Teile.



Ziel: Finde alle Komponenten eines Graphen.

```
for u in V do

if not u.marked then

start new component

explore with DFS/BFS starting at u
```

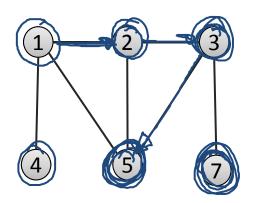
• Die Zusammenhangskomponenten eines Graphen können in O(n+m) Zeit identifiziert werden. (mit Hilfe von DFS oder BFS)

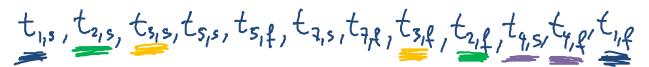
Wir definieren für jeden Knoten \boldsymbol{v} die folgenden zwei Zeitpunkte

- $t_{v,s}$: Zeitpunkt, wenn v in der DFS-Suche grau gefärbt wird
- $t_{v,f}$: Zeitpunkt, wenn v in der DFS-Suche schwarz gefärbt wird

Theorem: Im DFS-Baum ist ein Knoten v ist genau dann im Teilbaum eines Knoten u, falls das Intervall $\begin{bmatrix} t_{v,s}, t_{v,f} \end{bmatrix}$ vollständig im Intervall $\begin{bmatrix} t_{u,s}, t_{u,f} \end{bmatrix}$ enthalten ist.

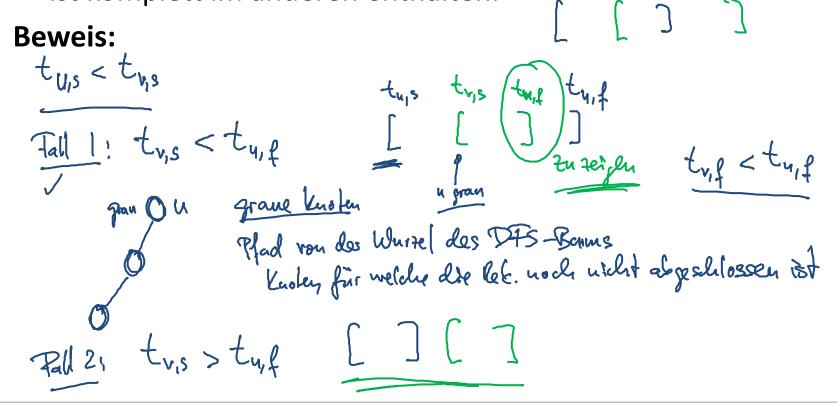
Beispiel:





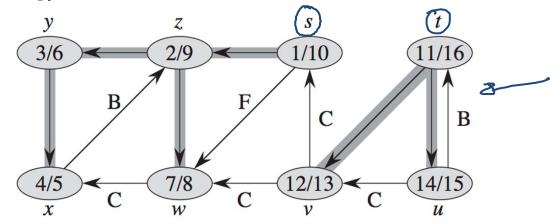
Theorem: Im DFS-Baum ist ein Knoten v ist genau dann im Teilbaum eines Knoten u, falls das Intervall $\begin{bmatrix} t_{v,s}, t_{v,f} \end{bmatrix}$ vollständig im Intervall $\begin{bmatrix} t_{u,s}, t_{u,f} \end{bmatrix}$ enthalten ist.

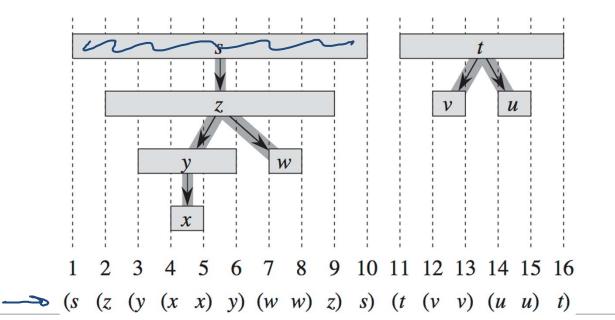
• Insbesondere sind zwei Intervalle entweder disjunkt, oder das eine ist komplett im anderen enthalten.

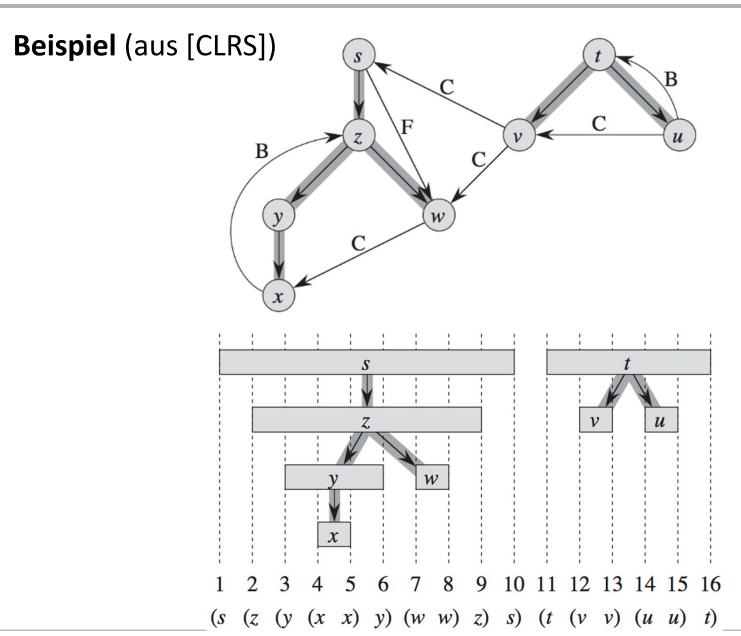


UNI

Beispiel (aus [CLRS])







Theorem: Im DFS-Baum ist ein Knoten v ist genau dann im Teilbaum eines Knoten u, falls das Intervall $\begin{bmatrix} t_{v,s}, t_{v,f} \end{bmatrix}$ vollständig im Intervall $\begin{bmatrix} t_{u,s}, t_{u,f} \end{bmatrix}$ enthalten ist.

Implikationen

- Zwei Intervalle sind entweder disjunkt, oder das eine ist komplett im anderen enthalten.
- Ein weisser Knoten v, welcher in der rekursiven Suche von u entdeckt wird, wird schwarz, bevor die Rekursion zu u zurückkehrt.
- Wieso "Klammer"-Theorem: Wenn man bei jedem $t_{v,1}$ eine öffnende Klammer und bei jedem $t_{v,2}$ eine schließende Klammer hinschreibt, bekommt man ein Klammerausdruck, welcher korrekt geschachtelt ist.

Theorem: In einem DFS-Baum ist ein Knoten v genau dann im Teilbaum eines Knoten u, falls unmittelbar vor dem Markieren von u, ein komplett weißer Pfad von u nach v besteht.

falls v jettet gran/schworz ist, dann
ist v nich im Teilbaum von u

cueiss

Klassifizierung der Kanten (bei DFS-Suche)

Baumkanten:

• (u, v) ist eine Baumkante, falls v von u aus entdeckt wird

Rückwärtskanten:

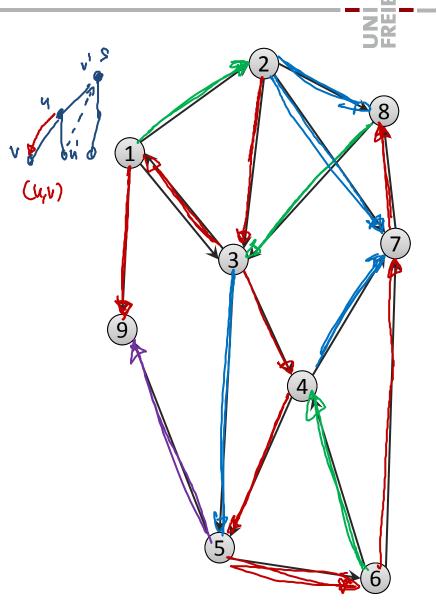
• (u, v) ist eine Rückwärtskante, falls v eine Vorgängerknoten von u ist

Vorwärtskanten:

• (u, v) ist eine Vorwärtskante, falls v ein Nachfolgerknoten von u ist

Querkanten:

Alle übrigen Kanten



Klassifizierung der Kanten (bei DFS-Suche)

Baumkante (u, v):

Bei Betrochtung von (4,V)

falls v weiss 1st (4,V) Baumkante
Vo

Rückwärtskante (u, v):

Vorwärtskante (u, v):

Rei Bedr. von (u, v)Vorwärtskante (u, v):

Vorwärtskante (u, v):

Vorwärtsk.: $t_{v,s} < t_{v,s}$ Querkante (u, v):

Querkante (u, v):

Theorem: Bei einer DFS-Suche in ungerichteten Graphen ist jede Kante entweder eine Baumkante oder eine Rückwärtskante.