
Albert-Ludwigs-Universität
Institut für Informatik
Prof. Dr. F. Kuhn April 28, 2015

Network Algorithms, Summer Term 2015

Problem Set 1 – Sample Solution

Exercise 1: Vertex Coloring

1. Note that an “undecided” message can be realized by sending nothing at all; thus we do not
count such messages. Therefore, each node sends exactly two messages to each neighbor, one in
the first round and one after assigning a color. Hence, the total number of messages is 4|E|, as
4 messages are sent over each edge.

2. The number of messages can be reduced to 3|E|, if a “deciding” node does send its color only
to undecided nodes in its neighborhood.

Exercise 2: Coloring Rings and Trees

1. The log-star algorithm for the ring is basically identical to the algorithm for trees. Nodes do
not have a parent in the ring, therefore we simply define the left neighbor of any node to be
its “parent”. Given this definition, we can run the normal log-star algorithm. Using the same
argumentation as for trees, it can be shown that no two neighboring nodes choose the same
color. Note that we can omit the “shift” step, as all “children” (i.e., the right neighbor) always
have the same color.

2. We use two additional colors, ` and r, to solve the termination problem. Furthermore, we let
each node send its color to both neighbors between each round of the log-star algorithm. This
way, each node always knows the colors of both neighbors at the beginning of a round of the
log-star algorithm (Algorithm 4).

The algorithm works as follows for a node v: As long as neither v nor one of its neighbors has
a color in R∪ {`, r}, it executes Algorithm 4. If v learns that the color of its left neighbor is in
R (regardless of the color of the right neighbor), and v’s color is not in R, then v recolors itself
with the color ` and waits until both its neighbors have a color in R∪ {`, r}. If a node v learns
that the color of its right neighbor is in R, while the color of its left neighbor and its own color
are both not in R, then v recolors itself with the color r and waits until both its neighbors have
a color in R∪{`, r}. Additionally, as a node v to the right of a node colored ` no longer receives
new colors, we need the rule that v simply takes an arbitrary color c ∈ R as the new color of its
parent and computes its new color based on c and its own color in each round (Line 8).

Inside the first while-loop, v eventually reaches a color in R ∪ {`, r}. After that, node v waits
until its neighbors have also acquired a color in this range in order to start the color reduction
phase. In each round of the color reduction phase (Lines 13–17), one color of {3, 4, 5, `, r} is
replaced by a legal color in {0, 1, 2}. As all nodes know the absolute number of rounds that have
passed so far, this can be done without interference.

To prove correctness, we have to show that when reaching Line 13 of the algorithm no two
neighboring nodes u and v have picked the same color in R∪ {`, r}. We show this for ` in more
detail:

Lemma. Two neighbors u and v cannot both be colored `.

1

Algorithm 1 Synchronous “3”-Coloring on Ring

1: send cv to both neighbors
2: while cv /∈ R ∪ {`, r} do
3: if c` ∈ R then
4: cv := `;
5: else if cr ∈ R then
6: cv := r;
7: else if c` = ` then
8: do one step of Algorithm 4 (Lines 5–10) with an arbitrary color c ∈ R as parent color
9: else

10: do one step of Algorithm 4 (Lines 5–10)
11: end if
12: send cv to both neighbors
13: end while
14: wait until both neighbors’ colors are in R∪ {`, r}
15: while cv /∈ {0, 1, 2} do
16: x := (roundnumber mod 5) + 3;
17: if (cv = x) ∨ (cv = ` ∧ x = 6) ∨ (cv = r ∧ x = 7) then
18: choose new color cv ∈ {0, 1, 2} with First Free
19: send cv to both neighbors
20: end if
21: end while

Proof. Let u be the parent of v w.l.o.g. A node only adopts ` if its color is not in R, but its
parent is in R. This condition cannot hold for two neighboring nodes at the same time. Hence,
u and v cannot reach color ` in the same round.

If u reaches color ` first, then v will reduce its color according to an arbitrary color from R in
each following round and thus, it will never choose color `.

If v reaches color ` first, u’s color must be in R and thus u will not change its color again, in
particular not to color `, proving that two neighboring nodes cannot be colored `.

The same argumentation applies also to the color r. The logic of Algorithm 4 ensures that no
two neighboring nodes get the same color c ∈ R. Note that a node v to the right of a node
colored ` acts like the root in a tree and can thus simply choose an arbitrary color c ∈ R in each
round without causing any conflicts.

The running time of the algorithm is 1 + log∗ n + 5 ∈ O(log∗ n).

2

