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Exericse 1: Decidability? (3 Points)

Let n be a fixed positive integer, Σ = {0, 1} a fixed alphabet, M a fixed TM and w ∈ Σ∗ a fixed word.

LΣ,M,n,w :=


{1n}, M stops on w in at most n steps
{0n}, M stops on w after > n steps
∅, M does not stop on w.

Is LΣ,M,n,w decidable?
Remark: For some a ∈ Σ, an denotes the word which repeats a n times.

Sample Solution

The problem is decidable: The language equals either {1n}, {0n} or ∅. n, M , Σ and w are fixed and
all languages only consist of a single word or are empty. We do not know which one equals L but in
either case there is a TM which decides it.

Exersive 2: Semi-Decidable vs. Recursively Enumerable (4 Points)

Very often people in computer science use both terms equivalently. The following exercise shows in
which way they actually are equivalent. We first recal the definition of both terms.

A language L is semi-decidable if there is a Turing machine which accepts every w ∈ L and does not
accept any w /∈ L (this means the TM can either reject w /∈ L or simply not stop for w /∈ L.

A language is recursively enumerable if there is a Turing machine which eventually outputs every word
w ∈ L and never outputs a word w /∈ L.

(a) Show that any recursively enumerable language is semi-decidable.

(b) Show that any semi-decidable language is recursively enumberable.

Sample Solution

1. Let ML be the TM which enumerates L. Construct a TM which, on input w, simulates ML. If
ML outputs w the TM accepts w, otherwise it might run forever.

2. Let ML be a TM which semi-decides L. We use a tricky simulation of ML to construct a TM
which recursively enumerates L. We order all words lexicographically w1, w2, w3, . . . and then
we simulate ML as follows

(a) Simulate one step of ML on w1
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(b) Simulate one (further) step of ML on w1 and w2

(c) Simulate one (further) step of ML on w1, w2 and w3

(d) Simulate one (further) step of ML on w1, w2, w3 and w4

(e) etc.

Exercise 3: Halting Problem (3+2+2+1 points)

The special halting problem is defined as

H = {〈M〉 | 〈M〉 encodes a TM and M halts on 〈M〉}.

(a) Show that H is undecidable.

Hint: Assume that M is a TM which decides H and then construct a TM which halts iff M does
not halt. Use this construction to find a contradiction.

(b) Show that the special halting problem is recursively enumerable.

(c) Show that the complement of the special halting problem is not recursively enumerable.

Hint: What can you say about a language L if L and its complement are recursively enumerable?
(if you make some observation for this, also prove it)

(d) Let L1 and L2 be recursively enumerable languages. Is L1 \ L2 recursively enumerable as well?

Sample Solution

1. Assume that H is decidable. Then there is a TM M which decides it. Now define a TM M̃
which terminates on the inputs on which M does not terminate: The TM M̃ on input w uses
M to test whether w ∈ H. If w ∈ H it enters a non terminating loop, otherwise it terminates.
We now apply M̃ on input 〈M̃〉 and construct a contradiction.

〈M̃〉 /∈ H: Then M rejects 〈M̃〉. Thus M̃ terminates on 〈M̃〉 by the definition of M̃ . Thus
〈M̃〉 ∈ H, a contradiction.

〈M̃〉 ∈ H: Then M accepts 〈M̃〉, i.e., M̃ enters a non terminating loop on 〈M̃〉 and does not
halt on 〈M̃〉 which means that 〈M̃〉 /∈ H, a contradiction.

(actually both cases are similar as in both cases M̃ enters a non terminating loop and we do
have the statement

〈M̃〉 ∈ H ⇔ 〈M̃〉 /∈ H.

2. The special halting problem is semi-decidable because we can construct a TM which semi-decides
it as follows: If the input is not a valid coding of a TM the TM rejects it. If the input is the
coding of a TM M it simulates M on 〈M〉 and accepts if this simulation stops.

With the previous exercise it follows that the halting problem is recursively enumerable.

3. First note that if a language L and its complement are recursively enumerable the language L is
a recursive language: Assume that L is recursively enumerable by TM M1 and its complement
by TM M2. Then we construct a TM which, on input w interchangebly simulates one step of
M1 and one step of M2. Eventually one of the two TMs will output w. If M1 outputs w we
accept w and if M2 outputs w we reject w.

If the complement of the special halting problem was recursively enumerable, then H and its
complement would be recursively enumerable. But then H would be a recursive language which
is a contradiction.
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4. This does not hold in general. Let L1 = {0, 1}∗ be the language of all words over Σ = {0, 1} and
let L2 be the special halting problem. Then L1 and L2 are recursively enumerable (L1 is even
a recursive language) but L1 \ L2 equals the complement of the special halting problem and is
not recursively enumerable.

Exercise 4 (2+3 points)

(a) Show that every finite language is a decidable.

(b) Assume that π is a fixed order of the words in Σ∗ such that a Turing machine can decide in finite
time whether π(w) ≤ π(w′) for all w,w′ ∈ Σ∗. Furthermore assume that for a given language
L there is a Turing machine that enumerates the words of L in order w1, w2, w3, . . . such that
π(wi) ≤ π(wj) holds for all i ≤ j.
Show that L is decidable.

Sample Solution

1. If a language L is finite it can be recognized by a DFA. As every DFA can be simulated by a
TM there is also a TM which recognizes L.

2. We construct a TM which decides L as follows: If L is a finite language then we can construct
a TM as in the first part of the question.

Thus assume that L is infinite and we want to decide whether w ∈ L. Now, to decide whether
w ∈ L we simulate ML. Let w′ be the current word that ML has output. Our TM moves to an
accepting state if w′ = w. If π(w′) > π(w) (the TM can test this in finite time) we move to the
rejecting state. Otherwise we continue the simulation and wait for the next word.

The TM does always halt as a w′ with π(w′) > π(w) does always exist if the language is infinite.

Correctness: If we accept w we also have w ∈ L because ML had w as output. If we reject w
then ML output a w′ with π(w′) > π(w). Because ML outputs the words in order π this means
every word w′′ that ML would output in a further simulation has the property π(w′′) > π(w′) >
π(w), i.e., ML will never output w, i.e., w /∈ L.
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