
Albert-Ludwigs-Universität
Institut für Informatik
Prof. Dr. F. Kuhn
Mohamad Ahmadi, Hamid Ghodselahi June 22, 2016

Network Algorithms, Summer Term 2015

Problem Set 7 – Sample Solution

Exercise 1: Coloring Rings

1. Let n ≥ 4 be even, and r = n/2− 2. Consider the r-neighborhood graph Nr(Rn) of the ring Rn

with n nodes. Note that for r = n/2 − 2 the r-neighborhood of a node contains all but three
identifiers, ordered according to their occurrence.

Then it follows from Lemma 7.5 that the ring can be colored legally with two colors in r rounds
if and only if Nr(Rn) is bipartite, i.e., the r-neighborhood contains no odd cycle. However, there
is one of length n− 1:
(1, . . . , n− 3), (2, . . . , n− 2), (3, . . . , n− 1), (4, . . . , n), (5, . . . , n, 1), . . . ,
(n, 1, 2 . . . , n− 4), (1, . . . , n− 3).
Thus no coloring of the ring with 2 colors is possible in less than n/2− 1 rounds.

2. Each node informs its two neighbors whether it is in the MIS or not and additionally sends its
identifier. If node v is in the MIS, it sets its color to 1. If v is not in the MIS but both of its
neighbors are, then v sets its color to 2. If v has a neighbor w not in the MIS, v chooses color 2
if its identifier is larger than w’s identifier, otherwise v chooses the color 3.

The algorithm only needs one communication round. Correctness follows from the fact that
either a node v is in the MIS or at least one of its neighbors is. Thus, a MIS can at best
be computed one round faster than a 3-coloring, which implies that computing a MIS costs at
least (log∗ n)/2 − 2 rounds (since coloring a directed ring with 3 or less colors needs at least
(log∗ n)/2− 1 rounds. See Theorem 7.11).

Exercise 2: Coloring Unrooted Trees

1. All the nodes in V1 keep the color from the 3-coloring of T [V1]. Clearly, this does not create any
conflicts in T . For the nodes in V0, we iterate through all the 3 colors. When considering color
x, all nodes that have color x in the 3-coloring of T [V0], select the minimum possible available
color (note that these nodes always form an independent set of T). Given on 3-coloring of T [V0]
and T [V1], this allows to compute a 3-coloring of T in 3 rounds.

2. We utilize the following fact: the sum of degrees of all nodes in a tree equals twice the number
of edges.

Assume that x denotes the number of nodes with degree 2 and let y be the number of nodes
with degree 1. Generally the number of edges in a tree equals n− 1. Therefore we have

2x + y + 3(n− x− y) ≤ 2(n− 1).

The above inequality implies that x + 2y ≥ n + 2 and it concludes that x + y ≥ n/2.

1

3. The algorithm is defined in recursive steps as follows: In Step 1, the set V is partitioned into
two sets V 1

0 and V 1
1 where V 1

0 includes the nodes with degree at most 2 and V 1
1 includes the

nodes with degree at least 3. With respect to the part 2 we know |V 1
0 | ≥ |V |/2. The algorithm

from the hint is applied on the set V 1
0 and therefore in O(log∗ n) time we have a 3-coloring for

the forest induced by the nodes in V 1
0 . Now we have the set V 1

1 of nodes with degree at least 3
that are not colored yet.

Generally in each Step i ≥ 2, the set V i−1
1 is partitioned into two sets V i

0 and V i
1 such that V i

0

includes the nodes with degree at most 2 whose size is at least |V i−1
1 |/2 (w.r.t. part 2) and V i

1

includes the nodes with degree at least 3 whose size is at most |V i−1
1 |/2. As Step 1, the algorithm

from the hint is applied on the forest induced by the nodes in V i
0 and we get a 3-coloring in time

O(log∗ n) for the forest induced by the nodes in V i
0 . Thus at the end of Step i ≥ 1, the number

of nodes that are colored is at least n− n/2i. As a result, it takes S = O(log n) steps till we get
S number of valid 3-colorings that color all the nodes and each step needs O(log∗ n) time.

Now we need to merge these S 3-colorings into a final valid 3-coloring. In the merging part, we
use part 1 and start from the bottom level of recursion tree formed by first part of the recursive
algorithm that has been already described. Hence, we do S merges and each merge gives us a
3-coloring in at most 3 rounds regarding to the part 1. Therefore at the end, we get a 3-coloring
for T in time O(log n · log∗ n). Regarding to the described recursive algorithm the recurrence
relation is

T (n) ≤ T (n/2) + c. log∗ n + 3

where c is a constant. Solving the above recurrence relation gives T (n) = O(log n · log∗ n).

4. We can do the following trick to get rid of the factor log∗ n in the final result. At each Step i,
we can parallelize applying the algorithm from the hint on the forest induced by the set V i

0 and
solving the problem for the remaining nodes in the set V i

1 . Hence, the recurrence relation is as
follows

T (n) ≤ max{T (n/2), c. log∗}+ 3.

Using one of the tools to solve a recurrence relation, say replacing, therefore T (n) = O(log n).

2

