
Albert-Ludwigs-Universität
Institut für Informatik
Prof. Dr. F. Kuhn July 05, 2016
Mohamad Ahmadi, Hamid Ghodselahi

Network Algorithms, Summer Term 2016

Problem Set 10
hand in by Wednesday, July 13, 2016

Exercise 1: Communication Complexity of Set Disjointness

In the lecture we studied the communication complexity of the equality function. Now we consider
the disjointness function: Alice and Bob are given subsets X,Y ⊆ {1, . . . , k} and need to determine
whether they are disjoint. Each subset can be represented by a string. E.g. we define the ith bit of
x ∈ {0, 1}k as xi := 1 if i ∈ X and xi := 0 if i /∈ X. Now define disjointness of X and Y as:

DISJ(x, y) :=

{
0 : there is an index i such that xi = yi = 1
1 : else

a) Write down MDISJ for the DISJ -function when k = 3.

b) Use the matrix obtained in a) to provide a fooling set of size 4 for DISJ in case k = 3.

c) In general, prove that CC(DISJ) = Ω(k).

Exercise 2: Distinguishing Diameter 2 from 4

In the lecture we stated that when the bandwidth of an edge is limited to O(log n), the diameter of
a graph can be computed in O(n). In this problem, we show that we can do faster in case we know
that all networks/graphs on which we execute an algorithm have either diameter 2 or diameter 4. We
start by partitioning the nodes into sets: Let s := s(n) be a threshold and define the set of high degree
nodes H := {v ∈ V | d(v) ≥ s} and the set of low degree nodes L := {v ∈ V | d(v) < s}. Next, we
define: An H-dominating set DOM is a subset DOM ⊆ V of the nodes such that each node in H is
either in the set DOM or adjacent to a node in the set DOM . Assume in the following, that we can
compute an H-dominating set DOM of size n logn

s in time O(D).

Algorithm 1 “2-vs-4”. Input: G with diameter 2 or 4 Output: diameter of G

1: if L 6= ∅ then
2: choose v ∈ L . We know: This takes O(D).
3: compute a BFS tree from each vertex in N1(v)
4: else
5: compute an H-dominating set DOM . Use: Assumption
6: compute a BFS tree from each vertex in DOM
7: end if
8: if all BFS trees have depth 2 or 1 then
9: return 2

10: else
11: return 4
12: end if

1

a) What is the distributed runtime of Algorithm 2-vs-4? In case you believe that the distributed
implementation of a step is not known from the lecture, find a distributed implementation for
this step! Hint: The runtime depends on s and n.

b) Find a function s := s(n) such that the runtime is minimized (in terms of n).

c) Prove that if the diameter is 2, then Algorithm 2-vs-4 always returns 2.

Now assume that the diameter of the network is 4 and that we know vertices u and v with distance 4
to each other.

d) Prove that if the algorithm performs a BFS from at least one node w ∈ N1(u) it decides “the
diameter is 4”.

e) In case L 6= ∅: Prove that the algorithm performs a BFS of depth at least 3 from some node w.
Hint: use d)

f) In case L = ∅: Prove that the algorithm performs a BFS of depth at least 3 from some node w.

g) Give a high level idea, why you think that this does not violate the lower bound of Ω(n/ log n)
presented in the lecture!

h) Assume s = n
2 . Prove or disprove: If the diameter is 2, then Algorithm 2-vs-4 will always

compute some BFS tree of depth exactly 2.

2

