Albert-Ludwigs-Universitét

Institut fiir Informatik

Prof. Dr. F. Kuhn

Mohamad Ahmadi, Hamid Ghodselahi June 22, 2016

Network Algorithms, Summer Term 2015
Problem Set 7 — Sample Solution

Exercise 1: Coloring Rings

1. Let n > 4 be even, and r = n/2 — 2. Consider the r-neighborhood graph N,.(R,) of the ring R,
with n nodes. Note that for » = n/2 — 2 the r-neighborhood of a node contains all but three
identifiers, ordered according to their occurrence.

Then it follows from Lemma 7.5 that the ring can be colored legally with two colors in r rounds
if and only if NV,.(R,,) is bipartite, i.e., the r-neighborhood contains no odd cycle. However, there
is one of length n — 1:

(1,...,n—=3),(2,....,n—2),(3,...,n—1),(4,...,n),(5,...,n,1),...,
(n,1,2...,n—4),(1,...,n—3).

Thus no coloring of the ring with 2 colors is possible in less than n/2 — 1 rounds.

2. Each node informs its two neighbors whether it is in the MIS or not and additionally sends its
identifier. If node v is in the MIS, it sets its color to 1. If v is not in the MIS but both of its
neighbors are, then v sets its color to 2. If v has a neighbor w not in the MIS, v chooses color 2
if its identifier is larger than w’s identifier, otherwise v chooses the color 3.

The algorithm only needs one communication round. Correctness follows from the fact that
either a node v is in the MIS or at least one of its neighbors is. Thus, a MIS can at best
be computed one round faster than a 3-coloring, which implies that computing a MIS costs at
least (log*n)/2 — 2 rounds (since coloring a directed ring with 3 or less colors needs at least
(log*n)/2 — 1 rounds. See Theorem 7.11).

Exercise 2: Coloring Unrooted Trees

1. All the nodes in V; keep the color from the 3-coloring of T'[V;]. Clearly, this does not create any
conflicts in T'. For the nodes in Vj, we iterate through all the 3 colors. When considering color
x, all nodes that have color x in the 3-coloring of T'[Vp], select the minimum possible available
color (note that these nodes always form an independent set of T'). Given on 3-coloring of T[V})]
and T'[V1], this allows to compute a 3-coloring of 7" in 3 rounds.

2. We utilize the following fact: the sum of degrees of all nodes in a tree equals twice the number
of edges.

Assume that z denotes the number of nodes with degree 2 and let y be the number of nodes
with degree 1. Generally the number of edges in a tree equals n — 1. Therefore we have

20 +y+3n—z—y) <2(n-1).

The above inequality implies that + 2y > n + 2 and it concludes that z +y > n/2.

3. The algorithm is defined in recursive steps as follows: In Step 1, the set V is partitioned into
two sets Vg and Vi! where V includes the nodes with degree at most 2 and Vj' includes the
nodes with degree at least 3. With respect to the part 2 we know |Vil| > |V|/2. The algorithm
from the hint is applied on the set V) and therefore in O(log* n) time we have a 3-coloring for
the forest induced by the nodes in Vol. Now we have the set V' of nodes with degree at least 3
that are not colored yet.

Generally in each Step i > 2, the set V; ™! is partitioned into two sets Vi and V{ such that V§
includes the nodes with degree at most 2 whose size is at least |[V;"!|/2 (w.r.t. part 2) and V}
includes the nodes with degree at least 3 whose size is at most]Vf_l |/2. As Step 1, the algorithm
from the hint is applied on the forest induced by the nodes in Voi and we get a 3-coloring in time
O(log* n) for the forest induced by the nodes in V. Thus at the end of Step i > 1, the number
of nodes that are colored is at least n —n/2%. As a result, it takes S = O(logn) steps till we get
S number of valid 3-colorings that color all the nodes and each step needs O(log* n) time.

Now we need to merge these S 3-colorings into a final valid 3-coloring. In the merging part, we
use part 1 and start from the bottom level of recursion tree formed by first part of the recursive
algorithm that has been already described. Hence, we do S merges and each merge gives us a
3-coloring in at most 3 rounds regarding to the part 1. Therefore at the end, we get a 3-coloring
for T in time O(logn - log*n). Regarding to the described recursive algorithm the recurrence
relation is

T(n) <T(n/2)+clog"n+3

where ¢ is a constant. Solving the above recurrence relation gives T'(n) = O(logn - log* n).

4. We can do the following trick to get rid of the factor log* n in the final result. At each Step i,
we can parallelize applying the algorithm from the hint on the forest induced by the set Vg and
solving the problem for the remaining nodes in the set V. Hence, the recurrence relation is as
follows

T(n) < max{T(n/2),c.log"} + 3.

Using one of the tools to solve a recurrence relation, say replacing, therefore T'(n) = O(logn).

