Informatik II - SS 2016 (Algorithmen & Datenstrukturen)

Vorlesung 9 (25.5.2016)

Hashtabellen II, Binäre Suchbäume I

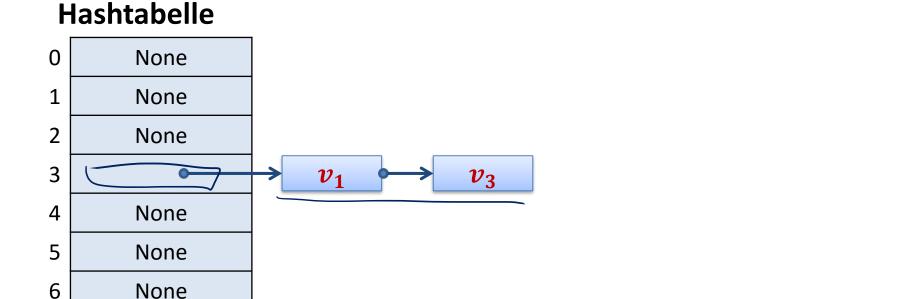
Fabian Kuhn Algorithmen und Komplexität Jede Stelle in der Hashtabelle zeigt auf eine verkette Liste

 v_2

None

None

m-1



Platzverbrauch: O(m+n)

• Tabellengrösse m, Anz. Elemente n

Hashing mit offener Adressierung

Ziel:

- Speichere alles direkt in der Hashtabelle (im Array)
- offene Adressierung = geschlossenes Hashing
- keine Listen

Grundidee:

- Bei Kollisionen müssen alternative Einträge zur Verfügung stehen
- Erweitere Hashfunktion zu

$$h: S \times \{0, ..., m-1\} \rightarrow \{0, ..., m-1\}$$

- Für jedes $x \in S$ sollte h(x, i) durch alle m Werte gehen (für versch. i)
- Zugriff (schreiben/lesen) zu Element mit Schlüssel x:
 - Versuche der Reihe nach an den Positionen

$$h(x,0), h(x,1), h(x,2), ..., h(x,m-1)$$

Doppel-Hashing

Ziel: Verwende mehr als m verschiedene Abfolgen von Positionen

Idee: Benutze zwei Hashfunktionen

$$h(x, i) = (h_1(x) + i \cdot h_2(x)) \mod m$$

Vorteile:

- Sondierungsfunktion hängt in zwei Arten von x ab
- Vermeidet die Nachteile von linearem und quadr. Sondieren
- Wahrscheinlichkeit, dass zwei Schlüssel x und x' die gleiche Positionsfolge erzeugen:

$$h_1(x) = h_1(x') \land h_2(x) = h_2(x') \implies \text{WSK} = \frac{1}{m^2}$$

Funktioniert in der Praxis sehr gut!

Offene Adressierung:

- Alle Schlüssel/Werte werden direkt im Array gespeichert
- Keine Listen nötig
 - spart den dazugehörigen Overhead...

Nur schnell, solange der Load

ad # sesp. Shlüssel $\alpha = \frac{n}{m}$ Grösse der Talelle

nicht zu gross wird...

- dann ist's dafür besser als Chaining...
- $\alpha > 1$ ist nicht möglich!
 - da nur m Positionen zur Verfügung stehen

Rehash

Was tun, wenn die Hashtabelle zu voll wird?

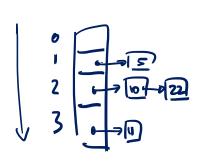
- Offene Adressierung: $\alpha > 1$ nicht möglich, bei $\alpha \to 1$ sehr ineff.
- Chaining: Komplexität wächst linear mit α

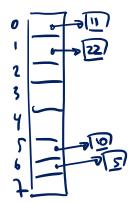
Was tun, wenn die gewählte Hashfunktion schlecht ist?

Rehash:

- Erstelle neue, grössere Hashtabelle, wähle neue Hashfunktion h'
- Füge alle Schlüssel/Werte neu ein

Beispiel: $X = \{5, 10, 11, 22\}, h(x) = x \mod 4, h'(x) = 3x - 1 \mod 8$





Kosten Rehash

Ein Rehash ist teuer!

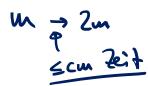
Kosten (Zeit):

- $\Theta(\underline{m} + \underline{n})$: linear in der Anzahl eingefügten Elemente und der Länge der alten Hashtabelle
 - typischerweise ist das einfach $\Theta(n)$ bei lehash α gross (7.3. $\alpha > 1/2$)
- Wenn man es richtig macht, ist ein Rehash selten nötig.
- richtig heisst:
 - gute Hashfunktion (z.B. aus einer universellen Klasse)
 - gute Wahl der Tabellengrössen: bei jedem **Rehash** sollte die **Tabellengrösse** etwa **verdoppelt** werden alte Grösse $\underline{m} \implies$ neue Grösse $\approx 2m$
 - Verdoppeln ergibt immer noch durchschnittlich konstante Zeit pro Hashtabellen-Operation
 - → amortisierte Analyse (werden wir gleich anschauen...)

Kosten Rehash

Analyse Verdoppelungsstrategie

- Wir machen ein paar vereinfachende Annahmen:
 - Bis zu Load $\underline{\alpha}_0$ (z.B. $\alpha_0 = \frac{1}{2}$) kosten alle Hashtabellen-Operationen $\leq c$
 - Bei Load α_0 wird die Tabellengrösse verdoppelt: Alte Grösse m, neue Grösse 2m, Kosten $\leq c \cdot m$
 - Am Anfang hat die Tabelle Grösse $m_0 \in O(1)$
 - Die Tabelle wird nie verkleinert...



 Wie gross sind die Kosten für das Rehashing, verglichen mit den Gesamtkosten für alle anderen Operationen?

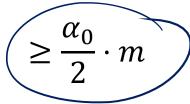
Kosten Rehash

Gesamtkosten

- - d.h., bis jetzt haben wir $k \ge 1$ Rehash-Schritte gemacht
 - Bemerkung: Bei k=0 sind die Rehash-Kosten 0. 2^{i} $\mu_{\alpha} \rightarrow 2^{i}$ $\mu_{\alpha} : \leq c \cdot 2^{i}$ μ_{α}
- Die Gesamt-Rehash-Kosten sind dann

$$\leq \sum_{i=0}^{k-1} c \cdot m_0 \cdot 2^i = c \cdot m_0 \cdot (2^k - 1) \leq c \cdot m$$

- Gesamt-Kosten für die übrigen Operationen
 - Beim Rehash von Grösse m/2 auf m waren $\geq \alpha_0 \cdot m/2$ Einträge in der Tabelle
 - Anzahl Hashtabellen-Operationen (ohne Rehash)



10

Die Gesamt-Rehash-Kosten sind dann

$$\leq \sum_{i=0}^{k-1} c \cdot m_0 \cdot 2^i = c \cdot m_0 \cdot \left(2^k - 1\right) \leq \underline{c \cdot m}$$

Anzahl Hashtabellen-Operationen

$$\#\mathsf{OP} \ge \frac{\alpha_0}{2} \cdot m$$

Durchschnittskosten pro Operation

$$\frac{\text{\#OP} \cdot c + \text{Rehash_Kosten}}{\text{\#OP}} \leq c + \frac{2c}{\alpha_0} \in \underbrace{O(1)}$$

- Im Durschnitt sind die Kosten pro Operation konstant
 - auch für worst-case Eingaben (solange die Annahmen zutreffen)
 - Durschnittskosten pro Operation = amortisierte Kosten der Operation

Amortisierte Analyse

Algorithmenanalyse bisher:

worst case, best case, average case

Jetzt zusätzlich amortized worst case:

- n Operationen o_1 , ..., o_n auf einer Datenstruktur, t_i : Kosten von o_i
- Kosten können sehr unterschiedlich sein (z.B. $t_i \in [1, c \cdot i]$)
- Amortisierte Kosten pro Operation

$$\frac{T}{\underline{n}}$$
, wobei $T = \sum_{i=1}^{n} t_i$

- Amortisierte Kosten: Durchschnittskosten pro Operation bei einer worst-case Ausführung
 - amortized worst case ≠ average case!!
- Mehr dazu in der Algorithmentheorie-Vorlesung (und evtl. später)

- Falls man immer nur vergrössert und davon ausgeht, dass bei kleinem Load, Hashtabellenop. O(1) Kosten haben, sind die amortisierten Kosten pro Operation O(1).
- Analyse funktioniert auch bei zufälliger Hashfunktion aus universeller Familie (mit hoher Wahrscheinlichkeit)
 - dann haben Hashtabellen-Op. bei kleinem Load mit hoher Wahrscheinlichkeit amortisierte Kosten O(1)
- Die Analyse lässt sich auch auf Rehashs zum Verkleinern erweitern
- In einer ähnlichen Art kann man aus fixed-size Arrays dynamische Arrays bauen
 - Alle Arrayoperationen haben dann O(1) amortisierte Laufzeit
 - Vergrössern/verkleinern erlaubt der ADT nur in 1-Elem.-Schritten am Ende!
 - Werden wir vielleicht noch genauer anschauen...

Cuckoo Hashing Idee

UNI FREIBURG

13

Hashing Zusammenfassung:

- effiziente Dictionary-Datenstruktur
- Operationen brauchen im Erwartungswert (meistens) O(1) Zeit
- Bei Hashing mit Chaining hat insert immer O(1) Laufzeit
- Können wir auch bei **find** O(1) Laufzeit garantieren?
 - wenn gleichzeitig insert nur noch im Erwartungswert O(1) ist...

Cuckoo Hashing Idee:

- Offene Adressierung
 - an jeder Position der Tabelle hat es nur für ein Element Platz
- Zwei Hashfunktionen h_1 und h_2
- Ein Schlüssel x wird immer bei $h_1(x)$ oder $h_2(x)$ gespeichert
 - Falls beim Einfügen beide Stellen schon besetzt sind, müssen wir umorganisieren...

Cuckoo Hashing

Enfügen eines Schlüssels x:

- x wird immer an der Stelle $h_1(x)$ eingefügt
- Falls schon ein anderer Schlüssel y an der Stelle $h_1(x)$ ist:
 - Werfe y da raus (daher der Name: Cuckoo Hashing)
 - y muss an seiner alternativen Stelle eingefügt werden (falls es bei $h_1(y)$ war, an Stelle $h_2(y)$, sonst an Stelle $h_1(y)$)
 - falls da auch schon ein Element \underline{z} ist, werfe z raus und platziere es an seiner Alternativposition
 - und so weiter...

Find / Delete:

- Falls x in der Tabelle ist, ist's an Stelle $h_1(x)$ oder $h_2(x)$
- bei Delete: Markiere Zelle als leer!
- beide Operationen immer O(1) Zeit!

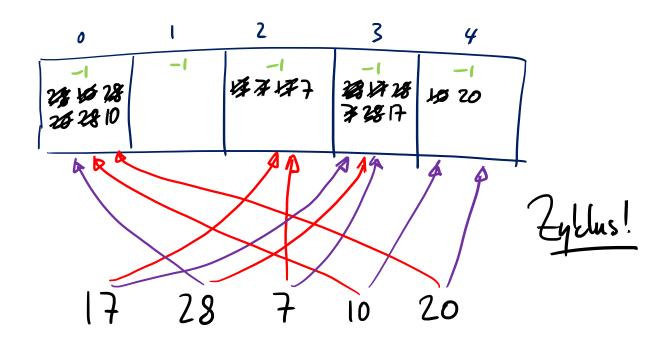
Cuckoo Hashing Beispiel

Tabellengrösse m=5

Hashfunktionen $h_1(x) = x \mod 5$, $h_2(x) = 2x - 1 \mod 5$

Füge Schlüssel 17, 28, 7, 10, 20 ein:

-1: leer



Cuckoo Hashing: Zyklen

16

- Beim Einfügen kann es zu einem Zyklus kommen
 - -x wirft y_1 raus
 - $-y_1$ wirft y_2 raus
 - $-y_2$ wirft y_3 raus
 - **–** ...
 - $-y_{\ell-1}$ wirft y_{ℓ} raus
 - $-y_{\ell}$ wirft x raus
- Dann wird noch der alternative Platz für x ausprobiert, aber da kann das Gleiche auch wieder passieren...
- Tritt insbesondere auf, falls $h_1(y_i) = h_2(y_i)$
- In dem Fall wählt man neue Hash-Funktionen und macht einen Rehash (normalerweise mit grösserer Tabelle)

Cuckoo Hashing: Hashfunktionen

Wie wählt man die zwei Hashfunktionen?

- Sie sollten möglichst "unabhängig" sein...
- Wenige Schlüssel x, für welche $h_1(x) = h_2(x)$
- Eine gute Möglichkeit:

Zwei unabhängige, zufällige Funktionen einer universellen Menge

- Dann kann man zeigen, dass Zyklen nur sehr selten vorkommen, solange $n \leq m/2$
- Sobald die Tabelle halbvoll ist $(n \ge m/2)$ sollte man daher einen Rehash machen und zu einer doppelt so grossen Tabelle wechseln

Find / Delete:

- Hat immer Laufzeit O(1)
- Man muss nur die zwei Stellen $h_1(x)$ und $h_2(x)$ anschauen
- Das ist der grosse Vorteil von Cuckoo Hashing

Insert:

(Erwartungswest)

- Man kann zeigen, dass das im Durchschnitt auch Zeit O(1) braucht
- Falls man die Tabelle nicht mehr als zur Hälfte füllt
- Verdoppeln der Tabellengrösse bei Rehash ergibt konstante durchschnittliche Laufzeit für alle Operationen!

Hashing in Python

Hashtabellen (Dictionary):

https://docs.python.org/2/library/stdtypes.html#mapping-types-dict

neue Tabelle generieren: table = {}

(key,value)-Paar einfügen: table.update({key : value})

Suchen nach key: key in table

table.get(key)

table.get(key, default_value)

Löschen von key: del table[key]

table.pop(key, default_value)

Hashing in Java

20

Java-Klasse HashMap:

- Neue Hashtab. erzeugen (Schlüssel vom Typ K, Werte vom Typ V)
 HashMap<K,V> table = new HashMap<K,V>();
- Einfügen von (key,value)-Paar (key vom Typ K, value vom Typ V)
 table.put(key, value)
- Suchen nach key
 table.get(key)
 table.containsKey(key)
- Löschen von key table.remove(key)
- Ähnliche Klasse HashSet: verwaltet nur Menge von Schlüsseln

Es gibt nicht eine Standard-Klasse

hash_map:

Sollte bei fast allen C++-Compilern vorhanden sein

http://www.sgi.com/tech/stl/hash_map.html

unordered_map:

Seit C++11 in Standard STL

http://www.cplusplus.com/reference/unordered_map/unordered_map/

Hashing in C++

C++-Klassen hash_map / unordered_ map:

- Neue Hashtab. erzeugen (Schlüssel vom Typ K, Werte vom Typ V)
 unordered_map<K,V> table;
- Einfügen von (key,value)-Paar (key vom Typ K, value vom Typ V)
 table.insert(key, value)
- Suchen nach key
 table[key] oder table.at(key)
 table.count(key) > 0
- Löschen von key table.erase(key)

Hashing in C++

Achtung

- Man kann eine hash_map / unordered_map in C++ wie ein Array benutzen
 - die Array-Elemente sind die Schlüssel
- Aber:

T[key] fügt den Schlüssel key ein, falls er noch nicht drin ist

T.at(key) wirft eine Exception falls key nicht in der Map ist

Verteilte Hashtabellen

Ziel: Ein verteilter Dictionary

- Internet
- Verwalte (<u>key, value</u>)-Paare in einem Netzwerk
 - z.B. auf vielen Rechnern im Internet
- Jeder Rechner soll einen Teil der Daten speichern
- Daten sollen schnell zugreifbar sein (übl. Dictionary-Operationen)
- Da die Anzahl Rechner gross sein kann, soll jeder Rechner im Netzwerk nur wenige andere "kennen" müssen...
 - Eine Tabelle mit allen Rechnern ist nicht machbar
 - Einen zentralen Server mit allen Informationen wollen wir auch nicht...
- Typische Anwendung: Peer-to-Peer Netzwerke
- Wir schauen uns eine von vielen ähnlichen Lösungen an...
 - im Wesentlichen Chord...

BURG

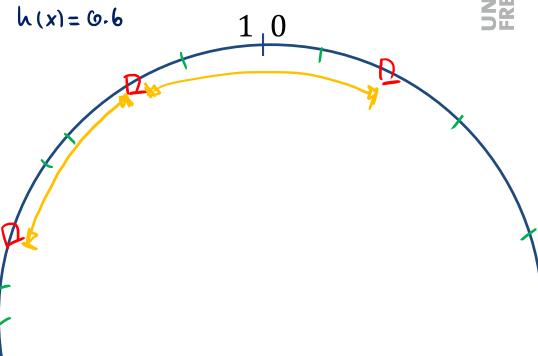
Hashfunktion:

0-1

h(x)=0.7832

- $h: S \to [0, 1]$
 - verstehe Intervall [0,1]als Einheitskreis
- Jeder Schlüssel wird auf den Einheitskreis gemappt

- Jeder Knoten u wählt einen zufälligen Wert $\ell_u \in [0, 1]$ (einen zufälligen Pkt. auf dem Einheitskreis)
- Ein Knoten u speichert die Daten zu den Schlüsseln zwischen u und seinem Nachfolger v auf dem Kreis



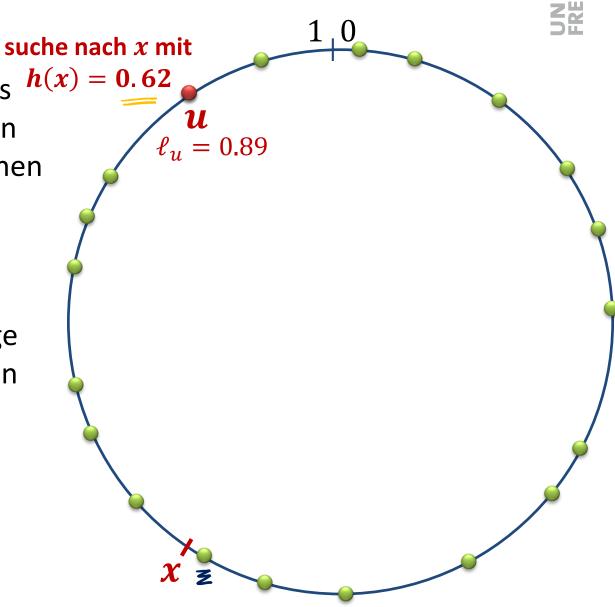
Fabian Kuhn Informatik II, SS 2016 25

0.6

Idee:

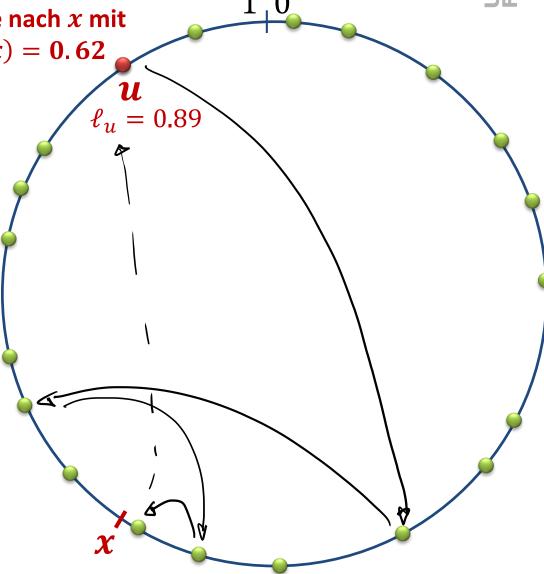
Suche ist einfach, falls
 ^h
 u eine Tabelle mit den
 Adressen und Bereichen
 von allen Knoten zur
 Verfügung hat

 u will aber nur wenige Adressen von anderen Knoten verwalten



Idee:

benutze binäre Suche! h(x) = 0.62



• Jeder Knoten u hat eine direkte Verbindung zu den direkten Nachfolgern

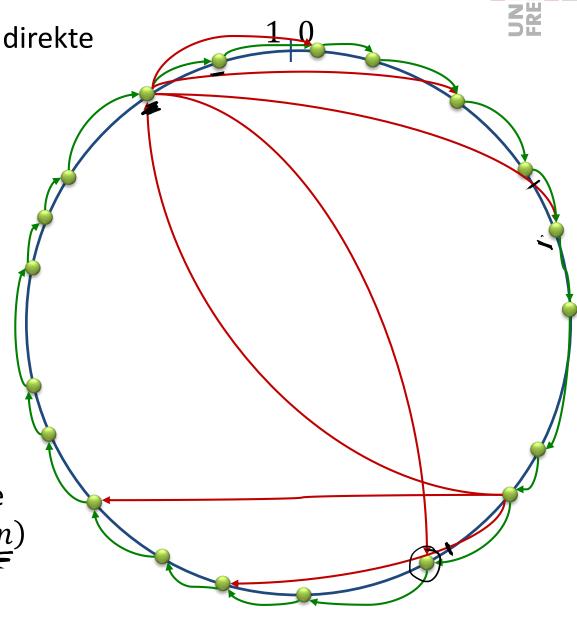
 Und zu den Nachfolger-Knoten der Werte

$$\ell_u + 2^{-i} \quad \ell_u + \frac{1}{2}$$

$$(i = 1, ..., \log n)$$

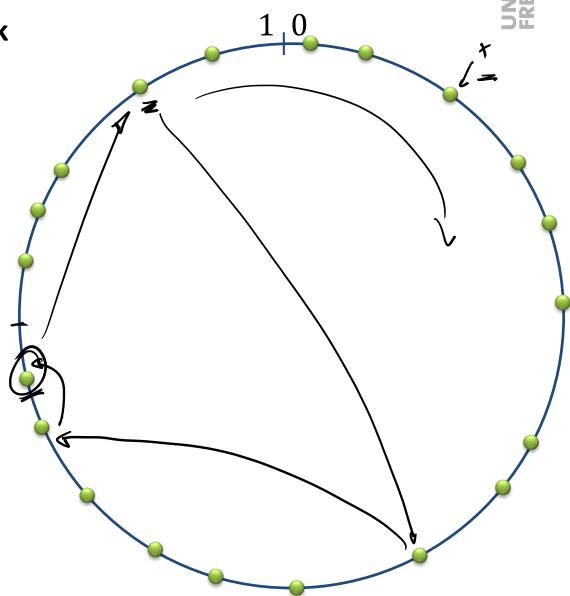
$$- n: \text{Anz. Knoten}$$

• Jeder Knoten hat direkte Verbindungen zu $O(\log n)$ anderen Knoten



Man kann in dem Netzwerk in $O(\log n)$ Zeit suchen:

- Zeit = #besuchte Knoten
- Man kann in jedem
 Schritt im Wesentlichen
 in die Mitte zwischen
 der aktuellen Position
 und dem Schlüssel x
 springen!



Zusammenfassung: Verteilte Hashtabelle

- Man geht davon aus, dass prinzipiell jeder mit jedem kommunizieren kann
 - Ist im Internet der Fall, IP-Adresse genügt, um Nachricht zu schicken
- Der durch die direkten Verbindungen induzierte Graph heisst auch Overlay Netzwerk
- Im Overlay Netzwerk hat jeder $O(\log n)$ Nachbarn
- Man kann den Algorithmus so implementieren, dass alle wichtigen Operationen $O(\log n)$ Laufzeit haben
 - Einfügen / löschen / suchen eines Schlüssels
 (Operation wird jeweils von irgend einem Knoten ausgeführt)
 - Einfügen / löschen eines Knotens

Zusätzliche Dictionary Operationen

Dictionary:

insest, delete, find

Zusätzliche mögliche Operationen:

• D.minimum() : gibt kleinsten key in der Datenstruktur zurück

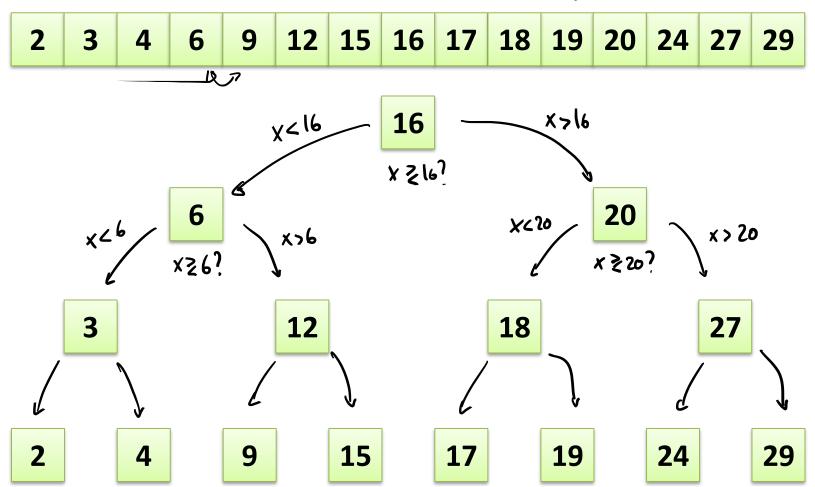
D.maximum() : gibt grössten key in der Datenstruktur zurück

• D.successor(key) : gibt nächstgrösseren key zurück

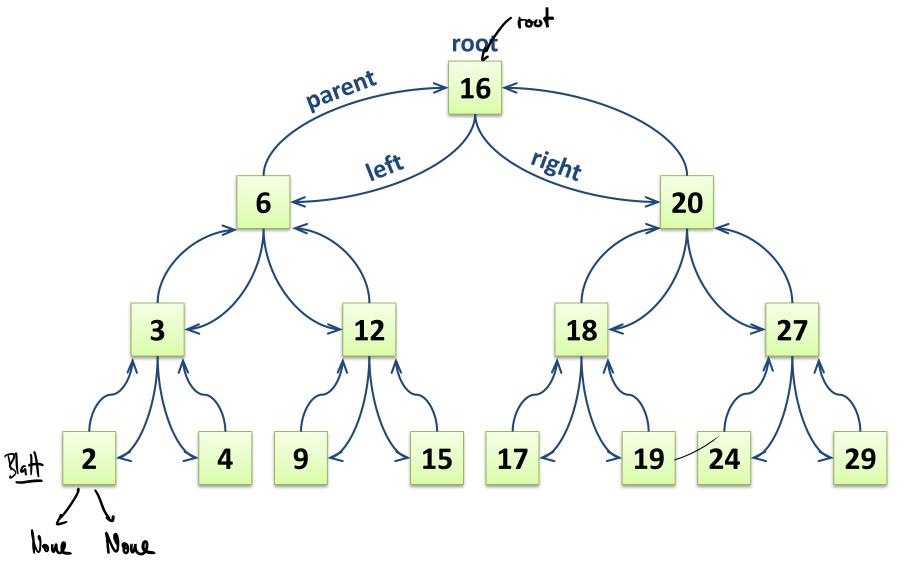
• D.predecessor(key): gibt nächstkleineren key zurück

D.getRange(k1, k2): gibt alle Einträge mit Schlüsseln im Intervall
 [k1,k2] zurück

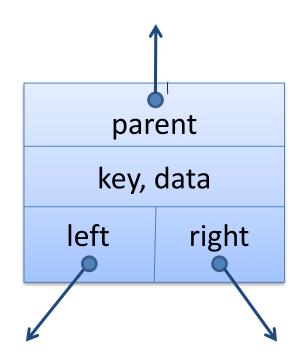
• Binäre Suche nach x in einem sortierten Array...

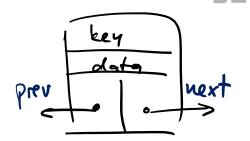


Benutze den Suchbaum der binären Suche als Datenstruktur



TreeElement:





Implementierung: gleich wie bei den Listen-Elementen

Binäre Suchbäume

FREIBURG

Binäre Suchbäume müssen nicht immer so schön symmetrisch sein...

