Informatik II - SS 2014 (Algorithmen & Datenstrukturen)

Vorlesung 16 (2.7.2014)

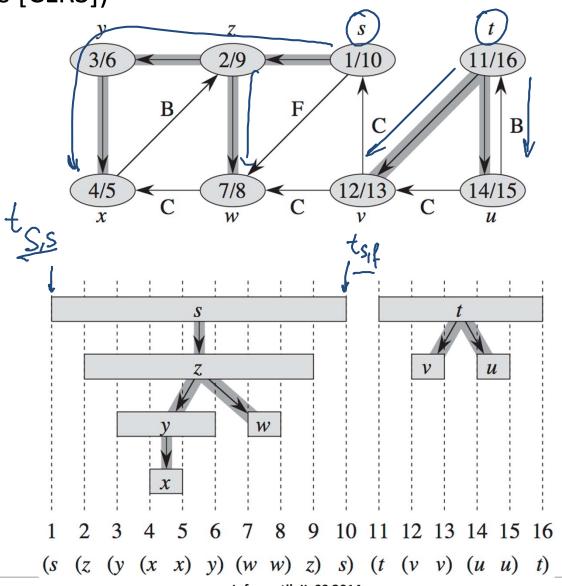
Graphtraversierung II, Minimale Spannbäume I

Fabian Kuhn
Algorithmen und Komplexität

```
DFS-Traversal:
    for all u in V: u.color = white;
    DFS-visit(root, NULL)
DFS-visit(u, p):
    u.color = gray;
    u.parent = p;
    for all v in u.neighbors do
        if v.color = white
            DFS-visit(v, u)
    visit node u;
    u.color = black;
```

DFS- "Klammer"-Theorem

Beispiel (aus [CLRS])



Weiße Pfade

UNI FREIBURG

Theorem: In einem DFS-Baum ist ein Knoten \underline{v} genau dann im Teilbaum eines Knoten u, falls unmittelbar vor dem Markieren von u, ein komplett weißer Pfad von u nach v besteht.

Baumkanten:

• (u, v) ist eine Baumkante, falls v von u aus entdeckt wird

Rückwärtskanten:

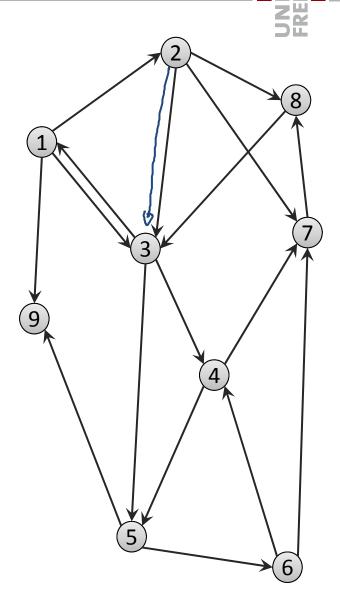
• (u, v) ist eine Rückwärtskante, falls $v \in v$ eine Vorgängerknoten von u ist

Vorwärtskanten:

• (u, v) ist eine Vorwärtskante, falls v ein Nachfolgerknoten von u ist

Querkanten:

Alle übrigen Kanten



DFS – Ungerichtete Graphen

Theorem: Bei einer DFS-Suche in ungerichteten Graphen ist jede Kante entweder eine Baumkante oder eine Rückwärtskante.

The short of the durch Nachs. Von a gran - Ju, v) Richwartskante

y wird shwart

DFS – Gerichtete Graphen

UNI FREIBURG

Theorem: Ein gerichteter Graph hat genau dann keine Zyklen, falls es bei der DFS-Suche keine Rückwärtskanten gibt.

Zyclus

Rückevärtskante (u,v) -> Zyklus

Implikation:

Man Lann in O(m+u)

erbennen, ob ein

segeberner ger. Graph

zyklenfrer ist.

Zyklus -> Rückwärtskaute (4,v)

Zyklenfreie, gerichtete Graphen:

- DAG: directed acyclic graph
- Modellieren z.B. zeitliche Abhängigkeiten von Aufgaben



Topologische Sortierung:

- Sortiere die Knoten eines DAGs so, dass \underline{u} vor \underline{v} erscheint, falls ein gerichteter Pfad von \underline{u} nach \underline{v} existiert
- Im Beispiel: Finde eine mögliche Anziehreihenfolge

Topologische Sortierung: Etwas formaler...

9

Zyklenfreie, gerichtete Graphen:

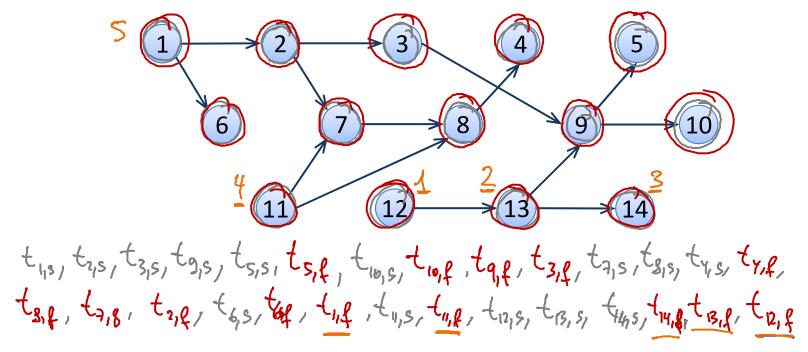
- repräsentieren partielle Ordnungsrelationen
 - asymmetrisch: $a < b \Rightarrow \neg (b < a)$ transitiv: $a < b \land b < c \Rightarrow a < c$
 - partielle Ordnung: nicht alle Paare müssen vergleichbar sein
- Beispiel: Teilmengenrelation bei Mengen

$$\frac{213}{13}$$
, $\frac{28}{123}$, $\frac{21}{123}$,

Topologische Sortierung:

- Sortiere die Knoten eines DAGs so, dass u vor v erscheint, falls ein gerichteter Pfad von u nach v existiert
- Erweitere eine partielle Ordnung zu einer totalen Ordnung

Führe DFS aus...



Beobachtung:

- Knoten ohne Nachfolger werden als erstes besucht (schwarz gef.)
- Besuchreihenfolge ist umgekehrte topologische Sortierung

Topologische Sortierung: Algorithmus

JNI

Theorem: Umgekehrte "Visit"-Reihenfolge (schwarz färben) der Knoten bei DFS-Traversierung ergibt topologische Sortierung

Unykehrt nach tvif sortieren ergibt top. Sortiereng Zu reigen tvif < tuiv

V schwarz: u is gran Lotrif < tuit

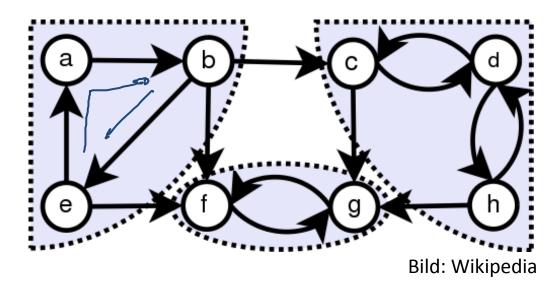
Topologische Sortierung: Algorithmus

UNI

Theorem: Umgekehrte "Visit"-Reihenfolge (schwarz färben) der Knoten bei DFS-Traversierung ergibt topologische Sortierung

Stark zusammenhängende Komponenten

Stark zus.-hängende Komponente eines gerichteten Graphen:
 "Maximale Knoten-Teilmenge, so dass jeder jeden erreichen kann"



- Benötigt 2 DFS-Traversierungen (Zeit $\in O(m+n)$)
 - auf \underline{G} und auf \underline{G}^T (alle Kanten umgedreht)
 - $-\ G$ und G^T haben die gleichen stark zus.-hängenden Komponenten
- Details z.B. in [CLRS]

Artikulationsknoten, Brücken, Biconnected Components

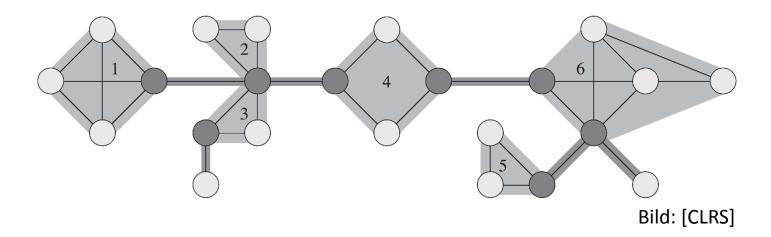
- Annahme: ungerichteter Graph
- Artikulationsknoten v: v entfernen vergrössert die Anzahl Komponenten

Brücke e:

Kante e entfernen vergrössert die Anzahl Komponenten

Biconnected Components

Komponenten, welche übrig bleiben, wenn man alle Brücken entfernt



- Artikulationsknoten und Brücken können mit einer DFS-Traversierung in O(m+n) Zeit gefunden werden
 - Algorithmus von Hopcroft, Tarjan (1973)
- Zerlegung in Biconnected Components daher in der gleichen Zeit

Bäume

JNI

Als ungerichtete Graphen (mit <u>n Knoten</u>) betrachtet...

Baum:

- Zusammenhängender ungerichteter Graph, ohne Zyklen
 - Ein nicht zus.-hängender zyklenfreier (unger.) Graph heisst Wald
 - Anzahl Kanten: n-1 (jede Kante reduziert die #Komponenten um 1)

minimal: Kante entfernen -> nicht zus.-h.

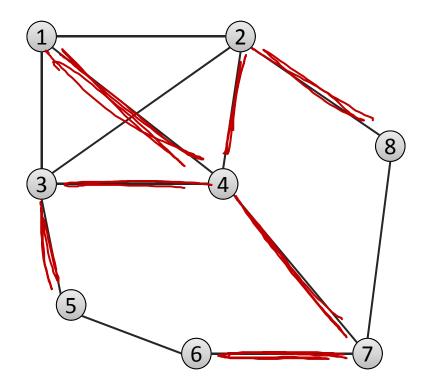
Äquivalente Definitionen:

- Minimaler zusammenhängender Graph
- Maximaler zyklenfreier Graph
- Eindeutiger Pfad zwischen jedem Knotenpaar
- Zusammenhängender Graph mit n-1 Kanten

Gegeben: Zusammenhängender, ungerichteter Graph G = (V, E)

Spannbaum $T = (V, E_T)$: Teilgraph $(\underline{E_T} \subseteq E)$

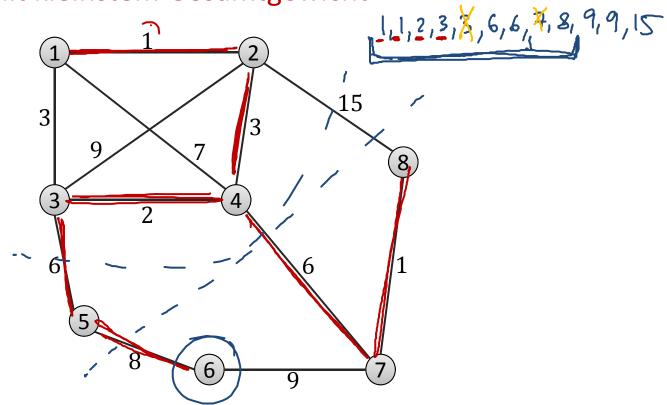
- T ist ein Baum ist, welcher alle Knoten von G enthält
- Alternativ: T ist ein Baum mit n-1 Kanten aus E



Gegeben: Zus.-hängender, ungerichteter Graph $G = (V, E, \underline{w})$ mit Kantengewichten $w: E \to \mathbb{R}$

Minimaler Spannbaum $T = (V, E_T)$:

Spannbaum mit kleinstem Gesamtgewicht

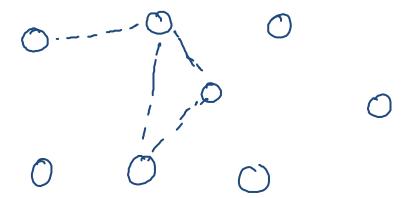


Minimale Spannbäume

NIREIBURG

Ziel: Gegeben ein gewichteter, ungerichteter Graph G, finde einen Spannbaum mit minimalem Gesamtgewicht.

- Minimaler Spannbaum = Minimum Spanning Tree = MST
- Ein grundlegendes Optimierungsproblem auf Graphen
 - eines von sehr vielen Optimierungsproblemen auf Graphen
- kommt oft als Teilproblem vor
- ist aber auch interessant an sich



Basis-MST-Algorithmus

Idee: Starte mit leerer Kantenmenge und füge die Kanten schrittweise hinzu, bis es ein Spannbaum ist

Invariante:

Algorithmus hat zu jeder Zeit eine Kantenmenge A, so dass A Teilmenge eines minimalen Spannbaums ist.

- Am Anfang ist $A = \emptyset$
- Danach wird jeweils eine Kante hinzugefügt, ohne die Invariante zu verletzen
- Wir nennen eine Kante, für welche wir sicher sein können, dass wir sie zu A hinzufügen können eine sichere Kante für A
- Wie man sichere Kanten findet, werden wir sehen…

Invariante:

Algorithmus hat zu jeder Zeit eine Kantenmenge A, so dass A Teilmenge eines minimalen Spannbaums ist.

Basis-MST-Algorithmus:

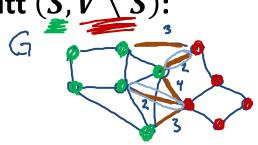
$$A = \emptyset$$
while A ist kein Spannbaum do

$$A = A \cup \{\{u,v\}\}$$
return A

- Invariante ist eine gültige Schleifeninvariante
- Invariante + Abbruchbedingung $\Rightarrow A$ ist ein MST!

Wie findet man sichere Kanten?

- Invariante → es gibt immer mindestens eine sicher Kante
 - A ist Teilmenge eines MST und kann daher zu einem MST erweitert werden
- Zuerst benötigen wir ein paar Begriffe...

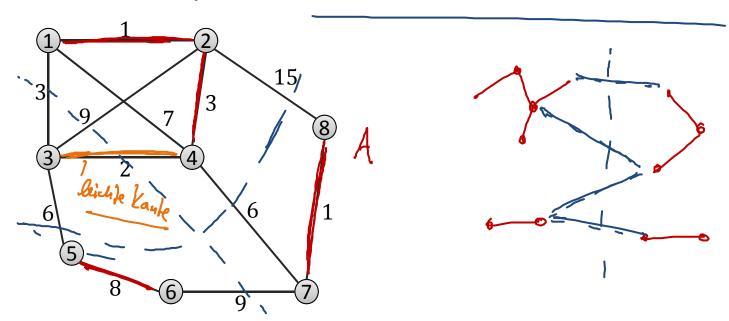


- Kante $\{u, v\} \in E$ ist eine Schnittkante bezüglich $(S, V \setminus S)$, falls ein Ende in S und ein Ende in $V \setminus S$ ist.
- Wir nennen Kante $\{u, v\}$ eine **leichte Schnittkante** bez. $(S, V \setminus S)$, falls sie das kleinste Gewicht von allen Schnittkanten hat

Annahmen:

- G = (V, E, w) ist zus.-h., unger. Graph mit Kantengewichten w(e)
- A ist Teilmenge (Teilgraph) eines MST

Theorem: Sei $(S, V \setminus S)$ ein Schnitt, so dass \underline{A} keine Schnittkanten enthält und sei $\{u, v\}, u \in S, v \in V \setminus S$ eine leichte Schnittkante bezüglich $(S, V \setminus S)$. Dann ist $\{u, v\}$ eine sichere Kante für A.



Sichere Kanten

Theorem: Sei $(S, V \setminus S)$ ein Schnitt, so dass A keine Schnittkanten enthält und sei $\{u, v\}, u \in S, v \in V \setminus S$ eine leichte Schnittkante bezüglich $(S, V \setminus S)$. Dann ist $\{u, v\}$ eine sichere Kante für A.

