Network Algorithms, Summer Term 2016
Problem Set 7

hand in by Wednesday, June 22, 2016

Exercise 1: Coloring Rings

In Chapter 1, we proved that a ring can be colored with 3 colors in \(\log^* n + O(1) \) rounds. Clearly, a ring can only be (legally) colored with 2 colors if the number of nodes is even.

1. Prove that, even if the nodes in a directed ring know that the number of nodes is even, coloring the ring with 2 colors requires \(\Omega(n) \) rounds!\(^1\)

2. Since coloring a ring with 2 colors apparently takes a long time, we again resort to the problem of coloring rings using 3 colors. Assume that a maximal independent set (MIS) has already been constructed on the ring, i.e., each node knows whether it is in the independent set or not. Give an algorithm to color the ring with 3 colors in this scenario! What is the time complexity of your algorithm? Deduce from this a lower bound for computing a MIS!

Exercise 2: Coloring unrooted trees

In the coloring chapter we have seen that any rooted tree consisting of \(n \) nodes can be 3-colored in \(O(\log^* n) \) rounds. In contrast, we showed a lower bound of \(\Omega(\log n / \log \log n) \) for coloring unrooted trees with a constant number of colors.

The goal of this exercise is to almost match the lower bound, that is, we show that unrooted trees can be 3-colored in time \(O(\log n) \). We will develop the algorithm in four steps:

1) Assume the nodes \(V \) of an unrooted tree \(T = (V, E) \) are partitioned into two sets \(V_0 \) and \(V_1 \) such that all the nodes in \(V_0 \) have degree at most 2 and the nodes in \(V_1 \) have degree at least 3. Further, suppose we are given valid 3-colorings of the forests \(T[V_0] \) and \(T[V_1] \) induced by \(V_0 \) and \(V_1 \).

Provide an algorithm that merges these two colorings into a valid 3-coloring of \(T \) in time \(O(1) \).

2) Show that in any tree with \(n \) nodes, at least \(\frac{n}{2} \) of the nodes have degree at most 2.

3) Use part 1) and 2) to provide a recursive algorithm for 3-coloring unrooted trees in \(O(\log^* n \cdot \log n) \) rounds. What is the recurrence relation of your algorithm?

Hint: There is a distributed algorithm that finds a \((\Delta + 1) \)-coloring in any graph with maximum degree at most \(\Delta \) and \(n \) nodes in \(O(\Delta^2 + \log^* n) \) rounds (Tutorial Session 1). If the maximum degree \(\Delta \) is constant this implies a 3-coloring algorithm with time complexity \(O(\log^*(n)) \). You can use this result as a black box.

4) Describe how to parallelize parts of your algorithm to improve the runtime from \(O(\log^* n \log n) \) to \(O(\log n) \).

\(^1\)As in the lecture, the message size and local computations are unbounded and all nodes have unique identifiers from 1 to \(n \).