Exercise 1: \(\mathcal{NP} \) and Star Operation (5 points)

Show that \(\mathcal{NP} \) is closed under the star operation.

Remark 1: Let \(A \) be a language. The operation \(\text{star}(\cdot^*) \) is defined as follows:
\[
A^* = \{ x_1 x_2 \ldots x_k \mid k \geq 0 \text{ and each } x_i \in A \text{ where } 0 \leq i \leq k \}.
\]

Remark 2: A collection of objects is closed under some operation if applying that operation (a finite number of times) to members of the collection returns an object still in the collection.

Exercise 2: The class \(\mathcal{NPC} \) (8 points)

Let \(L_1, L_2 \) be languages (problems) over alphabets \(\Sigma_1, \Sigma_2 \). Then \(L_1 \leq_p L_2 \) (\(L_1 \) is polynomially reducible to \(L_2 \)), iff a function \(f : \Sigma_1^* \rightarrow \Sigma_2^* \) exists, that can be calculated in polynomial time and
\[
\forall s \in \Sigma_1 : s \in L_1 \iff f(s) \in L_2.
\]
Language \(L \) is called \(\mathcal{NP} \)-hard, if all languages \(L' \in \mathcal{NP} \) are polynomially reducible to \(L \), i.e.
\[
L \text{ \(\mathcal{NP} \)-hard} \iff \forall L' \in \mathcal{NP} : L' \leq_p L.
\]
The reduction relation \(\leq_p \) is transitive (\(L_1 \leq_p L_2 \) and \(L_2 \leq_p L_3 \) \(\Rightarrow \) \(L_1 \leq_p L_3 \)). Therefore, in order to show that \(L \) is \(\mathcal{NP} \)-hard, it suffices to reduce a known \(\mathcal{NP} \)-hard problem \(\bar{L} \) to \(L \), i.e. \(\bar{L} \leq_p L \).

Finally a language is called \(\mathcal{NP} \)-complete (\(\Leftrightarrow \): \(L \in \mathcal{NPC} \)), if
1. \(L \in \mathcal{NP} \) and
2. \(L \) is \(\mathcal{NP} \)-hard.

Show \text{HittingSet} := \{ \langle U, S, k \rangle \mid \text{universe } U \text{ has subset } H, |H| \leq k \text{ that hits all sets in } S \subseteq 2^U \} \in \mathcal{NPC}.1

Use that \text{VertexCover} := \{ \langle G, k \rangle \mid \text{Graph } G \text{ has a vertex cover of size at most } k \} \in \mathcal{NPC}.

Remark: A hitting set \(H \subseteq U \) for a given universe \(U \) (which is a finite set) and a set \(S = \{ S_1, S_2, \ldots, S_m \} \) of subsets \(S_i \subseteq U \), fulfills the property \(H \cap S_i \neq \emptyset \) for \(1 \leq i \leq m \) (\(H \) ‘hits’ at least one element of every \(S_i \)).

A vertex cover is a subset \(V' \subseteq V \) of nodes of \(G = (V, E) \) such that every edge of \(G \) is adjacent to a node in the subset.

Hint: For the poly. transformation (\(\leq_p \)) you have to describe an algorithm (with poly. run-time!) that transforms an instance \(\langle G, k \rangle \) of \text{VertexCover} into an instance \(\langle U, S, k \rangle \) of \text{HittingSet}, s.t. a vertex cover of size \(\leq k \) in \(G \) becomes a hitting set of \(U \) of size \(\leq k \) for \(S \) and vice versa(!).

1The power set \(2^U \) of some ground set \(U \) is the set of all subsets of \(U \). So \(S \subseteq 2^U \) is a collection of subsets of \(U \).
Exercise 3: Complexity Classes: Big Picture (2+3+2 points)

(a) Why is $P \subseteq NP$?

(b) Show that $P \cap NPC = \emptyset$ if $P \neq NP$.

 Hint: Assume that there exists a $L \in P \cap NPC$ and derive a contradiction to $P \neq NP$.

(c) Give a Venn Diagram showing the sets P, NP, NPC for both cases $P \neq NP$ and $P = NP$.

 Remark: Use the results of (a) and (b) even if you did not succeed in proving those.