
Chapter 3

Leader Election

3.1 Anonymous Leader Election

Some algorithms (e.g. the slow tree coloring Algorithm 3) ask for a special node,
a so-called “leader”. Computing a leader is a very simple form of symmetry
breaking. Algorithms based on leaders do generally not exhibit a high degree
of parallelism, and therefore often suffer from poor time complexity. However,
sometimes it is still useful to have a leader to make critical decisions in an easy
(though non-distributed!) way.

The process of choosing a leader is known as leader election. Although leader
election is a simple form of symmetry breaking, there are some remarkable issues
that allow us to introduce notable computational models.

In this chapter we concentrate on the ring topology. Many interesting chal-
lenges in distributed computing already reveal the root of the problem in the
special case of the ring. Paying attention to the ring also makes sense from a
practical point of view as some real world systems are based on a ring topology,
e.g., the antiquated token ring standard.

Problem 3.1 (Leader Election). Each node eventually decides whether it is a
leader or not, subject to the constraint that there is exactly one leader.

Remarks:

• More formally, nodes are in one of three states: undecided, leader,
not leader. Initially every node is in the undecided state. When
leaving the undecided state, a node goes into a final state (leader or
not leader).

Definition 3.2 (Anonymous). A system is anonymous if nodes do not have
unique identifiers.

Definition 3.3 (Uniform). An algorithm is called uniform if the number of
nodes n is not known to the algorithm (to the nodes, if you wish). If n is
known, the algorithm is called non-uniform.

Whether a leader can be elected in an anonymous system depends on whether
the network is symmetric (ring, complete graph, complete bipartite graph, etc.)
or asymmetric (star, single node with highest degree, etc.). We will now show

23

24 CHAPTER 3. LEADER ELECTION

that non-uniform anonymous leader election for synchronous rings is impossible.
The idea is that in a ring, symmetry can always be maintained.

Lemma 3.4. After round k of any deterministic algorithm on an anonymous
ring, each node is in the same state sk.

Proof by induction: All nodes start in the same state. A round in a synchronous
algorithm consists of the three steps sending, receiving, local computation (see
Definition 1.6). All nodes send the same message(s), receive the same mes-
sage(s), do the same local computation, and therefore end up in the same state.

Theorem 3.5 (Anonymous Leader Election). Deterministic leader election in
an anonymous ring is impossible.

Proof (with Lemma 3.4): If one node ever decides to become a leader (or a
non-leader), then every other node does so as well, contradicting the problem
specification 3.1 for n > 1. This holds for non-uniform algorithms, and therefore
also for uniform algorithms. Furthermore, it holds for synchronous algorithms,
and therefore also for asynchronous algorithms.

Remarks:

• Sense of direction is the ability of nodes to distinguish neighbor nodes
in an anonymous setting. In a ring, for example, a node can distinguish
the clockwise and the counterclockwise neighbor. Sense of direction
does not help in anonymous leader election.

• Theorem 3.5 also holds for other symmetric network topologies (e.g.,
complete graphs, complete bipartite graphs, . . .).

• Note that Theorem 3.5 does generally not hold for randomized algo-
rithms; if nodes are allowed to toss a coin, some symmetries can be
broken.

• However, more surprisingly, randomization does not always help. A
randomized uniform anonymous algorithm can for instance not elect
a leader in a ring. Randomization does not help to decide whether the
ring has n = 3 or n = 6 nodes: Every third node may generate the
same random bits, and as a result the nodes cannot distinguish the
two cases. However, an approximation of n which is strictly better
than a factor 2 will help.

3.2 Asynchronous Ring

We first concentrate on the asynchronous model from Definition 2.7. Through-
out this section we assume non-anonymity; each node has a unique identifier.
Having ID’s seems to lead to a trivial leader election algorithm, as we can simply
elect the node with, e.g., the highest ID.

Theorem 3.6. Algorithm 12 is correct. The time complexity is O(n). The
message complexity is O(n2).

3.2. ASYNCHRONOUS RING 25

Algorithm 12 Clockwise Leader Election

1: Each node v executes the following code:
2: v sends a message with its identifier (for simplicity also v) to its clockwise

neighbor.
3: v sets m := v the largest identifier seen so far
4: if v receives a message w with w > m then
5: v forwards message w to its clockwise neighbor and sets m := w
6: v decides not to be the leader, if it has not done so already.
7: else if v receives its own identifier v then
8: v decides to be the leader
9: end if

Proof: Let node z be the node with the maximum identifier. Node z sends
its identifier in clockwise direction, and since no other node can swallow it,
eventually a message will arrive at z containing it. Then z declares itself to
be the leader. Every other node will declare non-leader at the latest when
forwarding message z. Since there are n identifiers in the system, each node
will at most forward n messages, giving a message complexity of at most n2.
We start measuring the time when the first node that “wakes up” sends its
identifier. For asynchronous time complexity (Definition 2.8) we assume that
each message takes at most one time unit to arrive at its destination. After at
most n − 1 time units the message therefore arrives at node z, waking z up.
Routing the message z around the ring takes at most n time units. Therefore
node z decides no later than at time 2n − 1. Every other node decides before
node z.

Remarks:

• Note that in Algorithm 12 nodes distinguish between clockwise and
counterclockwise neighbors. This is not necessary: It is okay to simply
send your own identifier to any neighbor, and forward a message to
the neighbor you did not receive the message from. So nodes only
need to be able to distinguish their two neighbors.

• Careful analysis shows, that while having worst-case message com-
plexity of O(n2), Algorithm 12 has an average message complexity of
O(n log n). Can we improve this algorithm?

Theorem 3.7. Algorithm 13 is correct. The time complexity is O(n). The
message complexity is O(n log n).

Proof: Correctness is as in Theorem 3.6. The time complexity is O(n) since
the node with maximum identifier z sends messages with round-trip times
2, 4, 8, 16, . . . , 2 · 2k with k ≤ log(n + 1). (Even if we include the additional
wake-up overhead, the time complexity stays linear.) Proving the message com-
plexity is slightly harder: if a node v manages to survive round r, no other node
in distance 2r (or less) survives round r. That is, node v is the only node in its
2r-neighborhood that remains active in round r + 1. Since this is the same for
every node, less than n/2r nodes are active in round r+1. Being active in round
r costs 2 · 2 · 2r messages. Therefore, round r costs at most 2 · 2 · 2r · n

2r−1 = 8n

26 CHAPTER 3. LEADER ELECTION

Algorithm 13 Radius Growth

1: Each node v does the following:
2: Initially all nodes are active. {all nodes may still become leaders}
3: Whenever a node v sees a message w with w > v, then v decides to not be

a leader and becomes passive.
4: Active nodes search in an exponentially growing neighborhood (clockwise

and counterclockwise) for nodes with higher identifiers, by sending out probe
messages. A probe message includes the ID of the original sender, a bit
whether the sender can still become a leader, and a time-to-live number
(TTL). The first probe message sent by node v includes a TTL of 1.

5: Nodes (active or passive) receiving a probe message decrement the TTL and
forward the message to the next neighbor; if their ID is larger than the one
in the message, they set the leader bit to zero, as the probing node does
not have the maximum ID. If the TTL is zero, probe messages are returned
to the sender using a reply message. The reply message contains the ID of
the receiver (the original sender of the probe message) and the leader-bit.
Reply messages are forwarded by all nodes until they reach the receiver.

6: Upon receiving the reply message: If there was no node with higher ID
in the search area (indicated by the bit in the reply message), the TTL is
doubled and two new probe messages are sent (again to the two neighbors).
If there was a better candidate in the search area, then the node becomes
passive.

7: If a node v receives its own probe message (not a reply) v decides to be the
leader.

messages. Since there are only logarithmic many possible rounds, the message
complexity follows immediately.

Remarks:

• This algorithm is asynchronous and uniform as well.

• The question may arise whether one can design an algorithm with an
even lower message complexity. We answer this question in the next
section.

3.3 Lower Bounds

Lower bounds in distributed computing are often easier than in the standard
centralized (random access machine, RAM) model because one can argue about
messages that need to be exchanged. In this section we present a first difficult
lower bound. We show that Algorithm 13 is asymptotically optimal.

Definition 3.8 (Execution). An execution of a distributed algorithm is a list of
events, sorted by time. An event is a record (time, node, type, message), where
type is “send” or “receive”.

3.3. LOWER BOUNDS 27

Remarks:

• We assume throughout this course that no two events happen at ex-
actly the same time (or one can break ties arbitrarily).

• An execution of an asynchronous algorithm is generally not only de-
termined by the algorithm but also by a “god-like” scheduler. If more
than one message is in transit, the scheduler can choose which one
arrives first.

• If two messages are transmitted over the same directed edge, then it
is sometimes required that the message first transmitted will also be
received first (“FIFO”).

For our lower bound, we assume the following model:

• We are given an asynchronous ring, where nodes may wake up at arbitrary
times (but at the latest when receiving the first message).

• We only accept uniform algorithms where the node with the maximum
identifier can be the leader. Additionally, every node that is not the
leader must know the identity of the leader. These two requirements can
be dropped when using a more complicated proof; however, this is beyond
the scope of this course.

• During the proof we will “play god” and specify which message in trans-
mission arrives next in the execution. We respect the FIFO conditions for
links.

Definition 3.9 (Open Schedule). A schedule is an execution chosen by the
scheduler. An open (undirected) edge is an edge where no message traversing
the edge has been received so far. A schedule for a ring is open if there is an
open edge in the ring.

The proof of the lower bound is by induction. First we show the base case:

Lemma 3.10. Given a ring R with two nodes, we can construct an open sched-
ule in which at least one message is received. The nodes cannot distinguish this
schedule from one on a larger ring with all other nodes being where the open
edge is.

Proof: Let the two nodes be u and v with u < v. Node u must learn the
identity of node v, thus receive at least one message. We stop the execution of
the algorithm as soon as the first message is received. (If the first message is
received by v, bad luck for the algorithm!) Then the other edge in the ring (on
which the received message was not transmitted) is open. Since the algorithm
needs to be uniform, maybe the open edge is not really an edge at all, nobody
can tell. We could use this to glue two rings together, by breaking up this
imaginary open edge and connect two rings by two edges. An example can be
seen in Figure 3.1.

Lemma 3.11. By gluing together two rings of size n/2 for which we have open
schedules, we can construct an open schedule on a ring of size n. If M(n/2)
denotes the number of messages already received in each of these schedules, at
least 2M(n/2) + n/4 messages have to be exchanged in order to solve leader
election.

28 CHAPTER 3. LEADER ELECTION

Figure 3.1: The rings R1, R2 are glued together at their open edge.

Proof by induction: We divide the ring into two sub-rings R1 and R2 of size
n/2. These subrings cannot be distinguished from rings with n/2 nodes if no
messages are received from “outsiders”. We can ensure this by not scheduling
such messages until we want to. Note that executing both given open schedules
on R1 and R2 “in parallel” is possible because we control not only the scheduling
of the messages, but also when nodes wake up. By doing so, we make sure that
2M(n/2) messages are sent before the nodes in R1 and R2 learn anything of
each other!

Without loss of generality, R1 contains the maximum identifier. Hence, each
node in R2 must learn the identity of the maximum identifier, thus at least
n/2 additional messages must be received. The only problem is that we cannot
connect the two sub-rings with both edges since the new ring needs to remain
open. Thus, only messages over one of the edges can be received. We look into
the future: we check what happens when we close only one of these connecting
edges.

Since we know that n/2 nodes have to be informed in R2, there must be
at least n/2 messages that must be received. Closing both edges must inform
n/2 nodes, thus for one of the two edges there must be a node in distance n/4
which will be informed upon creating that edge. This results in n/4 additional
messages. Thus, we pick this edge and leave the other one open which yields
the claim.

Lemma 3.12. Any uniform leader election algorithm for asynchronous rings
has at least message complexity M(n) ≥ n

4 (log n+ 1).

Proof by induction: For the sake of simplicity we assume n being a power of
2. The base case n = 2 works because of Lemma 3.10 which implies that
M(2) ≥ 1 = 2

4 (log 2 + 1). For the induction step, using Lemma 3.11 and the
induction hypothesis we have

M(n) = 2 ·M
(n

2

)
+
n

4

≥ 2 ·
(n

8

(
log

n

2
+ 1
))

+
n

4

=
n

4
log n+

n

4
=
n

4
(log n+ 1) .

2

3.4. SYNCHRONOUS RING 29

Remarks:

• To hide the ugly constants we use the “big Omega” notation, the lower
bound equivalent of O(). A function f is in Ω(g) if there are constants
x0 and c > 0 such that |f(x)| ≥ c|g(x)| for all x ≥ x0.

• In addition to the already presented parts of the “big O” notation,
there are 3 additional ones. Remember that a function f is in O(g) if
f grows at most as fast as g. A function f is in o(g) if f grows slower
than g.

• An analogous small letter notation exists for Ω. A function f is in
ω(g) if f grows faster than g.

• Last but not least, we say that a function f is in Θ(g) if f grows as
fast as g, i.e., f ∈ O(g) and f ∈ Ω(g).

• Again, we refer to standard text books for formal definitions.

Theorem 3.13 (Asynchronous Leader Election Lower Bound). Any uniform
leader election algorithm for asynchronous rings has Ω(n log n) message com-
plexity.

3.4 Synchronous Ring

The lower bound relied on delaying messages for a very long time. Since this is
impossible in the synchronous model, we might get a better message complexity
in this case. The basic idea is very simple: In the synchronous model, not
receiving a message is information as well! First we make some additional
assumptions:

• We assume that the algorithm is non-uniform (i.e., the ring size n is
known).

• We assume that every node starts at the same time.

• The node with the minimum identifier becomes the leader; identifiers are
integers.

Algorithm 14 Synchronous Leader Election

1: Each node v concurrently executes the following code:
2: The algorithm operates in synchronous phases. Each phase consists of n

time steps. Node v counts phases, starting with 0.
3: if phase = v and v did not yet receive a message then
4: v decides to be the leader
5: v sends the message “v is leader” around the ring
6: end if

30 CHAPTER 3. LEADER ELECTION

Remarks:

• Message complexity is indeed n.

• But the time complexity is huge! If m is the minimum identifier it is
m · n.

• The synchronous start and the non-uniformity assumptions can be
dropped by using a wake-up technique (upon receiving a wake-up mes-
sage, wake up your clockwise neighbors) and by letting messages travel
slowly.

• There are several lower bounds for the synchronous model: comparison-
based algorithms or algorithms where the time complexity cannot be a
function of the identifiers have message complexity Ω(n log n) as well.

• In general graphs, efficient leader election may be tricky. While time-
optimal leader election can be done by parallel flooding-echo (see
Chapter 2), bounding the message complexity is more difficult.

Chapter Notes

[Ang80] was the first to mention the now well-known impossibility result for
anonymous rings and other networks, even when using randomization. The
first algorithm for asynchronous rings was presented in [Lan77], which was im-
proved to the presented clockwise algorithm in [CR79]. Later, [HS80] found the
radius growth algorithm, which decreased the worst case message complexity.
Algorithms for the unidirectional case with runtime O(n log n) can be found in
[DKR82, Pet82]. The Ω(n log n) message complexity lower bound for compari-
son based algorithms was first published in [FL87]. In [Sch89] an algorithm with
constant error probability for anonymous networks is presented. General results
about limitations of computer power in synchronous rings are in [ASW88, AS88].

Bibliography

[Ang80] Dana Angluin. Local and global properties in networks of proces-
sors (Extended Abstract). In 12th ACM Symposium on Theory of
Computing (STOC), 1980.

[AS88] Hagit Attiya and Marc Snir. Better Computing on the Anonymous
Ring. In Aegean Workshop on Computing (AWOC), 1988.

[ASW88] Hagit Attiya, Marc Snir, and Manfred K. Warmuth. Computing on
an anonymous ring. volume 35, pages 845–875, 1988.

[CR79] Ernest Chang and Rosemary Roberts. An improved algorithm for
decentralized extrema-finding in circular configurations of processes.
Commun. ACM, 22(5):281–283, May 1979.

[DKR82] Danny Dolev, Maria M. Klawe, and Michael Rodeh. An O(n log n)
Unidirectional Distributed Algorithm for Extrema Finding in a Circle.
J. Algorithms, 3(3):245–260, 1982.

BIBLIOGRAPHY 31

[FL87] Greg N. Frederickson and Nancy A. Lynch. Electing a leader in a
synchronous ring. J. ACM, 34(1):98–115, 1987.

[HS80] D. S. Hirschberg and J. B. Sinclair. Decentralized extrema-finding in
circular configurations of processors. Commun. ACM, 23(11):627–628,
November 1980.

[Lan77] Gérard Le Lann. Distributed Systems - Towards a Formal Ap-
proach. In International Federation for Information Processing (IFIP)
Congress, 1977.

[Pet82] Gary L. Peterson. An O(n log n) Unidirectional Algorithm for the
Circular Extrema Problem. 4(4):758–762, 1982.

[Sch89] B. Schieber. Calling names on nameless networks. In Proceedings
of the eighth annual ACM Symposium on Principles of distributed
computing, PODC ’89, pages 319–328, New York, NY, USA, 1989.
ACM.

