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Exercise 1: Deterministic Maximal Independent Set

In the lecture, we discussed a slow but simple deterministic maximal independent set (MIS) algorithm
(Algorithm 28) in which the decisions of the nodes are based on their identifiers. The time complexity
of this algorithm is O(n).
We might hope that if the nodes with the largest degrees, i.e., the largest number of neighbors, decide
to enter the MIS, the set of undecided nodes reduces the most. In the following algorithm we try to
exploit the knowledge of the node degrees:

Assume that each node knows its degree and also the degrees of all its neighbors. If a node has a larger
degree than all its undecided neighbors, it joins the MIS and informs its neighbors. Once a node v
learns that (at least) one of its neighbors joined the MIS, v decides not to join the MIS.

Naturally, the algorithm does not make any progress if two or more neighboring nodes share the
largest degree. As this is a difficult problem, we will assume in the following that this situation does
not occur, i.e., if a node v has the largest degree, then no neighboring node has the same degree as v.1

1. Draw a graph that illustrates that this algorithm has a large time complexity for trees! Give a
(non-trivial) lower bound on the (worst-case) time complexity for trees consisting of n nodes!

Hint: A lower bound of ω(log n) is sufficient to show that this algorithm is worse than the Fast
MIS algorithm for trees, you do not need to find a lower bound of Ω(n).

Note: A runtime of ω(f(n)) means that the runtime is “asymptotically strictly larger than f(n)”.

2. Construct a graph that shows that the time complexity of this algorithm is even worse for
arbitrary graphs than for trees! What is the time complexity?

Exercise 2: (Local) Reductions

Many problems can be seen as—more or less obvious—variants of others and therefore can be solved
by clever use of the same algorithms. In this exercise you may use the algorithms derived in the lecture
as subroutines.

1. Given a graph G = (V,E), a dominating set is a subset D ⊆ V such that each node either is in
D or has a neighbor in D. The minimum dominating set problem is to find a dominating set
of minimum cardinality. Give a 3/2-approximation algorithm for this problem on rings which
takes O(log∗ n) time!

1The motivation for this constraint is that if we prove that the time complexity is large even if there is no conflict in
each step, then being able to break ties clearly does not help.
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2. A family of graphs of bounded independence is a set of graphs where, for each node, the largest in-
dependent set in the one-hop neighborhood (i.e., the direct neighbors) has a size that is bounded
by a constant C. Give a C-approximation algorithm to the minimum dominating set problem
on graphs of bounded independence running in O(log n) time!
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