
Albert-Ludwigs-Universität
Institut für Informatik
Prof. Dr. F. Kuhn May 26, 2016
Mohamad Ahmadi, Hamid Ghodselahi

Network Algorithms, Summer Term 2016

Problem Set 3 – Sample Solution

Exercise 1: Leader Election (Message Complexity Improvement)

(a) Consider the following flooding/echo algorithm. Each node v keeps a variable maxidv which is
the largest ID seen so far by v and a pointer pv which determines its parent in the spanning
tree being constructed during the execution. Initially for each node v, maxidv is its identifier
and pv is null. In the first round each node sends its own ID to all its neighbors. Thereafter,
each node v, upon receiving an ID strictly larger than maxidv, updates its maxidv to the new
larger ID and pv to one of the senders of this ID. After updating maxidv it sends the maxidv
to all its neighbors except its parent. When a node receives either X or ACKX from each of its
neighbors, then it sends ACKX to its parent. When a node with ID equals X receives ACKX

from all its neighbors, then the node realizes that it has the largest ID and it broadcasts through
the constructed tree to inform all the nodes (i.e., upon receiving this information, termination
is detected by all the nodes).

Clearly it takes D rounds until the largest ID in the network reaches all the nodes in the network
and D rounds for doing the echo back to the node with the largest ID and D rounds more for
informing all the nodes about the leader’s ID. After 3D rounds all the nodes receive an ID
larger than their own IDs. Hence all the nodes except the node with maximum ID decide to
non-leader. Therefore, the whole running time of the algorithm is O(D). Each node updates
its maxid variable at most n times and hence sends a message on each of its adjacent edges at
most n times. Thus the message complexity of the algorithm is at most O(mn).

(b) Each node v, in the first round receiving a message (or messages), stores it (or one of them) in
the output buffer. In the next round it transmits its buffer content to all its neighbors that it
has not received any message from so far.

Since any node in the network is at the distance of at most D of some source message, it will be
informed about at least one message in at most D rounds of execution.

(c) The idea of solving this exercise is from the FindMax algorithm introduced by Chrobak1. The
algorithm runs for log(N) phases. Each phase consists of D rounds. In each phase all nodes
know that the maximum ID is in [a, b], where a and b are positive integers and a ≤ b. Initially
a = 1 and b = N .

In each phase let c = d(a + b)/2e. Assume that each node v (if any!), where c ≤ IDv ≤ b, is a
source node with source message [c, b]. Then by running the flooding algorithm of part (b), all
the nodes receive [c, b] in D rounds. Therefore, all the nodes will learn in this phase whether
there exists a node with ID in [c, b] or not. If there exists at least one such a node, then all the
nodes update a to c. Otherwise, they update b to c. Therefore, in each phase the interval [a, b]
halves and after log(N) phases the interval closes and the maximum ID is known to all.

Each phase takes D rounds and over each edge at most 2 messages are sent. Hence, the total
message complexity is m log(N). The time complexity of each phase is D, and hence the whole
time complexity is D log(N).

1M. Chrobak, L. Gasieniec, and W. Rytter. Fast broadcasting and gossiping in radio networks. Journal of Algorithms
2002.

1



Exercise 2: Distributed Computation of the AND

(a) For the sake of contradiction let us assume that there exits an algorithm A which solves the
problem. Examine what happens on a ring of n ≥ 3 nodes, where all inputs are 1. In any round,
the states of all nodes are identical (by induction, as in the proof of Lemma 3.4). Observe that
these states do not depend on the size n of the ring, as the algorithm is uniform and the local
topology is independent of n. Thus, there must be some constant round number t that does not
depend on n such that all nodes terminate and output 1 in round t (as we assumed the algorithm
to be correct).

Now run A on a ring of size 2(t + 1), where exactly one node has 0 as input bit. Up to distance
t from the node on the opposite side of the ring, all nodes have input 1. Again, analogously to
Lemma 3.4, until round t, this node will have the same state as if in a ring where all nodes have
input 1. Hence, in round t it will terminate and output 1, contradicting the assumption that A
is correct and should output 0 at all nodes.

(b) All input values have to be sent all around the ring. Each node, to detect the return of its own
message, adds a hop counter to its message. If the message has made n hops, it has arrived
where it started.

(c) The following algorithm calculates the AND in a synchronous, non-uniform ring:

Algorithm 1 AND in the Ring: synchronous, non-uniform (n is the number of nodes)

1: if input bit = 0 then
2: send 0 to the neighbor in the ring
3: end if ;
4: for i := 2 to n do
5: if received a 0 and have not already sent a 0 then
6: forward the 0 to the other neighbor in the ring
7: end if
8: end for;
9: if received at least one 0 then

10: result := 0
11: else
12: result := 1
13: end if ;

If the result is 1, no message is sent, otherwise there is exactly one message over each link. Thus,
the time and message complexity are both n.

2


